
6-DoF Particle Filter-based Tracking of
Arbitrarily Shaped Objects

Diploma Thesis
of

David Münch

At the Faculty of Informatics
Institute for Anthropomatics

First reviewer: Prof. Dr.-Ing. Rüdiger Dillmann
Second reviewer: Prof. Dr.-Ing. Jürgen Beyerer
Advisor: Dr.-Ing. Pedram Azad

31. October 2009 – 30. April 2010

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

II

I declare that I have developed and written the enclosed Diploma Thesis completely by myself,
and have not used sources or means without declaration in the text.
Karlsruhe, 30.04.2010

David Münch

III

IV

Acknowledgments

Firstly, I want to thank my advisor, Pedram Azad, for a very comfortable working envi-
ronment which allowed me to work independently but also for many explanations and the
introduction into the research field of computer vision.

Thanks go to my colleagues in the laboratory for many fruitful discussions and inspirations;
we also had fun playing flying disk. Thanks to the colleagues who always supported me with
energy drinks. Thanks to the author of the template [1].

Thanks go to Matthias Huber and Susanne Münch, who proofread my thesis for several times.
Thank you for your patience and your time.

I want to thank my family for their support and for their help.

Finally, I thank my wonderful wife for her continual support and love.

...on that note let the particles catch the object.

V

VI

Abstract

6-DoF tracking of arbitrarily shaped objects is a challenging task concerning accurate pose
estimation as well as real-time performance. Additionally, occlusions, rapid movements and a
lack of usable textural information on the surface of the object can complicate the estimation
of its correct pose or make it even impossible. In this work, a novel monocular model-
based approach in 6-DoF tracking of arbitrarily shaped objects by using an annealed particle
filter will be presented and evaluated – covering nontrivial single-colored as well as textured
objects. For each particle representing a pose the corresponding object is rendered with
OpenGL. Its edge image is evaluated pixel-by-pixel against the input edge image of the scene
in reality. Subsequently, the actual mean pose of the object can be estimated. Thus, the
results achieved are comparable and the pose estimations – both in simulation and in reality
– are nearly faultless if the edge image of the object contains sufficient information. Real-
time performance is not achieved on conventional hardware as will be discussed in this thesis.
Speeding up the approach with NVIDIA’s CUDA is limited due to hardware related issues on
the GPU. In terms of universal applicability further speedup is required. The approach is a
significant improvement compared to existing methods as it can deal with objects of arbitrary
shape with few or even no textural information and as it can handle partial occlusions.

VII

VIII

Zusammenfassung

In dieser Arbeit wurde ein Objektverfolgungsverfahren für einfarbige und texturierte belie-
big geformte Objekte mit sechs Freiheitsgraden (6-DoF) entwickelt. Das zugrunde liegende
Rahmenwerk ist ein mehrschichtiger (annealed) Partikelfilter.

Im Sonderforschungsbereich 588 Humanoide Roboter wird daran geforscht, einen humanoiden
Roboter in einer Küche und später im gesamten Alltag die verschiedensten Aufgaben ausfüh-
ren zu lassen. Möchte ein humanoider Roboter ein beliebig geformtes Objekt greifen, muss
er dazu zu jedem Zeitpunkt die genaue Lage des sich bewegenden Objektes kennen. Ist die
initiale Lage bestimmt und das dreidimensionale Modell des Objekts a priori bekannt, kann
anschließend das in dieser Arbeit vorgestellte Objektverfolgungsverfahren eingesetzt werden,
um zu jedem Zeitpunkt die genaue Lage des Objektes zu kennen.

In dieser Arbeit galt es, die Lage von einfarbigen oder schwach texturierten, beliebig ge-
formten Objekten zuverlässig und exakt zu bestimmen; als Grundlage für komplexe Mani-
pulationsaufgaben. Für diese Art von Objekten schlagen bisher bekannte Ansätze fehl. Aus
zweidimensionalen Bildern dieser Objekte kann – bis auf die Farbe, die bei den hier unter-
suchten Objekten aber meist nur einfach ist – nicht mehr Information als die über deren
Kanten gewonnen werden. Bisher bekannte modellbasierte und kantenbasierte Verfahren wie
zum Beispiel [2, 3, 4, 5, 6, 7] arbeiten auf lokalen Kantenmerkmalen und minimieren Fehler
zwischen geschätzter Lage des Modells und detektierten Kanten des Originalbildes. Parti-
kelfilterbasierte Verfahren wie [8, 9, 10] arbeiten mit globalen Kantenvergleichen bei relativ
einfach geformten Modellen. Das Problem bei beliebig geformten Objekten ist, dass nicht
jede Kante des Modells auch eine reale Kante des Objekts repräsentiert, sondern oft nur eine
Kante der durch Dreiecke erzeugten Objektoberfläche ist.

Der hier entwickelte neuartige Ansatz basiert auf einem mehrschichtigen Partikelfilter, wel-
cher aus mehreren Anwendungen eines normalen Partikelfilters mit dynamischer Anpassung
verschiedener Parameter bei gleichem Eingabebild besteht. Die Einzelbilder einer Bildfolge
werden nacheinander wie folgt bearbeitet: Zuerst werden in dem Bild die Kanten detektiert
und anschließend einer Dilatation unterzogen. Der Partikelfilter verwendet dieses Bild als
Eingabe und vergleicht es mit allen von ihm erzeugten Bildern, die durch das Rendern des
Objektes in verschiedenen Lagen und anschliessende Kantendetektion generiert werden. Der
Vergleich der Bilder erfolgt pixelweise durch ein binäres Und mit Schwellwert. Je besser die
Lage des realen Objektes mit der geschätzten Lage des vom Partikelfilter generierten Objek-
tes übereinstimmt, desto mehr Kantenpixel werden übereinstimmen und desto besser wird
diese Lage bewertet. Die Ausgabe des Partikelfilters für ein Objekt ist somit die gemittelte
geschätzte Lage in Abhängigkeit ihrer Bewertung.

Die Ergebnisse der experimentellen Evaluation zeigen, dass der Ansatz sehr robust ist und
zwar mit Fehlern von weniger als 1mm in horizontaler und vertikaler Richtung, 5mm in der
Tiefe und 0.4◦ um alle Achsen. Voraussetzung für die Anwendbarkeit ist, dass qualitativ gute
Kantenbilder bzw. Teile der Textur sichtbar sind. Auf derzeit verfügbarer Rechner-Hardware
ist der Ansatz allerdings trotz der Ausschöpfung aller verfügbaren Optimierungsmöglichkeiten
– sowohl auf der CPU als auch auf der GPU – nicht echtzeitfähig. Dies liegt an Beschrän-
kungen der Architektur durch die Grafikkarte. Es ist jedoch davon auszugehen, dass in naher
Zukunft diese Beschränkungen aufgehoben sein werden.

IX

Contents

Acknowledgments V

Abstract VII

List of Figures XIV

List of Tables XV

List of Algorithms XVII

1 Introduction 1
1.1 Motivation . 1
1.2 Aim and Contribution . 2
1.3 Structure and Overview . 3

2 State of the Art 5
2.1 Perceptual Organization . 5
2.2 RAPID – A Video Rate Object Tracker . 6
2.3 Integration of Model-Based and Model-Free Cues 6
2.4 2D-3D Tracking . 7
2.5 Particle Filtering Approaches . 7

2.5.1 Real-Time Camera Tracking Using Known 3D Models 7
2.5.2 Real-Time Visual Tracker by Stream Processing 8
2.5.3 Full-3D Edge Tracking on GPU . 8

2.6 Accurate Shape-Based 6-DoF Pose Estimation of Single-Colored Objects . . . 9
2.7 Comparison . 9

3 Fundamentals 11
3.1 Camera Model . 11
3.2 Particle Filter . 12
3.3 Annealed Particle Filter . 14
3.4 Open Graphics Library . 15

XI

4 Developed Approach 17
4.1 Implementation of 6-DoF Tracking . 17

4.1.1 Preprocessing the Image Sequence . 17
4.1.2 Annealed Particle Filtering and Rating the Different Poses 18
4.1.3 Visualization of the Result . 23

4.2 Challenges . 23
4.2.1 Quality of the Input Image . 23
4.2.2 Object Model . 24
4.2.3 Rating . 24

4.3 Optimizations . 26

5 Software and Interfaces 29
5.1 Hardware . 29
5.2 Software . 29

5.2.1 Integrating Vision Toolkit . 29
5.2.2 Keyetech Performance Primitives . 30
5.2.3 Compute Unified Device Architecture 30
5.2.4 Class Diagram . 32
5.2.5 User Interface . 32

5.3 KIT ObjectModels Web Database . 33

6 Evaluation 35
6.1 Accuracy . 35

6.1.1 Comparison of Different Parameters 35
6.1.2 6-DoF Tracking in Simulation Mode 41
6.1.3 Real World Experiments . 46

6.2 Runtime . 47
6.3 Optimized with CUDA . 55

7 Conclusion 57
7.1 Summary and Results . 57
7.2 Future Work . 58

A Mathematics 59

B Structure of Parameter Files 63

C Source Code 65

D Datasheets 71

References 75

Index 79

XII

List of Figures

1.1 Wireframe and surface model of measuring cup. 2

2.1 RAPID tracker. 6

2.2 Different views in different positions. 9

3.1 The extended camera model. 12

3.2 Risk of local maxima in particle filtering. 13

3.3 Visualization of the CONDENSATION algorithm. 13

3.4 Annealed particle filtering. 14

3.5 Simplified OpenGL pipeline. 15

3.6 OpenGL pixel buffer object. 15

4.1 Captured image of a single-colored measuring cup. 18

4.2 The Canny edge detector applied on the image of Figure 4.1. 18

4.3 Dilation operation applied on the edge image of Figure 4.2. 20

4.4 Edge image particle space of 20 particles. 20

4.5 The best rated particle from Figure 4.4. 21

4.6 Application of Canny edge detector and dilation operation on Figure 4.5. . . 21

4.7 Pixel-by-pixel binary AND operation with figures 4.3 and 4.6. 22

4.8 Visualization of the estimated pose of the measuring cup in Figure 4.1. 22

4.9 Rating function with 3000 projected white pixels (compare Figure 4.3). . . . 22

4.10 An edge image without background clutter. 24

4.11 Rendered model of measuring cup. 24

4.12 Challenge of the rating function. 25

4.13 From the pose of the object to its probability. 27

5.1 UML class diagram of the implemented approach. 33

6.1 Sample object cup. 36

6.2 Static image sequence of measuring cup. 36

6.3 Absolute error of translational axis using Canny edge detector. 37

6.4 Absolute error of translational axis using Prewitt operator. 37

6.5 Absolute error of translational axis using Sobel operator. 38

6.6 Comparison of Canny, Prewitt and Sobel. 38

6.7 Comparison of dilation operation and Gaussian preprocessing on input image. 39

6.8 Comparison of dilation operation and Gaussian preprocessing on input image. 40

6.9 Comparison of different numbers of layers. 40

6.10 Absolute error of translational axis with the cooking oil object. 41

6.12 Absolute error of rotational angles with the cooking oil object. 42

XIII

6.13 Absolute error of rotational angles with the cooking oil object. 42
6.11 Tracking of a colorful textured can of cooking oil in simulation mode. 43
6.14 Tracking of a blue single-colored measuring cup in simulation mode. 44
6.15 Absolute error of translational axis with the measuring cup object. 45
6.16 Absolute error of rotational axis with the measuring cup object. 45
6.17 Absolute error of rotational axis with the measuring cup object. 46
6.18 Tracking of a blue single-colored measuring cup. 48
6.19 Tracking of a yellow single-colored cup. 49
6.20 Tracking of a green single-colored plate. 50
6.21 Tracking of an orange single-colored cuboid. 51
6.22 Tracking of a blue single-colored bowl. 52
6.23 Tracking of a colorful textured box of soup. 53
6.24 Runtime vs. number of particles. 53
6.25 Runtime vs. number of layers. 54

A.1 Rotation around a given axis. 60
A.2 Rotation using Euler angles. 60

XIV

List of Tables

2.1 Comparison of the different approaches. 10

6.1 Standard deviation of pose estimation of static object (see Figure 6.2) 39
6.2 Runtime with different edge detection modes. 54
6.3 Rendering time with OpenGL for different objects. 55
6.4 “Benefits” of using CUDA. 55

XV

XVI

List of Algorithms

1 Initialize particles . 19
2 Particle filter framework . 19
3 Update pose . 20
4 Calculate Probability . 21
5 Normalization improvement . 26

XVII

XVIII

Chapter 1

Introduction

1.1 Motivation

In the past few years research and development in the field of computer vision has increased
rapidly due to faster computers and the demand for sophisticated imaging sensors in artificial
systems and video surveillance. An example of such a complex artificial system is a humanoid
robot.

A humanoid robot is mainly designed to work in a human household, especially in the kitchen.
In the German Collaborative Research Center SFB 5881, a kitchen environment serves as the
goal scenario, in which the humanoid robot ARMAR-III (see [11]) has to perform various
manipulation tasks. The work performed in this thesis targets application on the humanoid
robot ARMAR-III. A humanoid robot can be an assistant for those who need help due to
reduced mobility and for those enjoying the convenience of an independent assistant doing
the daily housework such as setting and clearing the table, putting the food from the fridge
and the larder onto the table and back, filling the dishwasher and cleaning the house.

A human household – even if tidied up – is an extremely complex environment. There are
many obstacles such as displaced chairs, moving persons or a pair of shoes laying on the
floor. These dynamic changes of the environment cannot be captured and considered in the
robot’s static environment model of the household. Apart from the environment the actions
the robot is assumed to take are complex, too:

The entire process of putting a can of beer into the fridge, for example, is organized in different
layers and modules of different complexity. First, the robot needs to understand the action
of putting a can of beer into the fridge, followed by planning the sequence of tasks satisfying
the action. One task is to open the fridge consisting of further subtasks like moving the arm
of the robot from its current position to the handle of the fridge and grasping it. Another
subtask is to grasp the can of beer from the person ordering it. The robot has to determine
the actual pose of the can and if the person is moving, it has to track the can and to grasp
it dynamically.

Tracking the pose of an object in this environment is not an easy task as there are problems
such as illumination changes, occlusions of the object and clutter in the background. Thus,

1http://www.sfb588.uni-karlsruhe.de/

1

http://www.sfb588.uni-karlsruhe.de/

the approach developed, evaluated and discussed in this work deals with tracking arbitrarily
shaped objects – both single-colored and with textural information.

Tracking objects in a model-based and edge-based manner is straight forward for simple object
primitives such as cuboids, cones or spheres. There, every edge in the two-dimensional (2D)
wireframe image of the model represents a real edge of the object. Consequently, the edges
of the wireframe model match the extracted edges of a real world image of the corresponding
object. Dealing with more complex objects their corresponding models consist of several
edges. For them it cannot be decided efficiently if a certain edge belongs to the outline of the
model or if it is part of the surface as it can be seen in Figure 1.1. As recent approaches fail
for such complex objects a new approach is developed which can deal with these difficulties.

Figure 1.1: On the left side a wireframe model of a measuring cup can be seen. On the right
side there is a surface model of the same object.

1.2 Aim and Contribution

The aim of this work is not to improve existing methods but to develop a novel approach
for tracking arbitrarily shaped rigid objects as mentioned above and which is robust under
translational and rotational movement as well as for partial occlusions of the object. Thus,
a model-based approach for accurate six degrees of freedom (6-DoF) tracking is developed
based on monocular vision. The objects to be tracked, which can be of arbitrary shape must
be available as three-dimensional (3D) models – with or without texture. As the underlying
algorithm is not restricted by any basic 3D primitives, it can track all kinds of objects. Thus,
this approach is a major improvement to existing model-based 6-DoF tracking methods.

The contribution of this work is a tracking approach based on an annealed particle filtering
framework and depending on edge images using existing 3D models of the objects to be
tracked.

The annealed particle filtering framework is explained in the Sections 3.2 and 3.3. The first
challenge to overcome in particle filtering is the initial condition: The initial pose of the object
to be tracked has to be estimated, which can be accomplished by an already existing approach
(see Section 2.6), and which is consequently not subject of this work. The annealed particle
filter consists of several particles each describing the pose of the object, a six-dimensional
(6D) configuration. To evaluate a particle, its configuration is used to render the object in its
corresponding pose, in order to compare it to the current preprocessed input image from the
camera and to rate it. The pose estimate is computed on the basis of the probability density
function modeled by the current state of the particle filter. As the processing of the particles
is independent and data parallel the approach is optimized with the support of NVIDIA’s
CUDA.

2

1.3 Structure and Overview

Chapter 2 provides an overview of the state of the art in model-based and edge-based object
tracking. In Chapter 3 the basic components like the camera model, the CONDENSATION
algorithm, the annealed particle filter and the Open Graphics Library are explained. The
developed approach is described in detail in Chapter 4. Before evaluating the accuracy and
performance in Chapter 6 the applied hard- and software is described in Chapter 5. Finally,
Chapter 7 concludes with a summary of the results and an outlook is given.

3

4

Chapter 2

State of the Art

In this chapter classical approaches for model-based and edge-based object tracking will
be presented, compared and evaluated. Due to the popularity of object tracking and its
consequently broad field of scientific research – especially in the context of particle filtering –
this chapter can only be seen as an excerpt without making claims of being complete. For this
reason only the main fundamental and most important approaches are taken into account.
In the survey “Monocular model-based 3D tracking of rigid objects” [12] Lepetit and Fua
investigate the current state of the art in model-based rigid object tracking. The focus of this
work is laid on tracking approaches based on edges as also described in [13].

2.1 Perceptual Organization

In [2], Lowe presents an edge-based approach for 3D object recognition. The input data he
works with is a single gray-scale 2D image. The major improvement to former methods is
the grouping of edge information called 2D perceptual organization. In detail the three basic
considerations for grouping are:

• the proximity of endpoints,

• parallelism and

• collinearity of line segments.

The advantage of perceptual organization is its invariance over the most 3D viewpoint
changes. However, two or more edges can be combined if they accomplish the grouping
conditions in the 2D image even if being far away in 3D space. This step of perceptual orga-
nization reduces the search space as only groupings of more than three lines are considered
and matched against a precomputed set of the viewpoints of the object. After matching,
the resulting model is verified and the viewpoint is estimated. By applying the underlying
approach to every frame a tracking mechanism is constructed. In [3], Lowe presents a possible
improvement combining matching and measurement errors.

5

2.2 RAPID – A Video Rate Object Tracker

The popularity of RAPID [4] is based on its low computational complexity. It is one of the
first real-time trackers on conventional hardware.

The object to be tracked needs to be known and it must have “high contrast edges”. Control
points are set on the object to allow fast and efficient tracking. In order to determine the
motion between two frames for the control points m their projection m′ in the new frame is
searched. As visualized in Figure 2.1 only perpendicular distances l from m are calculated
with an one-dimensional (1D) search in direction ~n. This can be done only with the assump-
tion of a low orientation change of the object. To speed up the 1D search, its direction ~n
can be limited to horizontal, vertical and diagonal directions. With enough control points,
the resulting distances l = ~n>(m −m′) can be used to calculate the corresponding pose in
minimizing the pose correction q in the equation l′ = l−qc with a least-squares minimization
approach.

A Kalman filter extension is applied to the RAPID tracker in [5]. Further robust improve-
ments are performed in [6] describing an object at multiple levels and groupings of related
geometric primitives.

l1

l2

l3

l4

l5

l

m

m′

~n

l′

qc

projected model edge

imaged object

Figure 2.1: Visualization of the RAPID tracker. In the left picture the input image and
the projected model edges can be seen. The distance between the control points m and
their projection m′ is visualized as li. In the right picture the interaction between the pose
correction q and the distances l is visualized.

2.3 Integration of Model-Based and Model-Free Cues

In [14], Kyrki et al. present an approach combining model-based features and model-free cues
based on an iterated extended Kalman filter. They extract the model-based features from a
wireframe image of their object with hidden line removal. The model-free cues are extracted
using a Harris corner detector [15]. The pose estimation performed by the iterated extended
Kalman filter is compared within three different motion models:

• the object rotates around its own origin,

6

• the object rotates around the origin of the camera coordinate system or

• a constant velocity model is applied.

Kyrki et al. suggest to choose the motion model which is best fitting in a particular applica-
tion. Additionally, they mention a particle filter but they also argue against it due to slow
performance and worse results as only few samples and edge measurements can be performed
in one time step.

2.4 2D-3D Tracking

Marchand et. al. present in [7] a two-step tracking approach. In the first step a 2D affine
model of the object is fitted to the image. The 2D displacement – in contrast to other
approaches even with large movements – can be computed iteratively. They use point corre-
spondences between the edge image and the edges of the model with an 1D search combined
with the Moving Edges algorithm [16] followed by the M-estimator [17]. In the second step
the POSIT algorithm [18] and a non-linear minimization method similar to the one described
in [3] are iteratively used to compute the pose on the basis of the point features already
having been computed in the first step.

2.5 Particle Filtering Approaches

Due to the advantages to the Kalman filter [19] or other classical minimization approaches the
particle filter can deal with non-Gaussian distributed noise, with non-linear system models
and multiple hypotheses. A detailed explanation is offered in Section 3.2. The annealed par-
ticle filter is presented in Section 3.3. In the following, some particle filter-based approaches
will be explained.

2.5.1 Real-Time Camera Tracking Using Known 3D Models

Pupilli and Calway develop in [8] a real-time camera tracking approach which is based on an
annealed particle filter. In their approach they do not track the pose of the object. Instead
they track the pose of the camera. In [9], they apply the inverse approach and track the pose
of the object whereas the pose of the camera is fixed. This approach is also based on an
annealed particle filter but additionally it requires the model of the object of interest.

As edge-based approaches are time consuming Pupilli’s and Calway’s approach is based on
3D edge junctions instead of edges only. They argue that even in dense clutter there are few
edge junctions to allow fast tracking. A processing rate of 15 frames per second with 500
particles and images with a resolution of 320 × 240 is achieved. With this approach only a
limited amount of objects can be tracked as sufficient edges are needed to form edge junctions.
Additionally, no hidden line removal is implemented and consequently it is almost impossible
to track complex objects.

7

2.5.2 Real-Time Visual Tracker by Stream Processing

Lozano et. al. present in [20] a real-time visual tracker for faces. Their approach is based on
particle filtering speeded up with CUDA. The approach consists of three steps beginning with
the initialization phase based on the Viola and Jones’ detector [21, 22] and extracting the
detected new faces as templates to extract relevant points decreasing the tracking complexity.
The model of the face to be tracked is simulated as a planar surface projected on a generic
3D human face and is matched to the image with the Active Appearance Model algorithm.

In the second step the actual particle filtering is performed. The selection of particles and its
diffusion is completed on the host whereas the weighting of each particle is calculated on the
GPU as it can run independently and as it is the most time consuming part. This weighting
is divided into two steps: In the first, the error contribution of each particle and feature point
is computed, in the second a reduction of the results of the first step is performed.

In the last step the best particles are averaged and the resulting pose can be visualized as a
3D projection of the wireframe model into the image. This approach runs in real-time at 30
frames per second with four faces to be tracked in parallel.

2.5.3 Full-3D Edge Tracking on GPU

Klein and Murray implement in [10] a 6-DoF tracking method on the GPU. They use an
annealed particle filter and their approach is based on a wireframe model with edge-based
computations.

Each particle represents one pose estimate of the object to be tracked. The object is rendered
with OpenGL on the GPU. To overcome the disadvantage of hidden lines they implement a
hidden line removal with the depth buffer of OpenGL on subsampled images with a resolution
of 160× 120.

Due to slow readback from the GPU to the host they decided to implement the rating of
each particle on the GPU with the aid of shaders. The processing pipeline begins with an
undistortion of the subsampled images of the rendered object with a resolution of 320× 240,
followed by a thresholded sobel and thinning edge method. Finally, a distance transform for
every pixel is applied.

The weighting of this edge image with the original image stored on the GPU is achieved in
relation of matching and almost matching edge pixels in both images to all pixels of the edge
image with the weighting function exp(const · matchingP ixelsallP ixels).

The annealed particle filter consists of two layers with a reduced amount of particles in the
second step. With simple objects that can be rendered fast enough – compare Table 6.3
– good results at 30 frames per second and images with a resolution of 640 × 480 can be
achieved although the core computations are based on subsampled images.

8

2.6 Accurate Shape-Based 6-DoF Pose Estimation of Single-
Colored Objects

Azad et. al. present an appearance-based object recognition approach in [23]. An extension
with pose correction is presented in [24]. It is a model-based extension working with views
even allowing simulation environments for view acquisition or visualization.

The main idea is to divide the pose estimation in two steps:

• Orientation and

• position estimation.

The problem in this divided pose estimation process is that the object with the same rotation
has different views for different positions, (see Figure 2.2 on the left and in the middle). The
relation of both objects is visualized in the right image. A trained object view is available
for position tl and the object is located at position t. With the learned view the object can
be described with a corrective rotation Rc

t = Rc · tl.

t = Rctl

0

tl
Rc

R0

R = RcR0

Figure 2.2: Different views in different positions. The object on the left has the same ori-
entation as the object in the middle. Only the position of the object is different resulting
in completely different views. The mathematical relation of this aspect is visualized on the
right.

In the second part the position is estimated with stereo-triangulation of the objects describing
their position with their triangulated centroid. The pose estimation t′ is used to calculate
the result t = f(R, t′). The function f matches the wireframe model into the image.

As the position and the orientation are affecting each other the whole process is iterative.
Experimental results showed that at most two iterations of orientation and position correction
are sufficient and that this approach can run in real-time. Unfortunately, the approach is
error prone to partial occlusions as it requires global segmentation of the objects.

2.7 Comparison

In the sections above the state of the art in model-based and edge-based 6-DoF tracking
has been presented. In Table 2.1 the approaches are directly compared and the type of

9

the required model as well as the extent to which edges are used is described. Either the
approaches are edge-based on a wireframe model or they are based on the surface model
of an object. The first six approaches use more local based edge computations whereas the
remaining three approaches consider the edges as a whole. Only the last three approaches can
deal with more complex single-colored objects. Table 2.1 depicts that textural information
can be used to support the edge-based information.

It can be seen that none of the approaches can deal neither with arbitrarily shaped complex
single-colored or few textured objects nor with the handling of occlusions, except the one
developed in Chapter 4.

Approach Model- Edge- Model- Single- Occlu- Tex- Arb.
based based free color. sions tured shap.

Perceptual Org. (2.1) edge grouping - + + +3 -

RAPID (2.2) edge distance - + - +3 -

Integration (2.3) sur./ed. distance + + + + -

2D-3D (2.4) edge point cor. - + - - -

RT known 3D (2.5.1) edge junctions - + + - -

RT stream (2.5.2) +1 o points - - + -

Full-3D GPU (2.5.3) edge matching - +2 + - +

Pose estimation (2.6) surface matching - + - - +

This Approach (4) surface matching - + + +3 +

Table 2.1: Comparison of the different approaches.

1deals with faces, uses (Active Appearance Model).
2wireframe model with hidden line removal.
3if enough edge information in texture available.

10

Chapter 3

Fundamentals

“Success is neither magical nor mysterious. Success is the natural consequence of
consistently applying the basic fundamentals.” by Jim Rohn.

According to Rohn a profound understanding of the fundamentals is essential. The fun-
damentals of the developed approach in this work are covered in this chapter and will be
described in detail. First, the extended camera model, second, the particle filter and its im-
provement the annealed particle filter and finally the Open Graphics Library (OpenGL) will
be described.

3.1 Camera Model

In computer vision commonly the reality is sampled with a 2D sensor – a camera. Its output
– an image – is used for further computations. As algorithms are working on these 2D images
representing the real 3D world it is often necessary to know the transformation from the
world coordinate system to the image coordinate system. The relation is visualized in Figure
3.1, for a detailed explanation see [25].

The principal axis runs perpendicularly through the image plane with its intersection (cx, cy)
being called principal point. The camera coordinate system on the principal axis is pointing
towards the scene. While x and y are parallel to the 2D image coordinate system on the upper
left of the image plane the world coordinate system can be specified by the user arbitrarily.

The mapping function from the camera coordinate system to the image coordinate system is
defined as u · z

v · z
z

 = K ·

 x
y
z

 with K =

 fx 0 cx
0 fy cy
0 0 1

 .

The camera constants fx and fy perform the conversion from [mm] to [pixel]. The values of
the matrix K are called intrinsic camera parameters.

The extrinsic camera parameters define the mapping from the world coordinate system to
the camera coordinate system. They consist of a rotation R and a translation t resulting in

11

x
y

z principal axis
principal point

image coordinate

camera coordinate

world coordinate

v
u

system

systemsystem

xw

zw
yw

Figure 3.1: The extended camera model. The combination of the world, the camera and the
image coordinate system as well as the principal axis and the principal point are visualized.

the transformation x
y
z

 = R ·

 xw
yw
zw

 + t.

The intrinsic and extrinsic parameters can be combined in a projection matrix P = K(R|t) to
define the mapping from the world coordinate system to the image coordinate system using
homogeneous coordinates: u · s

v · s
s

 = P ·

x
y
z
1

 .

3.2 Particle Filter

In 1960, Kalman presented a recursive filter to estimate the current state of a system in
[19], e.g. to eliminate noise in measurement data. The Kalman filter can fail if the system
model is non-linear, if the noise is not Gaussian distributed or if the probability distribution
has several maxima. The Kalman filter may fail by not reaching the global maximum and
remaining in a local maximum, compare Figure 3.2. In this example it is possible to remain
in the local maxima on the very right or left.

In order to overcome these limitations Gordon and Kitagawa presented a novel approach
estimating the probability density function in a stochastic way in [26] resp. [27]. Later, in
1996, Blake et. al. applied the approaches mentioned above to visual tracking in [28]. Their
framework is known as the Conditional Density Propagation for Visual Tracking (CONDEN-
SATION).

12

Figure 3.2: Risk of local maxima in particle filtering.

The advantages of CONDENSATION include dealing with non-linear systems, non-Gaussian
distributions and multiple cues. Thus, several maxima can be estimated at once, not necessar-
ily remaining in a local maximum as in Figure 3.2 in which every circle represents one particle.

Figure 3.3 depicts one time-step of the CONDENSATION algorithm. In the upper row the
former particles are visualized with their probability being proportional to their diameter.
In the first step, particles are picked proportionally to their probability and they undergo a
deterministic “drift”. Particles with high probability can be picked several times, those with
low probability might not get picked at all. In the following step each particle undergoes some
random “diffusion” movements. Finally, all the particles are “weighted” and their probability
gets normalized.

In this work the CONDENSATION algorithm is implemented as presented in Section 4.1.2
in Algorithm 2. The outcome at time-step t of the CONDENSATION algorithm is estimated
as

E[f(xt)] =

|particles|−1∑
n=0

π[n]t · f(s[n]t).

In this case the weighted mean can be calculated with f(x) 7→ x.

drift

diffusion

weighting

Figure 3.3: Visualization of the CONDENSATION algorithm.

13

3.3 Annealed Particle Filter

The CONDENSATION algorithm is applicable for various scenarios, however, if the search
space is high-dimensional it cannot be applied in a performant way as the search space
increases exponentially. An example of a high-dimensional search space is the human body
consisting of at least 25-DoF when using a simplified model. In [29], Deutscher et. al. combine
the CONDENSATION algorithm with simulated annealing resulting in the annealed particle
filter.

Kirkpatrick et. al. describe simulated annealing in [30]: It is a probabilistic optimization
method which can escape local extrema. Especially in large search spaces it produces good
approximative results in a short time rather than the optimal solution.

Deutscher et. al. combine this idea with particle filtering. Their approach is outlined in
Figure 3.4. Simplified, the annealed particle filter executes the CONDENSATION algorithm
k – called layers – times with an adapting annealing rate affecting the variance of the pose
estimations and an adapting number of particles.

weighting

drift &
diffusion

weighting

drift &
diffusion

weighting

drift &
diffusion

Figure 3.4: Annealed particle filtering. Due to smoothing at the beginning, the particles tend
to reach the global maximum instead of a local maxima.

14

3.4 Open Graphics Library

The Open Graphics Library (OpenGL) is a platform-independent software interface for
graphic cards usable for various 2D and 3D computer graphics. It has been developed by the
Khronos Group1 and has been realized as a state machine in which several parameters can
be set and unset with glEnable() and glDisable(). All computations are based on several
basic primitives like points, lines, triangles as well as more complex ones. In Figure 3.5 an
overview of the pipeline of OpenGL is given as presented in [31].

Vertex shading

Per-vertex operations

Primitive assembly

Rasterization

Fragment shading

Per-fragment op.
Framebuffer

Texture MemoryPixel operations

Transform feedback

Vertex

data

Pixel

data
glReadPixels()

Figure 3.5: Simplified OpenGL pipeline.

In the first step – the vertex shading and per-vertex operation – the transformation from
object coordinates to eye coordinates as well as the illumination model is applied. At the
same time, some pixel operations are performed resulting in an image stored in the texture
memory with the aim of being projected on the surface of the rendered object. In the fol-
lowing primitive assembly and rasterization step vertex and texture information are matched
and a culling test is performed. Additionally, the transformation from eye coordinates to
image coordinates is calculated. Subsequently, the geometric and pixel data are rasterized
into fragments corresponding to pixels in the framebuffer. Before writing the result into the
framebuffer some fragment operations are accomplished such as the conversion of the frag-
ments in pixels, a scissor, alpha, stencil and depth test. The result in the framebuffer is ready
to be displayed on the screen and can be read back to main memory with glReadPixels().

PBO Framebuffer

Texture Object

pack

unpack

pack

unpack

Figure 3.6: OpenGL pixel buffer objects (PBO) combine the use of pixel and vertex data
allowing fast memory transfers with asynchronous direct memory access (DMA).

In order to use vertex and pixel data in combination in a performant manner there exist pixel
buffer objects (PBO), see Figure 3.6. Their major advantage is the asynchronous fast transfer
using direct memory access (DMA). Therefore, the texture image is directly transferred from

1http://www.khronos.org/

15

http://www.khronos.org/

its source to the GPU without resting in the controlled memory space of the host. To speed
up the use of PBOs multiple objects are simultaneously used in an asynchronous way.

16

Chapter 4

Developed Approach

In this work, any kind of a 3D model-based and edge-based 6-DoF tracking approach is pro-
vided. With this approach rigid objects that can be rendered by OpenGL can be tracked. The
focus are kitchenlike objects which are in direct contact with the humanoid robot ARMAR-
III (see [11]). As the developed approach can deal with single-colored objects it can also be
applied to video surveillance especially in the dark where no color information is available.

In the following sections the different steps of the approach will be explained in detail. First,
the general idea of this novel tracking approach is presented and second, the challenges arising
are analyzed. Finally, the approach is optimized with general purpose computing on GPUs
with CUDA.

4.1 Implementation of 6-DoF Tracking

The approach is explained in the following paragraphs. In Section 5.2.4 the UML class
diagram is visualized and in Appendix C the C++ source code can be found.

4.1.1 Preprocessing the Image Sequence

In [24], Azad et. al. developed a fast and robust pose estimation approach for single-colored
rigid objects. Error-prone to partial occlusions this approach is designed to improve it. For
further details see Section 2.6.

In order to provide some input data an image sequence source is required. This can be a
video camera, a precaptured image sequence or a simulated artificial scene. In the following, a
sample input image of a blue single-colored measuring cup (see Figure 4.1) is used to explain
and visualize the approach. The object was chosen precisely as it cannot be represented with
basic primitives or straight lines and as it is not rotationally invariant and as it does not
consist of many different edges which would allow applying an already existing approach, see
Chapter 2.

As different kinds of objects have different needs a flexible algorithm is developed. The
motivation to use a Sobel or Prewitt operator (see Appendix A) instead of the Canny edge
detector is due to their better performance and an easier implementation in CUDA in a

17

further step (see Section 4.3). However, one kind of objects perform better with Sobel or
Prewitt operator and other objects perform better with the Canny edge detector, compare
Chapter 6. In the guiding example the Canny edge detector is applied to the input image,
the outcome is visualized in Figure 4.2.

The rating of every single particle is calculated with the help of this image in a further step.
Because of that and to make the tracking with an appropriate number of particles efficient,
the edges in Figure 4.2 become stretched with a morphological dilation operation. With this
step visualized in Figure 4.3, on the one hand, a small error in the correct pose estimation is
allowed. However, on the other hand, the amount of particles can be reduced significantly (see
Section 6.1.1). This step is necessary to make the algorithm more robust as the simulation
edge image is never exactly the same as the input edge image.

Achieving good results with the Canny edge detector is even more ambitious than with the
Sobel or Prewitt operator. This is due to two parameters to be set manually for the Canny
edge detection algorithm which are a low and a high hysteresis threshold not being able to
be set automatically.

This preprocessing of the input image is performed for every single frame, therefore, it is
worth to do it precisely as every particle is rated in relation to this image (see Figure 4.3).

Figure 4.1: Captured image of a single-
colored measuring cup.

Figure 4.2: The Canny edge detector applied
on the image of Figure 4.1.

4.1.2 Annealed Particle Filtering and Rating the Different Poses

The initial pose of the object to be tracked is known and the particle filter can be initial-
ized with this configuration and equally distributed particles (see Algorithm 1). A particle
(s[i]t, π[i]t) consists of its 6D pose s[i]t and its probability π[i]t at the discrete time step t.

18

Algorithm 1: Initialize particles

Input: Initial pose (x0, y0, z0, α0, β0, γ0) of the object.
Output: Set of particles M0 = {(s, π)}.

1 for i←− 1 to |M0| do
2 s[i]←− (x0, y0, z0, α0, β0, γ0);
3 π[i]←− 1

|M0| ;

4 return {(s, π)}

As described in Section 3.2 and using the initialized particles from Algorithm 1 in the first
step the particle filtering framework outlined in Algorithm 2 computes a new set of particles
and their corresponding probability.

Algorithm 2: Particle filter framework

Input: Set Mt−1 = {(st−1, πt−1)} of particles and inputImaget.
Output: Updated set Mt = {(st, πt)} of particles.

1 for i←− 1 to |Mt−1| do
2 Draw s[i]t−1 ∝ π[i]t−1; //drift

3 s[i]t ←− UpdatePose(s[i]t−1); //diffuse

4 π[i]t ←− CalculateProbability(s[i]t, inputImaget); //weighting

5 πt ←− NormalizeProbability(πt);
6 return {(st, πt)}

Annealed Particle Filtering

Mentioned as the annealed particle filter in Section 3.3 Algorithm 2 can be performed for
some times without changing the original input image. Every run of Algorithm 2 is called a
layer. Thus, calling the particle filtering framework five times after updating the input image,
corresponds to five layers in the annealed particle filter.

The aim of the particle filtering in each layer without updating the input image is to improve
the correct pose. As a consequence of updating the pose of each particle in line 3 in Algorithm
2 the variance of “drift” should decrease in order to converge to a better pose estimation.
Experimental results have shown that adapting the variancet in each layer t with

variancet ←− variance0 · (1− π[result]t)

shows best results1.

Algorithm 3 samples the current pose st of a particle in adding some random noise for every
component of the pose vector. Figure 4.4 depicts the particle space of 20 particles with the
edge image of every model. A broad variety of poses can be seen underlining the power of a
particle filter.

1For example the cup in simulation mode with five layers and 500 particles: 0. layer: π0 = 0.12,
variance0 = 1.00; 1. layer: π1 = 0.34, variance1 = 0.88; 2. layer: π2 = 0.57, variance2 = 0.66; 3.
layer: π3 = 0.58, variance3 = 0.43; 4. layer: π4 = 0.61, variance4 = 0.47.

19

Algorithm 3: Update pose

Input: Pose st−1 of a particle
Output: New pose st of a particle

1 st ←− st−1 · (meanPose− lastPose) + variancet · random();
2 return st

Figure 4.3: Dilation operation applied on
the edge image of Figure 4.2.

Figure 4.4: Edge image particle space of 20
particles.

Every particle s[i] has a probability π[i], its rating. The steps to be executed for each particle
in order to get the rating are described in Algorithm 4. It starts with rendering the object
in its current pose s[i]t and saving the rendered scene in a 2D image image (compare Figure
4.5).

According to the edge detection method chosen in the beginning either the Sobel or Prewitt
operator or the Canny edge detector are used. In the case of Sobel operator the image is
convolved as

imageSobelx ←− Sobelx ∗ image
and

imageSobely ←− Sobely ∗ image
resulting pixel-by-pixel in

edgeImage←− min{max{|imageSobelx|, |imageSobely|}, 255}.

Finally the edgeImage is binarized with a threshold ∈ [0..255]. For the case of the Canny
edge detector see [32].

20

Algorithm 4: Calculate Probability

Input: inputImaget and pose s[i]t
Output: Probability π[i]t of particle i

1 image←− renderObject(object, s[i]t)
2 switch typeOfEdgeDetection do
3 case Sobel
4 edgeImage←− CalculateGradientImageSobel(image);
5 edgeImage←− ThresholdBinarize(image, threshold);
6 break;

7 case Prewitt
8 edgeImage←− CalculateGradientImagePrewitt(image);
9 edgeImage←− ThresholdBinarize(image, threshold);

10 break;

11 case Canny
12 edgeImage←− Canny(image, lowThreshold, highThreshold);
13 edgeImage←− Dilate3x3(image);
14 break;

15 pixelCount = PixelSum(edgeImage)
255 ;

16 andImage←− AND(edgeImage, inputImage);

17 pixelCountAND = PixelSum(andImage)
255 ;

18 return e
−c·(1− pixelCountAND

pixelCount
)

Figure 4.5: The best rated particle from Fig-
ure 4.4.

Figure 4.6: Application of Canny edge de-
tector and dilation operation on Figure 4.5.

For the same reason as mentioned in the paragraph above the edge images of the rendered
objects are postprocessed by a morphological dilation operation. Thus, there are more pixels
which could match the input image accepting a small error in the correct pose estimation.
An example of a postprocessed image is shown in Figure 4.6.

An important issue in this approach is the rating of every particle. A fast and simple but
effective method is used: The pixel-by-pixel computed binary AND of the inputImage and
edgeImage. Figure 4.7 depicts the binary AND of Figure 4.3 and 4.6.

21

The first approach developed to rate the current pose in Algorithm 4 line 18 was a simple
relation of white pixels in the edgeImage and the resulting image andImage. An example of
rating with an exponential function can be seen in Figure 4.9. There cannot be more white
pixels in andImage than in edgeImage. An exponential function satisfies the needs perfectly
in rating a broad variety of bad poses poor with less matches of pixels and in rating the few
best poses well with the most matching pixels.

Figure 4.7: Pixel-by-pixel binary AND op-
eration with figures 4.3 and 4.6.

Figure 4.8: Visualization of the estimated
pose of the measuring cup in Figure 4.1.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000

p
ro

b
ab

il
it

y

pixelCountAND

exp(−20 · (1− (x/3000)))

Figure 4.9: Rating function with 3000 projected white pixels (compare Figure 4.3).

22

4.1.3 Visualization of the Result

Having received the result of the annealed particle filter framework, either the mean pose or
the best pose, it is desirable to visualize the resulting pose. On the one hand, the visualization
of a tracked object is required to observe the correct pose, on the other hand, a visualized
simulation environment is a benefit for the observer. In Figure 4.8 the original image is
overlaid with the edge image of the resulting pose of the object to be tracked. All examples
evaluated in Chapter 6 are visualized in this manner. Thus, it is even easier to verify the
result of the algorithm visually.

4.2 Challenges

Throughout developing the approach above there were several challenges to overcome. In
analyzing the critical steps and anticipating the evaluation results in Section 6.1.1 some steps
can be improved.

4.2.1 Quality of the Input Image

An important preconditions of the approach is an edge image of the object to be tracked. On
one side, the edge image can be adjusted by the low and high threshold of the Canny edge
detector or by the threshold of binarization after the Sobel filtering. The focus of this work
has not been laid on developing an automatic dynamic threshold estimation algorithm. This
is why the thresholds are set manually after having inspected the intermediate results of the
edge images. On the other side, the quality of the image should be good to allow a precise
edge detection.

Many factors play a major role in this step: First, the illumination is important to avoid
reflections on the objects that would result in edge clutter. Additionally, sparse illuminated
areas in which no edge can be seen are a disadvantage, too. In general, the whole object
should be illuminated sufficiently.

Second, the image should have a characteristic edge image, not only a contour and not too
much edges. An example of an image with too less information may be a ball resulting in
only one circle as edge image. In that case the rotational parameters of the pose cannot be
determined – in this example they are even out of interest. Another example of an image
with too much information may be an extremely crumpled piece of paper resulting in an edge
image full of edges.

Finally, the background plays a major role in rating the particles. If there are lots of edges in
the background not belonging to the object, but being matched to the model, the resulting
pose can be wrong. Thus, the background should be removed resulting in an input image
without clutter (see Figure 4.10).

To sum up, a good input edge image is required to allow a precise and efficient rating and
consequently a good tracking.

23

Figure 4.10: An edge image without background clutter.

4.2.2 Object Model

After having dealt with the input image the object to be tracked contributes with its quality
to the outcome of tracking. A 3D model consisting of triangles does not have a continuous
surface as the triangles form only an approximation of that. Thus, if the model has low
quality, meaning only few triangles, the edge detector may detect edges on the surface where
in reality no edges exist. Otherwise, if the object is scanned with e.g. a low resolution 3D
scanner there will be surface irregularities resulting in a edge image with clutter (see for
example Figure 6.18). Even if there are more than enough triangles (e.g. 20,000 or more)
describing the measuring cup the problem of this object is a low scan quality.

A solution is postprocessing the rendered object with a Gaussian filter. In practice this means
additional 0.1ms per rating of each particle. Receiving the rendered image from the GPU
seems to be a simple task. Surprisingly, reading back in graystyle mode the image looks
overexposed (see Figure 4.11). In contrast, reading the rendered image back as color image
and convert it later into a grayscale image, the result is the expected grayscale image.

Figure 4.11: On the left side there is a grayscale image of a rendered measuring cup. On the
right side there is the same object, apart from reading the image back as a color image and
convert it later into grayscale.

4.2.3 Rating

A major point in this novel approach is the simple rating of the pose of the object. However,
because of that simplicity the rating function has to be determined carefully. Simply rating
the pixel matches like in Algorithm 4 line 18 often is sufficient, however, reaches its limit
in certain cases. In Figure 4.12 such a challenging case is illustrated. This example will be
discussed in detail.

As the rating function mentioned in line 18 in Algorithm 4 only calculates the relation between
the white pixels of the input edge image and all the white pixels in the edge image of the

24

Figure 4.12: Challenge of the rating function. In this case not the good configuration (vi-
sualization at the bottom right) but the worse configuration (visualization at the top right)
was the result of the algorithm. The problem occurs due to rating challenges.

object there can occur some problem poses. On the upper left in Figure 4.12 can be seen
that the cup is slightly tilted to the back. Its edge image consists of one certain border of
white pixels, exactly 715. In a better estimated pose of the object (e.g. in Figure 4.12 on
the bottom left) the edge image seems to have more white pixels, summed up to the value of
739. After performing the binary AND with the input edge image in the middle there are
307 matching pixels in the upper and 310 matching pixels in the lower example. With the
rating approach the lower pose has an amount of 42% matching pixels, the upper pose has
43% matching pixels. Thus, the pose on the bottom left – which is quite better – receives a
worse rating.

An important step in decreasing the problem of rating is not to calculate the probability of
each pose directly but to normalize the probability after processing all the particles and then
applying problem-specific ratings. Algorithm 4 gets slightly modified. Instead of resulting
the probability it returns nothing but stores the variables pixelCount and pixelCountAND
for each particle. After having finished the loop in Algorithm 2 the probability of each
particle is calculated by calling Algorithm 5. It normalizes the variables pixelCount and
pixelCountAND followed by ratings π1, π2, · · · , πk and their weighting with c1, c2, · · · , ck in
the final rating function. The rating functions for πi can be chosen arbitrarily.

To come back to the example in Figure 4.12 with function π2 = (pixelCountAND)2 and
π3 = (pixelCount)2 the result is for c1 = 0.4, c2 = 2 and c3 = 4 a probability of 0.13
for the lower and 0.10 for the upper pose. The normalization and definition of arbitrarily
rating functions in Algorithm 5 contribute to a flexible approach. In this case the upper pose
achieves a better rating. Of course, the normalization does not solve the problem described,
however, make the problem-specific definition of rating functions easier.

Another example is a disappearing pose estimation in z-direction resulting in only few white

25

pixels far away – up to one single white pixel – which completely match the input edge image
resulting in a good rating but bad pose estimation. The solution is to penalize a low amount
of white pixels and to reward many white pixels.

Algorithm 5: Normalization improvement

Input: pixelCount and pixelCountAND of every particle
Output: Probability π

1 for i←− 1 to |particles| do

2 pixelCountNormalized[i]←− pixelCount[i]−pixelCountMin
pixelCountMax−pixelCountMin ;

3 pixelCountANDNormalized[i]←− pixelCountAND[i]−pixelCountANDMin
pixelCountANDMax−pixelCountANDMin ;

4 π[i]1 = pixelCountAND[i]
pixelCount[i] ;

5 π[i]2 = · · · ;
6

...
7 π[i]k = · · · ;
8 π[i]←− e−c·(1−(c1·π[i]1+c2·π[i]2+···+ck·π[i]k));
9 return π

4.3 Optimizations

As seen in Section 6.2 the overall performance of this approach has to be improved. As already
having rendered the model of every pose on the GPU the decision is to continue processing
there with CUDA, see Section 5.2.3. Thus, the most time-intensive part of the approach –
Algorithm 4, the rating of every pose – is moved to the GPU. The imaging operations like
the Sobel operator, the binarization, the computation of the sum of the pixels or the binary
AND perfectly fit into CUDA as the operations and the image are 2D data parallel and can
be executed as a single program with multiple data.

Figure 4.13 depicts the optimization process. The calculated pose of all particles is transferred
to the GPU which renders the corresponding object to each pose. After having rendered it,
the result is mapped from the memory space of OpenGL into CUDA. To adapt the approach
to the hardware, CUDA is running on the image that is divided into several parts of same
size. Each part can be computed autonomously, thus, the approach is scalable.

Each part is computed by a group of threads called a thread block. To avoid concurrency
errors synchronization is required among all the thread blocks. Finally, the calculated prob-
ability of each pose is transferred back from the GPU. The measured runtime can be seen in
Section 6.3.

26

Rendered object

x y z α β γ

...

Poses of object

binarization

pixel sum

π

Rating of poses of object

sobel operator

240

420

340

380

0 0 0 0

0 0

0 0

0 0 0 0

GPU

Host

OpenGL CUDA

Figure 4.13: From the pose of the object to its probability. The objects belonging to the
calculated poses are rendered with OpenGL on the GPU. Then, the image of this rendered
scene is mapped into the memory space of CUDA. The image is divided into different blocks
of the same size. On each block several threads apply the Sobel operator, the binarization, the
binary AND and the computation of the sum of the pixels. Finally, the calculated probability
is transfered to the host.

27

28

Chapter 5

Software and Interfaces

The following chapter describes the environment taken into account for all developed and
evaluated algorithms above. First, the hardware and software being used will be reviewed,
second, the Integrating Vision Toolkit, its optimizations and the Compute Unified Device Ar-
chitecture will be presented. Third, the class diagram and some details of the implementation
of the approach above will be explained and finally, the KIT ObjectModels Web Database
will be introduced.

5.1 Hardware

The evaluations in Chapter 6 have been performed on a workstation equipped with an Intel
Core 2 Duo E8400 running at 3,00 GHz, with 4 GB Random Access Memory (RAM) and a
Nvidia Geforce GTX 280 GPU.

5.2 Software

Microsoft Windows Vista Business 32 Bit with Service Pack 2 has been used as the operating
system. The decision for using the 32 Bit operating system instead of 64 Bit is due to more
stable software libraries and existing well working camera drivers.

The Microsoft Visual C++ 2008 Express Edition has been used as development environment
and compiler.

As the version 2.0.3.12 of the FlyCapture 2 developed by Point Gray Research does not work
with Windows Vista the FlyCapture 1.8.2.0016 libraries have been used, see Appendix D.

5.2.1 Integrating Vision Toolkit

The Integrating Vision Toolkit1 (IVT) is a flexible object-oriented C++ computer vision
library. By now, the IVT has come to be a multi purpose platform independent framework

1http://ivt.sourceforge.net

29

http://ivt.sourceforge.net

in some areas of computer vision. Algorithms not yet supported can be integrated by an
OpenCV wrapper offered by the IVT. The main features of the IVT are

• support for various cameras,

• monocular and stereo vision,

• different filters,

• color segmentation,

• Hough transform,

• point operations,

• SIFT features,

• Harris corner detector,

• undistortion,

• rectification,

• linear least squares,

• particle filtering framework,

• data structures for ease of handling and an

• own GUI toolkit.

The IVT offers an object-oriented architecture and it is easy to use. Additionally, a documen-
tation is available for some classes as well as a variety of example applications. An impressive
performance boost for the IVT is offered by the company Keyetech UG.

5.2.2 Keyetech Performance Primitives

The Keyetech Performance Primitives2 (KPP) have been available since 2010 being a high-
performance library for image processing routines to be used by the IVT or independently.
The major advantage of the KPP is that they are platform and operating system independent
on Intel CPUs offering MMX and SSE2 (Intel Pentium 4, Intel Core 2 Duo, Intel Core 2 Quad,
Intel Atom, or compatible) and their impressive speedup2 compared to other existing imaging
routines.

5.2.3 Compute Unified Device Architecture

Over the last few years parallel programming has turned into a popular area in computer
science. Theoretical basics of parallel programming have been developed since the 1950s
[33][34], but no affordable, parallel hardware was available for the consumer market. Times
changed in 20053 when Intel released its first mainstream multi-core CPU, which was the
advent of main street’s parallel programming. Considering that GPUs already are many-core

2http://www.keyetech.de/en/products/keyetech-performance-primitives.html
3http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf

30

http://www.keyetech.de/en/products/keyetech-performance-primitives.html
http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf

processors, in 2007 NVIDIA introduced their architecture Compute Unified Device Architec-
ture (CUDA). There are three reasons why parallel programming with CUDA is getting more
and more popular: the hardware is now available, it is comparably cheap and a great number
of consumer computers have a CUDA-capable NVIDIA GPU.

A modern GPU is no longer only a memory controller and display generator as it used to be
in the 1990s. Instead, it is a highly parallel and multithreaded multiprocessor. Being both
a programmable graphics and a scalable programming platform, a modern GPU is breaking
the mould concerning the variety of capabilities. To take advantage, it was necessary to
add some processor instructions and memory hardware to the GPU and provide a more
general API. With these modifications the data-parallel GPU can be used as a general-
purpose, programmable many-core processor with its own benefits and limitations. The
modern GPU is characterized by its large amount of floating-point processing power, which
can be exploited for non-graphical problems. This was the birth of the programming model
CUDA which bypasses the graphics API of the GPU and allows simple implementations
of programs in C. Single-Program, Multiple Data (SPMD) is the underlying abstraction to
achieve high parallelism on thread level. In the SPMD style of parallel programming all the
threads execute the same code on different portions of data, see [35]. The coordination is
done with a barrier synchronization method. In summary, the three key abstractions of the
CUDA programming model are:

• hierarchy of thread groups,

• shared memory and

• barrier synchronization.

The two components of the programming system are the host (=CPU) and at least one device
(=GPU).

host
uses as a coprocessor−−−−−−−−−−−−−→ device

The host calls and controls functions running massively parallel on the device. The host code
has a few extensions of a programming language or API to specify the execution parameters
for device functions, to control the device, memory and context management and more.
Currently, the functions callable on the device are limited by those provided by the high or
low-level CUDA APIs. They comprise some mathematical, texture and memory functions as
well as barrier synchronization.

NVIDIA’s marketing department is successfully advertising their CUDA-capable GPUs and
promising an easy and instantly learnable programming model resulting in speedups of factor
10 to 15004. However, a more detailed and a closer inspection reveals a programming model
with many limitations compared to standard programming, such as recursion and the IEEE
754 standard.

The applied key components of CUDA 3.0 public beta – used in this work – are:

• NVIDIA Driver for Microsoft Windows Vista with CUDA Support (196.34),

• the CUDA Toolkit version 3.0 for Windows Vista 32bit,

• the CUDA SDK 3.0 for Windows Vista

4http://www.nvidia.com/object/cuda_showcase_html.html

31

http://www.nvidia.com/object/cuda_showcase_html.html

• and the CUDA Visual Profiler 3.0.

The Profiler is only fully compatible with Windows XP, under Windows Vista the memory
transaction counters do not work. The CUDA resources are free to download from the web5.
A good introduction to CUDA can be found in [36].

5.2.4 Class Diagram

Figure 5.1 depicts the class diagram of the implemented classes. The existing inter-
face CRigidObjectTrackingInterface and skeleton CParticleFilterFramework of the
IVT have been extended by two classes: The class CParticleFilter6D implements
the particle filter for 6-DoF and the class CParticleFilterUniversalTracker using the
CParticleFilter6D organizes all the methods required for tracking. According to [37] the
applied software design pattern is called “template method”.

5.2.5 User Interface

The aim of the developed approach is the application of arbitrarily shaped objects as well as
an universal use. This is achieved by an object-oriented design and few different parameters.
As it is not necessary to view the result of the algorithm online in a GUI the initialization of
GLContext is sufficient. The parameters necessary for the constructor of the tracking class
are:

• an object,

• the texture mapping of the object,

• the corresponding texture bitmap,

• the number of particles,

• the particle filters variance,

• the flag of using a textured object,

• the initial pose,

• the edge detection mode,

• the low threshold for Canny edge detector,

• the high threshold for Canny edge detector and

• the threshold for sobel and prewitt operator.

After calling the constructor, the Init function has to be called together with a camera
calibration file. In the main step, capturing the scene and calling the Track function returning
the estimated pose of the object is performed in a loop.

5http://developer.nvidia.com/object/cuda_3_0_downloads.html

32

http://developer.nvidia.com/object/cuda_3_0_downloads.html

��������	
���	���

����������	�
���������	������

����������	�
����������	������

������	����������	����	������

���������������
� �	

����! ����������
� �	

������������
� �	

���	����"#
��$�	��	 ��� �	

����% �&�� '����������% �&�� '��

���������	��(���)�	� *

���������	��*	&����(���)�	� *

��������������	��*	&������	������

���"���" �&��	 ���"���	

�����
��������"����	 ��+

���"� ����"���	

������*	&�������

�����,����� � 	 ���"���	

����,��	 �����
�*� �	

--����	�..��,��	 ���(�	��/$01112

--
��	���..��,��	 ���(�	��/$02

3�� 	,��	 ����02�4�

3��	�����0�������	�
���������	������2�4�

3����&��	�,����� � 	�0�������	����������2�
�&���

�5�
�	�)�
��0�,��	 ���� �	2�4�

�,��
 �	6�������0
� ���(��	���
�&���2�4�

�����&��	�(���,����� � 	 ��02�4�

��������	
���	����	���������	�

���������	��(���)�	� *

���������	��*	&����(���)�	� *

��������������	��*	&������	������

����#
���������������	������

����% �&�� '����������% �&�� '��

����5�
 �	��	 ����5�
 �	��	 ��

���������������
� �	

����! ����������
� �	

������������
� �	

����������� �	

���	����"#
��$�	��	 ���#
��$�	��	 ��)�
�

����
	�� �	

����� ��	� �	

����,��	 ���(�	��/$��,��	 ���(�	��/$

����,��	 ����� �	

���"� ����"���	

������*	&�������

���"���" �&��	 ���"���	

--����	�..��,��	 ���(�	��5� 4���������7��01112

--
��	���..��,��	 ���(�	��5� 4���������7��02

3�� 	0���� ���	 ���2�4�

3�� 	0���� ���	 ��(�������2�����

3����70�#
�����������	������8��������� �	8�"9��&�	���" �&��	 ���"���	2�����

3��	$���������	: 	���*	&��0"���" �&��	 ���"���	8��9��&�	���������	������2�4�

���������	�������������	����	

--
��	���..��9 �
�����	����7 ����	��"���02

3�� 	0���� ���	 ���2�4�

3����70�#
�����������	������8��������� �	8�"9��&�	���" �&��	 ���"���	2�����

��������	
���	�
���	����

3���&�	����
�&���

;��������" �&��	 ���
�&���

;���	����" �&��	 ���
�&���

;� ����
�&���

;������� � 	�
�&���

;&������ � 	�
�&���

;���$ ���� ��� �	

;���,��	 ����� �	

;��	�	���
�&���

;��
�&���

;��	����
�&���

;��
�&���

;� �
�&���

;	����
�&���

--����	�..��,��	 ���(�	��(�������70�,��	 ����� �	8��$ ���� ��� �	2

--
��	���..��,��	 ���(�	��(�������702

3,��	 ���(�	��0�9��&�)������" �&��	 ���
�&���8�
� ���(��	���
�&���2�
�&���

3����&��	�,����� � 	�(�����" �&��	 ��0����" �&��	 ���
�&���2�
�&���

3��	���" �&��	 ��0����	���" �&��	 ���
�&���8�
)���(��	���
�&���2�4�

3��	���	���" �&��	 ��0����	���" �&��	 ���
�&���2�4�

3��)������" �&��	 ��0�)������" �&��	 ���
�&���2�4�

3��	,��
 �	�
���" �&��	 ��0�,��
 �	�
���" �&��	 ���
�&���2�4�

3��	9��&�	02�
�&���

;, �7����������02� �	

;����&��	�)���02�4�

;5�
�	�)�
��0�,��	 ���� �	2�4�

;,��
 �	6�������0
� ���(��	���
�&���2�4�

;����&��	�,����� � 	�0�������	����������2�
�&���
;����&��	�(���,����� � 	 ��02�4�

Figure 5.1: UML class diagram of the implemented approach.

5.3 KIT ObjectModels Web Database

The KIT ObjectModels Web Database6 has been founded at the Institute for Anthropomat-
ics7 with the aim to provide a large variety of accurate 3D models of objects which can be
found in kitchens that can be used for the interaction with a humanoid robot as mentioned

6http://i61p109.itec.uni-karlsruhe.de/ObjectModelsWebUI/
7http://www.informatik.kit.edu/1323.php

33

http://i61p109.itec.uni-karlsruhe.de/ObjectModelsWebUI/
http://www.informatik.kit.edu/1323.php

above (see [38, 39, 40]). By now, there are 100 3D models available. Each object is available
as a mesh model based on triangles in different file formats with 800, 5,000, 25,000 or 200,000
faces. Additionally, the textural information of each object is available as a TIFF and a
PNG image. A XML file contains several information on the scanning process and in the
near future it will also contain some properties such as weight and material. The objects are
scanned in 3D with a high-accuracy Minolta “VI-900” laser scanner with active triangulation
and an error below 0.2mm. The images containing the textural information are taken with
a “Marlin 145C2” stereo color camera system from Allied Vision Technologies.

34

Chapter 6

Evaluation

In this chapter the evaluation of the developed approach will be presented. Due to missing
ground truth in real world data the correct pose of the object can only be measured manually
frame-by-frame. Though, an accurate plot of errors is not created and the result is observed
manually. In simulation mode, however, the correct pose of the object is available and the
errors can be determined correctly: First, the accuracy with different parameters and sample
data sets is evaluated and second, the velocity performance is investigated. Finally, the results
of the algorithm using CUDA are determined.

6.1 Accuracy

Apart from the performance of an algorithm it is necessary to know if the realized approach
is working and to what degree it is working correctly. Thus, the first step in simulation
mode is to vary different parameters and to extract the best ones – assuming their existence.
Additionally, the approach is carried to its limits. Then, the error of accuracy is determined
for different objects in simulation mode. Finally, it is applied to some real world instances
with major success.

6.1.1 Comparison of Different Parameters

One of the tasks in the developed approach is to adjust a set of different parameters: The
amount of particles, the number of layers and the edge detection operators. In this section an
explorative step-by-step comparison of the different parameters is given. Due to the different
results an optimal set of parameters is established.

In the following experiments the cup of Figure 6.1 was used in simulation mode. As the
images are generated from rendered objects the exact pose of the model in each frame is
known. Thus, the error of the tracking approach can be easily determined. As the cup has a
rotational symmetry axis the focus is laid on the translational errors in the following charts.
Figure 6.3 shows the errors of the x, y and z axis using the Canny edge detector and applying
a Gaussian filter in the preprocessing of the input edge image. 100 particles and one layer
were used. There was no translational movement of the cup. According to the chart the z-

35

Figure 6.1: Sample
object cup.

Figure 6.2: Static image se-
quence of measuring cup.

axis is considerably more error-prone than the x- and y-axis. This observation was expected
due to fewer change of pixels while moving the object in z-direction.

Figure 6.4 and 6.5 depict the results with Sobel and Prewitt operators instead of the Canny
edge detector. In this case the error is halved compared to the Canny edge detector.

To compare the three different methods above Figure 6.6 shows the calculated error√
x2 + y2 + z2. In this instance the Sobel operator shows the best results. These results

were not expected and more investigations using the Canny edge detector showed thin edges,
being difficult to match exactly with only few particles. In contrast, the Sobel operator
generates broader edges which are easier to be met by the model. The idea to make use of
the accuracy of the Canny edge detector results in the application of a dilation operation
on the input edge image. Figure 6.7 depicts the error of the pose of the object applying a
dilation operation or a Gaussian filter on the input edge image. In average applying a dilation
operation is more effective than applying a Gaussian filter.

36

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

er
ro

r
[m
m

]

frame

x
y
z

Figure 6.3: Absolute error of translational axis using Canny edge detector. Parameters: 100
particles, one layer, variance of the particle filter 5mm resp. 2◦, no translational movement,
object cup (see Figure 6.1), initial pose 15.9, 14, 494, 91◦, 15◦,−9◦.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80

er
ro

r
[m
m

]

frame

x
y
z

Figure 6.4: Absolute error of translational axis using Prewitt operator. Parameters: 100
particles, one layer, variance of the particle filter 5mm resp. 2◦, no translational movement,
object cup (see Figure 6.1), initial pose 15.9, 14, 494, 91◦, 15◦,−9◦.

37

0

4

8

12

0 10 20 30 40 50 60 70 80

er
ro

r
[m
m

]

frame

x
y
z

Figure 6.5: Absolute error of translational axis using Sobel operator. Parameters: 100
particles, one layer, variance of the particle filter 5mm resp. 2◦, no translational movement,
object cup (see Figure 6.1), initial pose 15.9, 14, 494, 91◦, 15◦,−9◦.

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

er
ro

r
[m
m

]

frame

canny
√
x2 + y2 + z2

prewitt
√
x2 + y2 + z2

sobel
√
x2 + y2 + z2

Figure 6.6: Comparison of Canny, Prewitt and Sobel. Parameters: 100 particles, one layer,
variance of the particle filter 5mm resp. 2◦, no translational movement, object cup (see
Figure 6.1), initial pose 15.9, 14, 494, 91◦, 15◦,−9◦.

38

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

er
ro

r
[m
m

]

frame

dilate
√
x2 + y2 + z2

gauss3x3
√
x2 + y2 + z2

Figure 6.7: Comparison of dilation operation and Gaussian preprocessing on input image.
Parameters: 100 particles, 1 layer, variance of the particle filter 5mm resp. 2◦, no transla-
tional movement, object cup (see Figure 6.1), initial pose 15.9, 14, 494, 91◦, 15◦,−9◦, Canny
edge detector.

In Figure 6.8 the same measurement is performed except of using five layers instead of one.
The resulting error of the pose estimation is reduced significantly. In Figure 6.9 the correlation
of errors and layers is investigated. A slightly better result can be seen using more layers. In
Table 6.1 the standard deviations of the pose estimation in the static real world scenario of
Figure 6.2 are summarized.

particles σ(x) [mm] σ(y) [mm] σ(z) [mm] σ(α) [◦] σ(β) [◦] σ(γ) [◦]

10 9.504163176 2.939950779 8.697365146 11.39972943 6.931195345 4.749352007

50 2.113246738 1.419224743 7.013441555 4.068941372 4.352667504 4.182579826

100 1.634655337 1.169513526 5.217948338 3.679418742 3.860799455 3.657213207

500 0.784534588 0.354221639 1.357680855 1.759365106 1.611197696 2.970091903

1000 0.55611226 0.226365405 0.978019227 1.220483623 1.300958196 2.086690242

2000 0.415776187 0.159751087 0.707134304 0.804579698 0.874325139 1.542158627

Table 6.1: Standard deviation of pose estimation of static object (see Figure 6.2)

In this section the parameters for the developed approach were investigated. In general the
combination of several hundreds of particles, some layers, a dilation operation on the edge
images and the Canny edge detector produce good results.

39

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80

er
ro

r
[m
m

]

frame

dilate
√
x2 + y2 + z2

gauss3x3
√
x2 + y2 + z2

gauss5x5
√
x2 + y2 + z2

Figure 6.8: Comparison of 3× 3 dilation and Gaussian and 5× 5 Gaussian preprocessing on
input image. Parameters: 100 particles, 5 layers, variance of the particle filter 5mm resp. 2◦,
no translational movement, object cup (see Figure 6.1), initial pose 15.9, 14, 494, 91◦, 15◦,−9◦,
Sobel operator.

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80

er
ro

r
[m
m

]

frame

5 layers
√
x2 + y2 + z2

3 layers
√
x2 + y2 + z2

2 layers
√
x2 + y2 + z2

1 layers
√
x2 + y2 + z2

Figure 6.9: Comparison of different number of layers. Parameters: 100 particles, variance
of the particle filter 5mm resp. 2◦, no translational movement, object cup (see Figure 6.1),
initial pose 15.9, 14, 494, 91◦, 15◦,−9◦, Sobel operator.

40

6.1.2 6-DoF Tracking in Simulation Mode

In this section some image sequences generated with the corresponding 3D model are inves-
tigated. In Figure 6.11 a random walk of a cooking oil can can be seen. The variance of the
movement was 5mm per frame for each translation axis and 2◦ per frame for each rotation
angle. Assuming 30 frames per second, this corresponds to a movement of about 150mm
and 60◦ per second.

The images in Figure 6.11 are the original input images with the result of the tracking
projected onto them as white edge-models. As in this case all six dimensions have to be
considered, a slightly higher number of 1000 particles and 10 layers is used. Figure 6.10
and 6.12 visualize the translational and rotational error for each axis. The average error is
0.225mm for the x-axis and 0.394mm for the y-axis. Compared to these results the average
error of 5.385mm for the z-axis seems to be quite high. As the z-axis is the depth axis
the movement of the model in this direction is less distinct caused by less change of pixels
compared to the movement in x and y direction. According to Figure 6.12, no rotational axis
has outstanding errors. The combination of the error of all three rotations is visualized in
Figure 6.13. As expected, the result has mostly a small rotational error of less than three
degrees. It can be seen that textured objects with expressive edges such as the cooking oil
can perform well.

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450 500

er
ro

r
[m
m

]

frame

x
y
z

Figure 6.10: Absolute error of translational axis with the cooking oil object.

41

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500

er
ro

r
[◦

]

frame

α
β
γ

Figure 6.12: Absolute error of rotational angles with the cooking oil object.

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500

er
ro

r
[◦

]

frame

√
α2 + β2 + γ2

Figure 6.13: Absolute error of rotational angles with the cooking oil object.

42

Figure 6.11: Tracking of a colorful textured can of cooking oil in simulation mode. Parame-
ters: The image sequence above is an extract, meaning that every fifteenth frame is shown.
The Sobel operator was used and an amount of 1000 particles per layer, with a total of
10 layers. The initial configuration is x = 16mm, y = 14mm, z = 494mm,α = 91◦, β =
15◦ and γ = −9◦. The variance is 5mm for translation and 2◦ for rotation.

43

Figure 6.14 depicts a random walk of a measuring cup. Using 600 particles and 5 layers, which
is quite a common configuration, the approach results in an almost perfect pose estimation.
Figures 6.15 and 6.16 visualize the translational and rotational error for each axis. The
average error is 0.366mm for the x-axis, 0.282mm for the y-axis and 4.80mm for the z-axis.
The average error of the rotation around the x-axis, the y-axis and the z-axis is 0.39◦, 0.33◦

and 0.24◦. The combination of the errors of all three rotations is visualized in Figure 6.17.
As expected the result has mostly a small rotational error of less than one degree.

Figure 6.14: Tracking of a blue single-colored measuring cup in simulation mode. Parameters:
The image sequence above is an extract, meaning that every tenth frame is shown. The Sobel
operator was used and an amount of 600 particles per layer, with a total of 5 layers. The initial
configuration is x = 58mm, y = −3mm, z = 434mm,α = −22◦, β = 32◦ and γ = −40◦. The
variance is 5mm for translation and 2◦ for rotation.

44

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200

er
ro

r
[m
m

]

frame

x
y
z

Figure 6.15: Absolute error of translational axis with the measuring cup object.

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

er
ro

r
[◦

]

frame

α
β
γ

Figure 6.16: Absolute error of rotational axis with the measuring cup object.

45

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

er
ro

r
[◦

]

frame

√
α2 + β2 + γ2

Figure 6.17: Absolute error of rotational axis with the measuring cup object.

6.1.3 Real World Experiments

The developed approach works well in simulation mode (see Section 6.1.2). As there are
always constant conditions, meaning no noise and no illumination changes the edge image is
throughout perfect. However, in reality the edge images are often of low quality. The question
to be answered in this section is whether the approach can deal with real world data.

Therefore, a sequence of images of a moving measuring cup was recorded first, then this data
was used as input for the approach. This instance is a common situation in the kitchen as not
only the measuring cup is moved translationally but as it is also emptied which is a rotational
movement.

To detect the edges the Canny edge detector is used in Figure 6.18. It is an excerpt of the
whole image sequence, every tenth image is shown. As it is difficult to determine the correct
error the estimated pose is projected in the original input image to compare it visually. The
results are good, no major discrepancies can be seen, the trajectory of the object is quite
fluent.

As a second object a cup is chosen. The result can be seen in Figure 6.19. Although it is
invariant to rotations around the y-axis and the result seems slightly better than in Figure
6.18 another problem arises. In the images 17 to 21 the estimated pose of the cup is wrong,
exactly while the cup tilts. This problem is described precisely in Section 4.2.3.

In Figure 6.20 the focus was laid on occlusions of the object. The approach performs well
even if more than half of the object is occluded. Additionally, the plate has individual
characteristics in its edge model supporting the good results and consequently allowing the
use of fewer particles.

46

Although there already exist performant approaches for simple standard primitives to track
(see Chapter 2) the tracking of a cuboid is evaluated. Tracking results of the cuboid are good
as it can be seen in Figure 6.21.

In Figure 6.22 a blue small bowl was tried to track. Even if the result is useful there can be
seen a rotational error. To investigate the cause of error of this pose estimation the input
edge images and the binary AND processed result images are presented, too. It can be seen
that only few edge pixels in the input image belong to the bowl and the AND images have a
lot of matching pixels due to edge clutter of the hand. The causes of the problem are

• the bowl is small,

• it has only few edge-based information,

• there are illumination irregularities and

• similarity in the edges of the hand compared to the edges of the bowl.

Thus, a small bowl is not suitable for the proposed tracking approach as it cannot be grasped
without occluding too much edge information and adding wrong edge information with the
grasping hand.

Finally, a textured object, a box of soup, is evaluated (see Figure 6.23). Due to the texture
of the soup box much more information can be extracted from the edge images. If there are
many edges and if they are close together the correct pose of the object will blur and the
accuracy will decrease.

6.2 Runtime

Tracking objects is mostly a real-time task. In this paragraph the performance of the approach
above is evaluated. In Figure 6.24 the performance of the approach in dependence of the
number of particles used is shown. The software and hardware environment is described in
detail in Chapter 5. The parameters of the instance are one layer, the Sobel operator as well
as the cup object. The processing time of the algorithm includes capturing the image, setting
and preprocessing the image and applying the particle filter.

For one particle the algorithm needs about 16.4ms which is equivalent to 60.9 frames per
second, thus, this is the lower bound of the approach with the parameters mentioned above.
One can see that with an increasing number of particles the algorithm scales linearly. Com-
pared to real-time performance the developed approach is currently too slow. With up to ten
particles a performance of more than 30 frames per second is achieved, however, ten particles
is much too less. The investigation of the whole algorithm will be presented below in detail.

Deutscher et. al. propose in [29] an annealed particle filter. Their idea is to use fewer particles
and the division of the particle filter into several layers. The correlation of the number of
layers and the runtime is shown in Figure 6.25. The runtime scales linearly with the number
of layers, thus, the runtime is not affected if there are ten layers of 100 particles or one layer
with 1000 particles.

47

Figure 6.18: Tracking of a blue single-colored measuring cup. Parameters: Every tenth frame
of a sequence of 350 frames is shown. The Canny edge detector was used and an amount of
400 particles per layer, with a total of 6 layers. The initial configuration is x = 20mm, y =
138mm, z = 888mm,α = 28◦, β = −126◦ and γ = 109◦. The variance is 5mm for translation
and 2◦ for rotation.

48

Figure 6.19: Tracking of a yellow single-colored cup. Parameters: Every fifteenth frame of
a sequence of 525 frames is shown. The Sobel operator was used and an amount of 500
particles per layer, with a total of 5 layers. The initial configuration is x = 57mm, y =
61mm, z = 480mm,α = 0◦, β = 1◦ and γ = −1◦. The variance is 5mm for translation and
4◦ for rotation.

49

Figure 6.20: Tracking of a green single-colored plate. Parameters: Every tenth frame of a
sequence with 350 frames is shown. The Sobel operator was used and an amount of 250
particles per layer, with a total of 6 layers. The initial configuration is x = 5mm, y =
40mm, z = 750mm,α = 29◦, β = 15◦ and γ = 6◦. The variance is 5mm for translation and
2◦ for rotation.

50

Figure 6.21: Tracking of an orange single-colored cuboid. Parameters: Every tenth frame
of a sequence of 230 frames is shown. The Sobel operator was used and an amount of 250
particles per layer, with a total of 6 layers. The initial configuration is x = 36mm, y =
37mm, z = 676mm,α = 60◦, β = −23◦ and γ = 37◦. The variance is 5mm for translation
and 2◦ for rotation.

51

Figure 6.22: Tracking of a blue single-colored bowl. Parameters: Every tenth frame of
a sequence of 100 frames is shown. The Sobel operator was used and an amount of 250
particles per layer, with a total of 3 layers. The initial configuration is x = 52mm, y =
−2mm, z = 700mm,α = 17◦, β = 0◦ and γ = 6◦. The variance is 5mm for translation and
2◦ for rotation.

52

Figure 6.23: Tracking of a colorful textured box of soup. Parameters:Every tenth frame of
a sequence of 130 frames is shown. The Sobel operator was used and an amount of 1000
particles per layer, with a total of 10 layers. The initial configuration is x = 21mm, y =
32mm, z = 492mm,α = 80◦, β = 54◦ and γ = −57◦. The variance is 5mm for translation
and 2◦ for rotation.

10

100

1000

10000

100000

1 10 100 1000

ru
n
ti

m
e

[m
s]

particles

KPP
IVT

Figure 6.24: Runtime vs. number of particles. Parameters: The cup (see Figure 6.1) and the
Sobel operator were used with one layer.

53

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

ru
n
ti

m
e

[m
s]

layers

KPP
IVT

Figure 6.25: Runtime vs. number of layers. Parameters: The cup (see Figure 6.1) and the
Sobel operator were used with an amount of 100 particles.

In Table 6.2 the runtime of the developed algorithm is compared to the Sobel operator and
the Canny edge detector. The Canny edge detector is slower, but as seen in Section 6.1.1 it
is sometimes worth using the Canny edge detector to gain better results.

Rendering and transferring the objects to main memory with OpenGL is shown in Table 6.3.
The first six objects are without texture, the remaining ones are with texture. One constant
factor is: the time of transferring the rendered image from the framebuffer to main memory.
As the images have a resolution of 640× 480 pixels and as then have 24 bit color depth this
corresponds to 900 kb per image. With an readbacktime of glReadPixels of about 2.02ms
the upper bandwidth of the frambuffer is 435 MB

s in this case. This bandwidth is a bottleneck
and limits the algorithms.

Further, there is an almost linear relation between the objects triangles and the rendering
time. The objects with texture are slower as the bitmap file for the texture has to be
transferred and mapped, too. Object “Amicelli” is slower due to a larger bitmap file.

Altogether, the whole rendering and readback steps from the GPU are too slow. Skipping
the readback to the host was the aim when using CUDA to speed the algorithm up. In the
following paragraph the results with CUDA support are presented.

Edge detection IVT KPP KPP vs. IVT

Sobel operator 550.0ms 1.81fps 304ms 3.29fps 1.80

Canny edge detector 881.8ms 1.13fps 408ms 2.45fps 2.16

Table 6.2: Runtime with different edge detection modes. Parameters: The cup (see Figure
6.1) was used with an amount of 100 particles and one layer.

54

Object file Triangles Transfer & Rendering Transfer Rendering
[ms] [ms] [ms]

cuboid.dat 12 2.05 2.02 0.03

cup.dat 664 2.16 2.02 0.14

bowl small.dat 860 2.2 2.02 0.18

measuring cup.dat 1493 2.3 2.02 0.28

plate deep.dat 1832 2.57 2.02 0.55

measuring cup rescan.dat 24532 7.56 2.02 5.54

livio.dat 4946 6.9 2.02 4.88

soup.dat 4986 6.7 2.02 4.68

amicelli.dat 4986 7.6 2.02 5.58

Table 6.3: Rendering time with OpenGL for different objects.

6.3 Optimized with CUDA

One aim of this work was to use CUDA to speed up the algorithm, especially the imaging
functions, as they are best candidates for data parallel computations. The OpenGL rendered
object is already stored on the GPU and thus, the expensive transfer from the framebuffer
of the GPU to the main memory on the host can be skipped. Instead, the rendered object is
directly mapped into the memory space of CUDA on the GPU.

In Table 6.4 the runtime of the key steps of the approach is shown. The core components
such as the Sobel operator and the binary AND perform 2 − 3 times better than the KPP
implementations. The expection for using CUDA was an extremely reduced readback time.
Unfortunately, the readback is even slower than without CUDA. Additionally, the mapping
from the memory space of OpenGL into the memory space of CUDA is time consuming, too.
The reason is the framebuffer which is a bottleneck due to slow bandwidth.

Another disadvantage of CUDA is its overhead. Initialization of buffers, the transfers from
main memory to the GPU and the memory mapping and unmapping cost time, in this case
about 1.2ms. On the one hand, the use of CUDA is a success as the imaging steps of the
algorithm perform very well on the GPU. On the other hand, the mapping step is slow and
it is not possible to track in real-time.

operation KPP CUDA
[ms] [ms]

glReadPixels 2.02 2.12

cudaGLMapBufferObject – 1.01

Sobel fused 0.36 0.12

Thresholding 0.025 0.02

Pixel sum 0.13 0.13

And 0.08 0.03

CUDA related overhead – aprox. 1.2

Other 0.42 0.42

Total 3.04 5.05

Table 6.4: “Benefits” of using CUDA.

55

56

Chapter 7

Conclusion

7.1 Summary and Results

The aim of this work was the development of an algorithm tracking arbitrarily shaped and
complex objects with an annealed particle filter. The approach is model-based and edge-based
using known surface models of the objects rendered with OpenGL.

Robustness in 6-DoF tracking as well as partial occlusions of objects with sufficient edge
information can be handled successfully as shown in Chapter 6. Speeding up the approach
with CUDA has not shown the expected real-time performance results due to hardware related
bandwidth limitations, as discussed in Section 6.3.

In Section 2, the state of the art in edge-based and model-based 6-DoF tracking was analyzed
and an overview of the different underlying approaches was given. To ensure a profound
understanding of the fundamentals, the camera model, the annealed particle filter framework
and the OpenGL were explained.

In the main part, the tracking approach was developed step-by-step with a guiding example
application. The input image sequence is preprocessed with edge detectors. Every object gets
rendered with OpenGL and an edge detector is used. This image is applied to an annealed
particle filter and is compared pixel-by-pixel to the input image to measure the amount of
matching edge pixels. The overall rating can be designed flexibly as different parameters can
be adjusted. It is a challenge to define the best rating function as it is not universally valid.
After rating, the pose estimate is computed as the weighted mean over all particles.

The implementation for developing a specific scenario for object tracking was described af-
terwards. Additionally, an optimization with CUDA was presented, motivated by the inde-
pendent and data-parallel weighting process of the particles. Its processing performance is
faster than the CPU-based algorithms apart from transferring and mapping data.

Closely related to the development was the evaluation which resulted in an increasing of the
robustness, performance and accuracy of the approach. The evaluation of seven different
objects illustrates the feasibility of the developed approach in real world scenarios.

As expected, the depth of the estimated poses was more error-prone than translations in
horizontal and vertical direction. The computational complexity of the developed approach

57

– both the CPU-based and the CUDA-based approach – does not yet allow real-time 6-DoF
tracking at 30 frames per second for images of size 640× 480.

The main challenge in this approach is a rating function satisfying the needs of a correct pose
estimation as fair ratings such as the ones described in Section 4.2.3 result in non-optimal
pose estimations.

7.2 Future Work

The developed approach in this diploma thesis is not efficient enough to be used on current
conventional hardware. An interesting question is whether it can be optimized to run in
real-time by now or if this approach has to wait for faster hardware due to performance
bottlenecks. Additionally, there are some challenges in the context of the rating function to
be overcome such as wrong pose estimations due to “wrong” pixel matches. In the remainder
of this section possible future work is presented which will probably lead to a fast and robust
approach.

One idea to increase the performance of the developed approach is to use multiple high-end
GPUs. In this case more objects can be rendered with OpenGL per time step as the rendering
time scales linearly to the amount of available GPUs. One possibility is to use shaders as
mentioned in Section 2.5.3. However, in the case of using CUDA the bottleneck of the slow
readback from the framebuffer and the slow mapping from the memory space of OpenGL
into CUDA should be eliminated.

The computational effort needed by the developed approach is too high for the actual
ARMAR-III humanoid robot. With respect to this performance lack ongoing work lies on
developing some flexible FPGA-based implementations of several image processing routines.
The approach can be realized in hardware probably resulting in real-time performance.

Apart from the performance further work to improve the robustness of the approach has to
be done. As some objects are not suitable for tracking with the developed approach because
only the edge information is not sufficient (compare Section 6.1.3) as far as other information
is available it has to be used for tracking – probably some additional cues such as combining
edge and texture information as proposed in [41]. The ongoing and open question is how to
extract more information than edges from single-colored objects.

An important influence on edge images of good quality is a constant and adequate illumination
of the scene. One solution might be a light source mounted on the camera spotting towards the
scene. This simple setup should result in images whose edge images contain most information.
Additionally, the illumination conditions in OpenGL can be adjusted to decrease the difference
of the real world and the rendered models of the objects.

Further improvement can be reached with the use of a stereo camera system to increase the
accuracy of the depth information. Also, a motion model like the one mentioned in Section
2.3 should be investigated. The developed approach is well prepared to implement this step.

58

Appendix A

Mathematics

In this section some mathematical theory used in this diploma thesis is presented. As there
is no need for complex numbers in this context only real-valued matrices and vectors are
assumed. First, the definition of the rotation matrices with a given axis and angle is explained.

Rotation matrix given an axis and an angle

A vector ~v = (x, y, z)ᵀ ∈ R3 can be rotated with a rotation matrix R ∈ SO(3), resulting in a
new vector ~v′ = R · ~v.
According to Euler’s theorem [42] any rigid object can be arbitrarily rotated in 3D space
with one single rotation around a fixed axis (see Figure A.1). If there is an axis ~a as well as
an angle α the rotation matrix R can be determined as follows:

1. Normalize the axis: (u, v, w)ᵀ := ~a
|~a|

2.

R =

 tu2 + c tuv − sw tuw + sv
tuv + sw tv2 + c tvw − su
tuw − sv tvw + su tw2 + c

 (A.1)

with s := sinα, c := cosα and t := 1− c.

Remark:
The same rotation can be performed with three consecutive rotations using Euler angles (see
Figure A.2).

59

α

~a

y

z

x

~v

~v′

Figure A.1: Rotation around a given axis. Example: Vector ~v =

 0.1
0.4
1.1

 is rotated

around the axis ~a =

 0.143
0.858
0.493

 with angle α = 180◦. The result of this rotation

is ~v
′

=

 0.157
1.144
−0.212

. The rotation matrix R calculated with Equation A.1 results in

R =

 −0.959 0.245 0.141
0.245 0.472 0.846
0.141 0.846 −0.514

.

y

z

x

~v

~v′

xψ

yψ

zψ

ψ

~vψ

zθ

yθ

xθ

θ

vθ

xφ

yφ

zφ

φ

Figure A.2: Rotation using Euler angles. Example: The same displacement as in Figure A.1
except with Euler angles. Vector ~v = (0.1, 0.4, 1.1)ᵀ is rotated around the z axis with angle
ψ = 10◦. Then with θ = −90◦ around the xψ axis. Finally, the result is ~v

′
after rotating with

φ = −45◦ around the zθ axis. ~v
′

is the same as in Figure A.1, of course.

60

Sobel and Prewitt operator

The filter matrices for the Sobel operator are

Sobelx =

 1 0 −1
2 0 −2
1 0 −1

 and Sobely =

 1 2 1
0 0 0
−1 −2 −1

 .

The prewitt operator can be used with the filter matrices

Prewittx =

 1 0 −1
1 0 −1
1 0 −1

 and Prewitty =

 1 1 1
0 0 0
−1 −1 −1

 .

61

62

Appendix B

Structure of Parameter Files

The parameter files of the 3D objects are of the type CFloatMatrix, see the IVT1. They
contain the necessary information that is required to render the objects with OpenGL.

Object model, File object.dat

The file is organized in lines of 18 values of the type float. Each line represents one triangle.
Elements zero to five, six to eleven and twelve to 18 represent one edge of the triangle. The
first three elements are the normals of the point defined in the following three elements:

Example:

0.45 0.67 0.59 17.1 34.5 456.7 0.45 0.67 0.59 17.1 −4.5 456.7 0.45 0.67 0.59 57.1 34.5 456.7

Normal 1 Vertex 1 Normal 2 Vertex 2 Normal 3 Vertex 3

Triangle 1

Triangle 2

Texture of object model, File objectTex.dat

If the object is not single-colored some color information – the texture – has to be mapped
onto the 3D object model. The texture is stored as an 24bit bitmap image in object.bmp.
The file objectTex.dat contains the mapping information for the texture and is of type
CFloatMatrix. It is organized in lines of six values. The first two, second two and as well
the third two represent one edge of a 2D triangle of the texture file. The number of triangles
of the object model must be the same as the number of triangles of the texture of the object
model.

Example:

1http://ivt.sourceforge.net

63

http://ivt.sourceforge.net

0.45 0.67 0.59 0.86 0.48 0.78

Edge 1

Triangle 1

Triangle 2

Edge 2 Edge 3

64

Appendix C

Source Code

Sources of the cores of the developed approach are listed in the following. On page 67 and
69 the header and the source file of the general tracking approach are printed. The particle
filter with its details is shown on page 71. The printed source code together with the UML
diagram in Section 5.2.4 allows to get a profound understanding of the implementation.

65

1
/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

2
/
/

T
h
i
s

f
i
l
e

i
s

p
a
r
t

o
f

t
h
e

I
n
t
e
g
r
a
t
i
n
g

V
i
s
i
o
n

T
o
o
l
k
i
t

(
I
V
T
)
.

3
/
/

4
/
/

T
h
e

I
V
T

i
s

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

K
a
r
l
s
r
u
h
e

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

(
K
I
T
)

5
/
/

(
w
w
w
.
k
i
t
.
e
d
u
)

i
n

c
o
o
p
e
r
a
t
i
o
n

w
i
t
h

t
h
e

c
o
m
p
a
n
y

K
e
y
e
t
e
c
h

(
w
w
w
.
k
e
y
e
t
e
c
h
.
d
e
)
.

6
/
/

7
/
/

C
o
p
y
r
i
g
h
t

(
C
)

2
0
0
9

K
a
r
l
s
r
u
h
e

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

(
K
I
T
)
.

8
/
/

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

9
/
/

1
0

/
/

R
e
d
i
s
t
r
i
b
u
t
i
o
n

a
n
d

u
s
e

i
n

s
o
u
r
c
e

a
n
d

b
i
n
a
r
y

f
o
r
m
s
,

w
i
t
h

o
r

w
i
t
h
o
u
t

1
1

/
/

m
o
d
i
f
i
c
a
t
i
o
n
,

a
r
e

p
e
r
m
i
t
t
e
d

p
r
o
v
i
d
e
d

t
h
a
t

t
h
e

f
o
l
l
o
w
i
n
g

c
o
n
d
i
t
i
o
n
s

a
r
e

m
e
t
:

1
2

/
/

1
3

/
/

1
.

R
e
d
i
s
t
r
i
b
u
t
i
o
n
s

o
f

s
o
u
r
c
e

c
o
d
e

m
u
s
t

r
e
t
a
i
n

t
h
e

a
b
o
v
e

c
o
p
y
r
i
g
h
t

1
4

/
/

n
o
t
i
c
e
,

t
h
i
s

l
i
s
t

o
f

c
o
n
d
i
t
i
o
n
s

a
n
d

t
h
e

f
o
l
l
o
w
i
n
g

d
i
s
c
l
a
i
m
e
r
.

1
5

/
/

1
6

/
/

2
.

R
e
d
i
s
t
r
i
b
u
t
i
o
n
s

i
n

b
i
n
a
r
y

f
o
r
m

m
u
s
t

r
e
p
r
o
d
u
c
e

t
h
e

a
b
o
v
e

c
o
p
y
r
i
g
h
t

1
7

/
/

n
o
t
i
c
e
,

t
h
i
s

l
i
s
t

o
f

c
o
n
d
i
t
i
o
n
s

a
n
d

t
h
e

f
o
l
l
o
w
i
n
g

d
i
s
c
l
a
i
m
e
r

i
n

t
h
e

1
8

/
/

d
o
c
u
m
e
n
t
a
t
i
o
n

a
n
d
/
o
r

o
t
h
e
r

m
a
t
e
r
i
a
l
s

p
r
o
v
i
d
e
d

w
i
t
h

t
h
e

d
i
s
t
r
i
b
u
t
i
o
n
.

1
9

/
/

2
0

/
/

3
.

N
e
i
t
h
e
r

t
h
e

n
a
m
e

o
f

t
h
e

K
I
T

n
o
r

t
h
e

n
a
m
e
s

o
f

i
t
s

c
o
n
t
r
i
b
u
t
o
r
s

m
a
y

b
e

2
1

/
/

u
s
e
d

t
o

e
n
d
o
r
s
e

o
r

p
r
o
m
o
t
e

p
r
o
d
u
c
t
s

d
e
r
i
v
e
d

f
r
o
m

t
h
i
s

s
o
f
t
w
a
r
e

2
2

/
/

w
i
t
h
o
u
t

s
p
e
c
i
f
i
c

p
r
i
o
r

w
r
i
t
t
e
n

p
e
r
m
i
s
s
i
o
n
.

2
3

/
/

2
4

/
/

T
H
I
S

S
O
F
T
W
A
R
E

I
S

P
R
O
V
I
D
E
D

B
Y

T
H
E

K
I
T

A
N
D

C
O
N
T
R
I
B
U
T
O
R
S

“
A
S

I
S
”

A
N
D

A
N
Y

2
5

/
/

E
X
P
R
E
S
S

O
R

I
M
P
L
I
E
D

W
A
R
R
A
N
T
I
E
S
,

I
N
C
L
U
D
I
N
G
,

B
U
T

N
O
T

L
I
M
I
T
E
D

T
O
,

T
H
E

I
M
P
L
I
E
D

2
6

/
/

W
A
R
R
A
N
T
I
E
S

O
F

M
E
R
C
H
A
N
T
A
B
I
L
I
T
Y

A
N
D

F
I
T
N
E
S
S

F
O
R

A

P
A
R
T
I
C
U
L
A
R

P
U
R
P
O
S
E

A
R
E

2
7

/
/

D
I
S
C
L
A
I
M
E
D
.

I
N

N
O

E
V
E
N
T

S
H
A
L
L

T
H
E

K
I
T

O
R

C
O
N
T
R
I
B
U
T
O
R
S

B
E

L
I
A
B
L
E

F
O
R

A
N
Y

2
8

/
/

D
I
R
E
C
T
,

I
N
D
I
R
E
C
T
,

I
N
C
I
D
E
N
T
A
L
,

S
P
E
C
I
A
L
,

E
X
E
M
P
L
A
R
Y
,

O
R

C
O
N
S
E
Q
U
E
N
T
I
A
L

D
A
M
A
G
E
S

2
9

/
/

(
I
N
C
L
U
D
I
N
G
,

B
U
T

N
O
T

L
I
M
I
T
E
D

T
O
,

P
R
O
C
U
R
E
M
E
N
T

O
F

S
U
B
S
T
I
T
U
T
E

G
O
O
D
S

O
R

S
E
R
V
I
C
E
S
;

3
0

/
/

L
O
S
S

O
F

U
S
E
,

D
A
T
A
,

O
R

P
R
O
F
I
T
S
;

O
R

B
U
S
I
N
E
S
S

I
N
T
E
R
R
U
P
T
I
O
N
)

H
O
W
E
V
E
R

C
A
U
S
E
D

A
N
D

3
1

/
/

O
N

A
N
Y

T
H
E
O
R
Y

O
F

L
I
A
B
I
L
I
T
Y
,

W
H
E
T
H
E
R

I
N

C
O
N
T
R
A
C
T
,

S
T
R
I
C
T

L
I
A
B
I
L
I
T
Y
,

O
R

T
O
R
T

3
2

/
/

(
I
N
C
L
U
D
I
N
G

N
E
G
L
I
G
E
N
C
E

O
R

O
T
H
E
R
W
I
S
E
)

A
R
I
S
I
N
G

I
N

A
N
Y

W
A
Y

O
U
T

O
F

T
H
E

U
S
E

O
F

3
3

/
/

T
H
I
S

S
O
F
T
W
A
R
E
,

E
V
E
N

I
F

A
D
V
I
S
E
D

O
F

T
H
E

P
O
S
S
I
B
I
L
I
T
Y

O
F

S
U
C
H

D
A
M
A
G
E
.

3
4

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3
5

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3
6

/
/

F
i
l
e
n
a
m
e
:

P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
.
h

3
7

/
/

A
u
t
h
o
r
:

D
a
v
i
d

3
8

/
/

D
a
t
e
:

3
0
.
0
4
.
2
0
1
0

3
9

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4
0

4
1

4
2

#
i
f
n
d
e
f

_
P
A
R
T
I
C
L
E
_
F
I
L
T
E
R
_
U
N
I
V
E
R
S
A
L
_
T
R
A
C
K
E
R
_
H
_

4
3

#
d
e
f
i
n
e

_
P
A
R
T
I
C
L
E
_
F
I
L
T
E
R
_
U
N
I
V
E
R
S
A
L
_
T
R
A
C
K
E
R
_
H
_

4
4

4
5

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4
6

/
/

N
e
c
e
s
s
a
r
y

i
n
c
l
u
d
e
s

4
7

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4
8

4
9

#
i
n
c
l
u
d
e

"
I
n
t
e
r
f
a
c
e
s
/
R
i
g
i
d
O
b
j
e
c
t
T
r
a
c
k
i
n
g
I
n
t
e
r
f
a
c
e
.
h
"

5
0

#
i
n
c
l
u
d
e

"
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
.
h
"

5
1

5
2

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

5
3

/
/

F
o
r
w
a
r
d

d
e
c
l
a
r
a
t
i
o
n
s

5
4

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

5
5

5
6

c
l
a
s
s

C
F
l
o
a
t
M
a
t
r
i
x
;

5
7

c
l
a
s
s

C
O
p
e
n
G
L
V
i
s
u
a
l
i
z
e
r
;

5
8

c
l
a
s
s

C
U
n
d
i
s
t
o
r
t
i
o
n
;

5
9

s
t
r
u
c
t

T
r
a
n
s
f
o
r
m
a
t
i
o
n
3
d
;

6
0

6
1

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

6
2

/
/

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r

6
3

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

6
4

6
5

6
6

c
l
a
s
s

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:

p
u
b
l
i
c

C
R
i
g
i
d
O
b
j
e
c
t
T
r
a
c
k
i
n
g
I
n
t
e
r
f
a
c
e

6
7

{

6
8

p
u
b
l
i
c
:

6
9

7
0

e
n
u
m

E
d
g
e
D
e
t
e
c
t
i
o
n
M
o
d
e
{

7
1

S
o
b
e
l
,

7
2

P
r
e
w
i
t
t
,

7
3

C
a
n
n
y

7
4

}
;

7
5

7
6

/
/
c
o
n
s
t
r
u
c
t
o
r

7
7

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
(
C
F
l
o
a
t
M
a
t
r
i
x

*
p
O
b
j
e
c
t
,

C
F
l
o
a
t
M
a
t
r
i
x

*

p
O
b
j
e
c
t
T
e
x
t
u
r
e
,

C
B
y
t
e
I
m
a
g
e

*
p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e
,

i
n
t

n
P
a
r
t
i
c
l
e
s
,

f
l
o
a
t

*
f
S
i
g
m
a
,

b
o
o
l

b
T
e
x
t
u
r
e
,

f
l
o
a
t

*
f
C
o
n
f
i
g
u
r
a
t
i
o
n
,

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:

E
d
g
e
D
e
t
e
c
t
i
o
n
M
o
d
e

t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n

=

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
S
o
b
e
l
,

i
n
t

n
L
o
w
T
h
r
e
s
h
o
l
d

=

1
5
,

i
n
t

n
H
i
g
h
T
h
r
e
s
h
o
l
d

=

8
0
,

i
n
t

n
T
h
r
e
s
h
o
l
d

=

2
0
0
)
;

7
8

7
9

/
/
d
e
s
t
r
u
c
t
o
r

8
0

~
C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
(
)
;

8
1

8
2

/
/
p
u
b
l
i
c

m
e
t
h
o
d
s

8
3

v
o
i
d

I
n
i
t
(
c
o
n
s
t

C
C
a
l
i
b
r
a
t
i
o
n

*
p
C
a
l
i
b
r
a
t
i
o
n
)
;

8
4

b
o
o
l

I
n
i
t
(
c
o
n
s
t

c
h
a
r
*

s
C
a
l
i
b
r
a
t
i
o
n
F
i
l
e
)
;

8
5

b
o
o
l

T
r
a
c
k
(
c
o
n
s
t

C
B
y
t
e
I
m
a
g
e

*
p
E
d
g
e
I
m
a
g
e
,

i
n
t

n
L
a
y
e
r
s
,

f
l
o
a
t

*
f
R
e
s
u
l
t
C
o
n
f
i
g
u
r
a
t
i
o
n
)

;

8
6

b
o
o
l

T
r
a
c
k
(
c
o
n
s
t

C
B
y
t
e
I
m
a
g
e

*
p
E
d
g
e
I
m
a
g
e
,

V
e
c
3
d

*
p
O
u
t
l
i
n
e
P
o
i
n
t
s
,

i
n
t

n
O
u
t
l
i
n
e
P
o
i
n
t
s

,

M
a
t
3
d

&
r
o
t
a
t
i
o
n
,

V
e
c
3
d

&
t
r
a
n
s
l
a
t
i
o
n
)
;

8
7

v
o
i
d

G
e
t
D
r
a
w
n
O
b
j
e
c
t
W
i
t
h
T
e
x
t
u
r
e
(
f
l
o
a
t

*
f
C
o
n
f
i
g
u
r
a
t
i
o
n
,

C
B
y
t
e
I
m
a
g
e

*
p
R
e
s
u
l
t
I
m
a
g
e
)
;

8
8

8
9

9
0

p
r
i
v
a
t
e
:

9
1

/
/

p
r
i
v
a
t
e

a
t
t
r
i
b
u
t
e
s

9
2

C
F
l
o
a
t
M
a
t
r
i
x

*
m
_
p
O
b
j
e
c
t
;

9
3

C
F
l
o
a
t
M
a
t
r
i
x

*
m
_
p
O
b
j
e
c
t
T
e
x
t
u
r
e
;

9
4

C
B
y
t
e
I
m
a
g
e

*
m
_
p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e
;

9
5

9
6

C
B
y
t
e
I
m
a
g
e

*
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
;

9
7

9
8

C
O
p
e
n
G
L
V
i
s
u
a
l
i
z
e
r

*
m
_
p
V
i
s
u
a
l
i
z
e
r
;

9
9

1
0
0

C
U
n
d
i
s
t
o
r
t
i
o
n

*
m
_
p
U
n
d
i
s
t
o
r
t
i
o
n
;

1
0
1

1
0
2

i
n
t

m
_
n
L
o
w
T
h
r
e
s
h
o
l
d
;

1
0
3

i
n
t

m
_
n
H
i
g
h
T
h
r
e
s
h
o
l
d
;

1
0
4

i
n
t

m
_
n
T
h
r
e
s
h
o
l
d
;

1
0
5

i
n
t

m
_
n
L
a
y
e
r
s
;

1
0
6

1
0
7

E
d
g
e
D
e
t
e
c
t
i
o
n
M
o
d
e

m
_
t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n
;

1
0
8

1
0
9

i
n
t

m
_
w
i
d
t
h
;

1
1
0

i
n
t

m
_
h
e
i
g
h
t
;

1
1
1

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D

*
m
_
p
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
;

1
1
2

1
1
3

i
n
t

m
_
n
P
a
r
t
i
c
l
e
s
;

1
1
4

1
1
5

f
l
o
a
t

*
m
_
f
S
i
g
m
a
;

1
1
6

1
1
7

b
o
o
l

m
_
b
T
e
x
t
u
r
e
;

1
1
8

1
1
9

f
l
o
a
t

*
m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
;

1
2
0

}
;

1
2
1

1
2
2

1
2
3

1
2
4

#
e
n
d
i
f

/
*

_
P
A
R
T
I
C
L
E
_
F
I
L
T
E
R
_
U
N
I
V
E
R
S
A
L
_
T
R
A
C
K
E
R
_
H
_

*
/

1
2
5

66

1
/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

2
/
/

T
h
i
s

f
i
l
e

i
s

p
a
r
t

o
f

t
h
e

I
n
t
e
g
r
a
t
i
n
g

V
i
s
i
o
n

T
o
o
l
k
i
t

(
I
V
T
)
.

3
/
/

4
/
/

T
h
e

I
V
T

i
s

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

K
a
r
l
s
r
u
h
e

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

(
K
I
T
)

5
/
/

(
w
w
w
.
k
i
t
.
e
d
u
)

i
n

c
o
o
p
e
r
a
t
i
o
n

w
i
t
h

t
h
e

c
o
m
p
a
n
y

K
e
y
e
t
e
c
h

(
w
w
w
.
k
e
y
e
t
e
c
h
.
d
e
)
.

6
/
/

7
/
/

C
o
p
y
r
i
g
h
t

(
C
)

2
0
0
9

K
a
r
l
s
r
u
h
e

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

(
K
I
T
)
.

8
/
/

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

9
/
/

1
0

/
/

R
e
d
i
s
t
r
i
b
u
t
i
o
n

a
n
d

u
s
e

i
n

s
o
u
r
c
e

a
n
d

b
i
n
a
r
y

f
o
r
m
s
,

w
i
t
h

o
r

w
i
t
h
o
u
t

1
1

/
/

m
o
d
i
f
i
c
a
t
i
o
n
,

a
r
e

p
e
r
m
i
t
t
e
d

p
r
o
v
i
d
e
d

t
h
a
t

t
h
e

f
o
l
l
o
w
i
n
g

c
o
n
d
i
t
i
o
n
s

a
r
e

m
e
t
:

1
2

/
/

1
3

/
/

1
.

R
e
d
i
s
t
r
i
b
u
t
i
o
n
s

o
f

s
o
u
r
c
e

c
o
d
e

m
u
s
t

r
e
t
a
i
n

t
h
e

a
b
o
v
e

c
o
p
y
r
i
g
h
t

1
4

/
/

n
o
t
i
c
e
,

t
h
i
s

l
i
s
t

o
f

c
o
n
d
i
t
i
o
n
s

a
n
d

t
h
e

f
o
l
l
o
w
i
n
g

d
i
s
c
l
a
i
m
e
r
.

1
5

/
/

1
6

/
/

2
.

R
e
d
i
s
t
r
i
b
u
t
i
o
n
s

i
n

b
i
n
a
r
y

f
o
r
m

m
u
s
t

r
e
p
r
o
d
u
c
e

t
h
e

a
b
o
v
e

c
o
p
y
r
i
g
h
t

1
7

/
/

n
o
t
i
c
e
,

t
h
i
s

l
i
s
t

o
f

c
o
n
d
i
t
i
o
n
s

a
n
d

t
h
e

f
o
l
l
o
w
i
n
g

d
i
s
c
l
a
i
m
e
r

i
n

t
h
e

1
8

/
/

d
o
c
u
m
e
n
t
a
t
i
o
n

a
n
d
/
o
r

o
t
h
e
r

m
a
t
e
r
i
a
l
s

p
r
o
v
i
d
e
d

w
i
t
h

t
h
e

d
i
s
t
r
i
b
u
t
i
o
n
.

1
9

/
/

2
0

/
/

3
.

N
e
i
t
h
e
r

t
h
e

n
a
m
e

o
f

t
h
e

K
I
T

n
o
r

t
h
e

n
a
m
e
s

o
f

i
t
s

c
o
n
t
r
i
b
u
t
o
r
s

m
a
y

b
e

2
1

/
/

u
s
e
d

t
o

e
n
d
o
r
s
e

o
r

p
r
o
m
o
t
e

p
r
o
d
u
c
t
s

d
e
r
i
v
e
d

f
r
o
m

t
h
i
s

s
o
f
t
w
a
r
e

2
2

/
/

w
i
t
h
o
u
t

s
p
e
c
i
f
i
c

p
r
i
o
r

w
r
i
t
t
e
n

p
e
r
m
i
s
s
i
o
n
.

2
3

/
/

2
4

/
/

T
H
I
S

S
O
F
T
W
A
R
E

I
S

P
R
O
V
I
D
E
D

B
Y

T
H
E

K
I
T

A
N
D

C
O
N
T
R
I
B
U
T
O
R
S

“
A
S

I
S
”

A
N
D

A
N
Y

2
5

/
/

E
X
P
R
E
S
S

O
R

I
M
P
L
I
E
D

W
A
R
R
A
N
T
I
E
S
,

I
N
C
L
U
D
I
N
G
,

B
U
T

N
O
T

L
I
M
I
T
E
D

T
O
,

T
H
E

I
M
P
L
I
E
D

2
6

/
/

W
A
R
R
A
N
T
I
E
S

O
F

M
E
R
C
H
A
N
T
A
B
I
L
I
T
Y

A
N
D

F
I
T
N
E
S
S

F
O
R

A

P
A
R
T
I
C
U
L
A
R

P
U
R
P
O
S
E

A
R
E

2
7

/
/

D
I
S
C
L
A
I
M
E
D
.

I
N

N
O

E
V
E
N
T

S
H
A
L
L

T
H
E

K
I
T

O
R

C
O
N
T
R
I
B
U
T
O
R
S

B
E

L
I
A
B
L
E

F
O
R

A
N
Y

2
8

/
/

D
I
R
E
C
T
,

I
N
D
I
R
E
C
T
,

I
N
C
I
D
E
N
T
A
L
,

S
P
E
C
I
A
L
,

E
X
E
M
P
L
A
R
Y
,

O
R

C
O
N
S
E
Q
U
E
N
T
I
A
L

D
A
M
A
G
E
S

2
9

/
/

(
I
N
C
L
U
D
I
N
G
,

B
U
T

N
O
T

L
I
M
I
T
E
D

T
O
,

P
R
O
C
U
R
E
M
E
N
T

O
F

S
U
B
S
T
I
T
U
T
E

G
O
O
D
S

O
R

S
E
R
V
I
C
E
S
;

3
0

/
/

L
O
S
S

O
F

U
S
E
,

D
A
T
A
,

O
R

P
R
O
F
I
T
S
;

O
R

B
U
S
I
N
E
S
S

I
N
T
E
R
R
U
P
T
I
O
N
)

H
O
W
E
V
E
R

C
A
U
S
E
D

A
N
D

3
1

/
/

O
N

A
N
Y

T
H
E
O
R
Y

O
F

L
I
A
B
I
L
I
T
Y
,

W
H
E
T
H
E
R

I
N

C
O
N
T
R
A
C
T
,

S
T
R
I
C
T

L
I
A
B
I
L
I
T
Y
,

O
R

T
O
R
T

3
2

/
/

(
I
N
C
L
U
D
I
N
G

N
E
G
L
I
G
E
N
C
E

O
R

O
T
H
E
R
W
I
S
E
)

A
R
I
S
I
N
G

I
N

A
N
Y

W
A
Y

O
U
T

O
F

T
H
E

U
S
E

O
F

3
3

/
/

T
H
I
S

S
O
F
T
W
A
R
E
,

E
V
E
N

I
F

A
D
V
I
S
E
D

O
F

T
H
E

P
O
S
S
I
B
I
L
I
T
Y

O
F

S
U
C
H

D
A
M
A
G
E
.

3
4

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3
5

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3
6

/
/

F
i
l
e
n
a
m
e
:

P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
.
c
p
p

3
7

/
/

A
u
t
h
o
r
:

D
a
v
i
d

3
8

/
/

D
a
t
e
:

3
0
.
0
4
.
2
0
1
0

3
9

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4
0

4
1

4
2

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4
3

/
/

I
n
c
l
u
d
e
s

4
4

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4
5

4
6

#
i
n
c
l
u
d
e

"
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
.
h
"

4
7

#
i
n
c
l
u
d
e

"
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
.
h
"

4
8

#
i
n
c
l
u
d
e

"
C
a
l
i
b
r
a
t
i
o
n
/
C
a
l
i
b
r
a
t
i
o
n
.
h
"

4
9

#
i
n
c
l
u
d
e

"
V
i
s
u
a
l
i
z
e
r
/
O
p
e
n
G
L
V
i
s
u
a
l
i
z
e
r
.
h
"

5
0

#
i
n
c
l
u
d
e

"
C
a
l
i
b
r
a
t
i
o
n
/
U
n
d
i
s
t
o
r
t
i
o
n
.
h
"

5
1

#
i
n
c
l
u
d
e

"
I
m
a
g
e
/
B
y
t
e
I
m
a
g
e
.
h
"

5
2

#
i
n
c
l
u
d
e

"
I
m
a
g
e
/
I
m
a
g
e
P
r
o
c
e
s
s
o
r
.
h
"

5
3

#
i
n
c
l
u
d
e

<
m
a
t
h
.
h
>

5
4

#
i
n
c
l
u
d
e

"
H
e
l
p
e
r
s
/
h
e
l
p
e
r
s
.
h
"

5
5

5
6

5
7

5
8

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

5
9

/
/

C
o
n
s
t
r
u
c
t
o
r

/

D
e
s
t
r
u
c
t
o
r

6
0

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

6
1

6
2

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
(
C
F
l
o
a
t
M
a
t
r
i
x

*
p
O
b
j
e
c
t

,

C
F
l
o
a
t
M
a
t
r
i
x

*
p
O
b
j
e
c
t
T
e
x
t
u
r
e
,

C
B
y
t
e
I
m
a
g
e

*
p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e
,

i
n
t

n
P
a
r
t
i
c
l
e
s
,

f
l
o
a
t

*
f
S
i
g
m
a
,

b
o
o
l

b
T
e
x
t
u
r
e
,

f
l
o
a
t

*
f
C
o
n
f
i
g
u
r
a
t
i
o
n
,

E
d
g
e
D
e
t
e
c
t
i
o
n
M
o
d
e

t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n
,

i
n
t

n
L
o
w
T
h
r
e
s
h
o
l
d
,

i
n
t

n
H
i
g
h
T
h
r
e
s
h
o
l
d
,

i
n
t

n
T
h
r
e
s
h
o
l
d
)
{

6
3

m
_
p
O
b
j
e
c
t

=

p
O
b
j
e
c
t
;

6
4

m
_
p
O
b
j
e
c
t
T
e
x
t
u
r
e

=

p
O
b
j
e
c
t
T
e
x
t
u
r
e
;

6
5

m
_
p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e

=

p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e
;

6
6

6
7

m
_
n
L
o
w
T
h
r
e
s
h
o
l
d

=

n
L
o
w
T
h
r
e
s
h
o
l
d
;

6
8

m
_
n
H
i
g
h
T
h
r
e
s
h
o
l
d

=

n
H
i
g
h
T
h
r
e
s
h
o
l
d
;

6
9

m
_
n
T
h
r
e
s
h
o
l
d

=

n
T
h
r
e
s
h
o
l
d
;

7
0

m
_
t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n

=

t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n
;

7
1

7
2

m
_
p
V
i
s
u
a
l
i
z
e
r

=

n
e
w

C
O
p
e
n
G
L
V
i
s
u
a
l
i
z
e
r
(
)
;

7
3

m
_
p
U
n
d
i
s
t
o
r
t
i
o
n

=

n
e
w

C
U
n
d
i
s
t
o
r
t
i
o
n
(
)
;

7
4

7
5

m
_
n
P
a
r
t
i
c
l
e
s

=

n
P
a
r
t
i
c
l
e
s
;

7
6

7
7

m
_
f
S
i
g
m
a

=

n
e
w

f
l
o
a
t
[
6
]
;

7
8

f
o
r
(
i
n
t

i
=
0
;
i
<
6
;
i
+
+
)

m
_
f
S
i
g
m
a
[
i
]

=

f
S
i
g
m
a
[
i
]
;

7
9

8
0

m
_
b
T
e
x
t
u
r
e

=

b
T
e
x
t
u
r
e
;

8
1

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n

=

n
e
w

f
l
o
a
t

[
6
]
;

8
2

f
o
r
(
i
n
t

i
=
0
;
i
<
6
;
i
+
+
)

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
i
]

=

f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
i
]
;

8
3

}

8
4

8
5

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
~
C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
(
)
{

8
6

i
f

(
m
_
p
V
i
s
u
a
l
i
z
e
r
)

d
e
l
e
t
e

m
_
p
V
i
s
u
a
l
i
z
e
r
;

8
7

i
f

(
m
_
p
U
n
d
i
s
t
o
r
t
i
o
n
)

d
e
l
e
t
e

m
_
p
U
n
d
i
s
t
o
r
t
i
o
n
;

8
8

i
f

(
m
_
p
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
)

d
e
l
e
t
e

m
_
p
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
;

8
9

i
f

(
m
_
f
S
i
g
m
a
)

d
e
l
e
t
e

m
_
f
S
i
g
m
a
;

9
0

i
f

(
m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
)

d
e
l
e
t
e

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
;

9
1

i
f

(
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
)

d
e
l
e
t
e

m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
;

9
2

}

9
3

9
4

9
5

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

9
6

/
/

M
e
t
h
o
d
s

9
7

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

9
8

9
9

v
o
i
d

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
I
n
i
t
(
c
o
n
s
t

C
C
a
l
i
b
r
a
t
i
o
n

*
p
C
a
l
i
b
r
a
t
i
o
n
)
{

1
0
0

m
_
w
i
d
t
h

=

p
C
a
l
i
b
r
a
t
i
o
n
-
>
G
e
t
C
a
m
e
r
a
W
i
d
t
h
(
)
;

1
0
1

m
_
h
e
i
g
h
t

=

p
C
a
l
i
b
r
a
t
i
o
n
-
>
G
e
t
C
a
m
e
r
a
H
e
i
g
h
t
(
)
;

1
0
2

1
0
3

/
/
i
n
i
t

t
h
e

v
i
s
u
a
l
i
z
e
r

1
0
4

i
f

(
!
m
_
p
V
i
s
u
a
l
i
z
e
r
-
>
I
n
i
t
B
y
C
a
l
i
b
r
a
t
i
o
n
(
p
C
a
l
i
b
r
a
t
i
o
n
)
)

1
0
5

{

1
0
6

p
r
i
n
t
f
(
"
e
r
r
o
r
:

c
o
u
l
d

n
o
t

i
n
i
t

c
a
l
i
b
r
a
t
i
o
n
\
n
"
)
;

1
0
7

}

1
0
8

1
0
9

m
_
p
U
n
d
i
s
t
o
r
t
i
o
n
-
>
I
n
i
t
(
p
C
a
l
i
b
r
a
t
i
o
n
)
;

1
1
0

1
1
1

m
_
p
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D

=

n
e
w

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
(
m
_
n
P
a
r
t
i
c
l
e
s
,

m
_
f
S
i
g
m
a
,

m
_
p
V
i
s
u
a
l
i
z
e
r
,

m
_
p
O
b
j
e
c
t
,

m
_
p
O
b
j
e
c
t
T
e
x
t
u
r
e
,

m
_
p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e
,

m
_
b
T
e
x
t
u
r
e
,

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
,

m
_
w
i
d
t
h
,

m
_
h
e
i
g
h
t
,

m
_
n
L
o
w
T
h
r
e
s
h
o
l
d
,

m
_
n
H
i
g
h
T
h
r
e
s
h
o
l
d
,

m
_
n
T
h
r
e
s
h
o
l
d
,

m
_
t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n
)
;

1
1
2

m
_
p
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
-
>
I
n
i
t
P
a
r
t
i
c
l
e
s
(
)
;

1
1
3

1
1
4

m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y

=

n
e
w

C
B
y
t
e
I
m
a
g
e
(
m
_
w
i
d
t
h
,

m
_
h
e
i
g
h
t
,

C
B
y
t
e
I
m
a
g
e
:
:
e
G
r
a
y
S
c
a
l
e
)
;

1
1
5

}

1
1
6

1
1
7

b
o
o
l

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
I
n
i
t
(
c
o
n
s
t

c
h
a
r
*

s
C
a
l
i
b
r
a
t
i
o
n
F
i
l
e
)
{

1
1
8

C
C
a
l
i
b
r
a
t
i
o
n

c
a
l
i
b
r
a
t
i
o
n
;

1
1
9

i
f

(
!
c
a
l
i
b
r
a
t
i
o
n
.
L
o
a
d
C
a
m
e
r
a
P
a
r
a
m
e
t
e
r
s
(
s
C
a
l
i
b
r
a
t
i
o
n
F
i
l
e
)
)

1
2
0

{

1
2
1

p
r
i
n
t
f
(
"
e
r
r
o
r
:

c
o
u
l
d

n
o
t

l
o
a
d

c
a
l
i
b
r
a
t
i
o
n
\
n
"
)
;

1
2
2

r
e
t
u
r
n

f
a
l
s
e
;

1
2
3

}

1
2
4

c
a
l
i
b
r
a
t
i
o
n
.
S
e
t
R
o
t
a
t
i
o
n
(
M
a
t
h
3
d
:
:
u
n
i
t
_
m
a
t
)
;

1
2
5

c
a
l
i
b
r
a
t
i
o
n
.
S
e
t
T
r
a
n
s
l
a
t
i
o
n
(
M
a
t
h
3
d
:
:
z
e
r
o
_
v
e
c
)
;

1
2
6

t
h
i
s
-
>
I
n
i
t
(
&
c
a
l
i
b
r
a
t
i
o
n
)
;

1
2
7

r
e
t
u
r
n

t
r
u
e
;

1
2
8

}

1
2
9

1
3
0

b
o
o
l

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
T
r
a
c
k
(
c
o
n
s
t

C
B
y
t
e
I
m
a
g
e

*
p
E
d
g
e
I
m
a
g
e
,

i
n
t

n
L
a
y
e
r
s
,

f
l
o
a
t

*
f
R
e
s
u
l
t
C
o
n
f
i
g
u
r
a
t
i
o
n
)
{

1
3
1

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
C
o
n
v
e
r
t
I
m
a
g
e
(
p
E
d
g
e
I
m
a
g
e
,

m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
,

t
r
u
e
)
;

1
3
2

m
_
p
U
n
d
i
s
t
o
r
t
i
o
n
-
>
U
n
d
i
s
t
o
r
t
(
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
,

m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
)
;

1
3
3

1
3
4

s
w
i
t
c
h
(
m
_
t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n
)

1
3
5

{

1
3
6

c
a
s
e

S
o
b
e
l
:

1
3
7

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
C
a
l
c
u
l
a
t
e
G
r
a
d
i
e
n
t
I
m
a
g
e
S
o
b
e
l
(
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
,

m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
)
;

1
3
8

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
T
h
r
e
s
h
o
l
d
B
i
n
a
r
i
z
e
(
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
,
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
,

m
_
n
H
i
g
h
T
h
r
e
s
h
o
l
d
)
;

1
3
9

b
r
e
a
k
;

1
4
0

c
a
s
e

P
r
e
w
i
t
t
:

1
4
1

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
C
a
l
c
u
l
a
t
e
G
r
a
d
i
e
n
t
I
m
a
g
e
P
r
e
w
i
t
t
(
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
,

m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
)
;

1
4
2

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
T
h
r
e
s
h
o
l
d
B
i
n
a
r
i
z
e
(
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
,
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
,

67

m
_
n
H
i
g
h
T
h
r
e
s
h
o
l
d
)
;

1
4
3

b
r
e
a
k
;

1
4
4

c
a
s
e

C
a
n
n
y
:

1
4
5

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
C
a
n
n
y
(
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
,

m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
,

m
_
n
L
o
w
T
h
r
e
s
h
o
l
d
,

m
_
n
H
i
g
h
T
h
r
e
s
h
o
l
d
)
;

1
4
6

b
r
e
a
k
;

1
4
7

d
e
f
a
u
l
t
:

1
4
8

p
r
i
n
t
f
(
"
e
r
r
o
r
:

t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n
\
n
"
)
;

1
4
9

r
e
t
u
r
n

f
a
l
s
e
;

1
5
0

}

1
5
1

m
_
p
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
-
>
S
e
t
I
m
a
g
e
(
m
_
p
E
d
g
e
I
m
a
g
e
G
r
e
y
)
;

1
5
2

1
5
3

d
o
u
b
l
e

*
r
e
s
u
l
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n

=

n
e
w

d
o
u
b
l
e
[
6
]
;

1
5
4

1
5
5

f
l
o
a
t

s
i
g
m
a

=

1
;

1
5
6

f
o
r
(
i
n
t

i
=
0
;
i
<
n
L
a
y
e
r
s
;
i
+
+
)
{

1
5
7

m
_
p
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
-
>
P
a
r
t
i
c
l
e
F
i
l
t
e
r
(
r
e
s
u
l
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
,
s
i
g
m
a
)
;

1
5
8

p
r
i
n
t
f
(
"
S
I
G
M
A
:

%
f
\
n
"
,

s
i
g
m
a
)
;

1
5
9

s
i
g
m
a
=
1
-
(
f
l
o
a
t
)
m
_
p
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
-
>
r
e
s
u
l
t
T
m
p
;

1
6
0

}

1
6
1

1
6
2

f
o
r
(
i
n
t

i
=
0
;
i
<
6
;
i
+
+
)

f
R
e
s
u
l
t
C
o
n
f
i
g
u
r
a
t
i
o
n
[
i
]
=
(
f
l
o
a
t
)
r
e
s
u
l
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
i
]
;

1
6
3

d
e
l
e
t
e

r
e
s
u
l
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
;

1
6
4

r
e
t
u
r
n

t
r
u
e
;

1
6
5

}

1
6
6

1
6
7

b
o
o
l

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
T
r
a
c
k
(
c
o
n
s
t

C
B
y
t
e
I
m
a
g
e

*
p
E
d
g
e
I
m
a
g
e
,

V
e
c
3
d

*

p
O
u
t
l
i
n
e
P
o
i
n
t
s
,

i
n
t

n
O
u
t
l
i
n
e
P
o
i
n
t
s
,

M
a
t
3
d

&
r
o
t
a
t
i
o
n
,

V
e
c
3
d

&
t
r
a
n
s
l
a
t
i
o
n
)
{

1
6
8

/
/
e
m
p
t
y

1
6
9

r
e
t
u
r
n

t
r
u
e
;

1
7
0

}

1
7
1

1
7
2

v
o
i
d

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
G
e
t
D
r
a
w
n
O
b
j
e
c
t
W
i
t
h
T
e
x
t
u
r
e
(
f
l
o
a
t

*
f
C
o
n
f
i
g
u
r
a
t
i
o
n
,

C
B
y
t
e
I
m
a
g
e

*
p
R
e
s
u
l
t
I
m
a
g
e
)
{

1
7
3

/
/
D
r
a
w

t
h
e

c
a
l
c
u
l
a
t
e
d

m
o
d
e
l

1
7
4

T
r
a
n
s
f
o
r
m
a
t
i
o
n
3
d

p
o
s
e
;

1
7
5

M
a
t
h
3
d
:
:
S
e
t
V
e
c
(
p
o
s
e
.
t
r
a
n
s
l
a
t
i
o
n
,

f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
0
]
,

f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
1
]
,

f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
2
]
)
;

1
7
6

f
l
o
a
t

a
n
g
l
e

=

0
;

1
7
7

V
e
c
3
d

a
x
i
s

=

{
f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
3
]
,

f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
4
]
,

f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
5
]
}
;

1
7
8

a
n
g
l
e

=

M
a
t
h
3
d
:
:
L
e
n
g
t
h
(
a
x
i
s
)
;

1
7
9

M
a
t
h
3
d
:
:
N
o
r
m
a
l
i
z
e
V
e
c
(
a
x
i
s
)
;

1
8
0

i
f

(
f
a
b
s
f
(
a
n
g
l
e
)

<

0
.
0
0
0
1
f
)

1
8
1

M
a
t
h
3
d
:
:
S
e
t
M
a
t
(
p
o
s
e
.
r
o
t
a
t
i
o
n
,

M
a
t
h
3
d
:
:
u
n
i
t
_
m
a
t
)
;

1
8
2

e
l
s
e

1
8
3

M
a
t
h
3
d
:
:
S
e
t
R
o
t
a
t
i
o
n
M
a
t
A
x
i
s
(
p
o
s
e
.
r
o
t
a
t
i
o
n
,

a
x
i
s
,

a
n
g
l
e
)
;

1
8
4

m
_
p
V
i
s
u
a
l
i
z
e
r
-
>
C
l
e
a
r
(
)
;

1
8
5

i
f
(
m
_
b
T
e
x
t
u
r
e
)

1
8
6

m
_
p
V
i
s
u
a
l
i
z
e
r
-
>
D
r
a
w
O
b
j
e
c
t
W
i
t
h
T
e
x
t
u
r
e
(
m
_
p
O
b
j
e
c
t
,

m
_
p
O
b
j
e
c
t
T
e
x
t
u
r
e
,

m
_
p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e
,

p
o
s
e
)
;

1
8
7

e
l
s
e

1
8
8

m
_
p
V
i
s
u
a
l
i
z
e
r
-
>
D
r
a
w
O
b
j
e
c
t
(
m
_
p
O
b
j
e
c
t
,

p
o
s
e
)
;

1
8
9

1
9
0

C
B
y
t
e
I
m
a
g
e

e
d
g
e
I
m
a
g
e
C
o
l
o
r
(
6
4
0
,

4
8
0
,

C
B
y
t
e
I
m
a
g
e
:
:
e
R
G
B
2
4
)
;

1
9
1

C
B
y
t
e
I
m
a
g
e

*
p
E
d
g
e
I
m
a
g
e
C
o
l
o
r

=

&
e
d
g
e
I
m
a
g
e
C
o
l
o
r
;

1
9
2

m
_
p
V
i
s
u
a
l
i
z
e
r
-
>
G
e
t
I
m
a
g
e
(
p
E
d
g
e
I
m
a
g
e
C
o
l
o
r
)
;

1
9
3

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
F
l
i
p
Y
(
p
E
d
g
e
I
m
a
g
e
C
o
l
o
r
,
p
E
d
g
e
I
m
a
g
e
C
o
l
o
r
)
;

1
9
4

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
C
o
n
v
e
r
t
I
m
a
g
e
(
p
E
d
g
e
I
m
a
g
e
C
o
l
o
r
,

p
R
e
s
u
l
t
I
m
a
g
e
)
;

1
9
5

}

1
9
6

68

1
/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

2
/
/

T
h
i
s

f
i
l
e

i
s

p
a
r
t

o
f

t
h
e

I
n
t
e
g
r
a
t
i
n
g

V
i
s
i
o
n

T
o
o
l
k
i
t

(
I
V
T
)
.

3
/
/

4
/
/

T
h
e

I
V
T

i
s

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

K
a
r
l
s
r
u
h
e

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

(
K
I
T
)

5
/
/

(
w
w
w
.
k
i
t
.
e
d
u
)

i
n

c
o
o
p
e
r
a
t
i
o
n

w
i
t
h

t
h
e

c
o
m
p
a
n
y

K
e
y
e
t
e
c
h

(
w
w
w
.
k
e
y
e
t
e
c
h
.
d
e
)
.

6
/
/

7
/
/

C
o
p
y
r
i
g
h
t

(
C
)

2
0
0
9

K
a
r
l
s
r
u
h
e

I
n
s
t
i
t
u
t
e

o
f

T
e
c
h
n
o
l
o
g
y

(
K
I
T
)
.

8
/
/

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

9
/
/

1
0

/
/

R
e
d
i
s
t
r
i
b
u
t
i
o
n

a
n
d

u
s
e

i
n

s
o
u
r
c
e

a
n
d

b
i
n
a
r
y

f
o
r
m
s
,

w
i
t
h

o
r

w
i
t
h
o
u
t

1
1

/
/

m
o
d
i
f
i
c
a
t
i
o
n
,

a
r
e

p
e
r
m
i
t
t
e
d

p
r
o
v
i
d
e
d

t
h
a
t

t
h
e

f
o
l
l
o
w
i
n
g

c
o
n
d
i
t
i
o
n
s

a
r
e

m
e
t
:

1
2

/
/

1
3

/
/

1
.

R
e
d
i
s
t
r
i
b
u
t
i
o
n
s

o
f

s
o
u
r
c
e

c
o
d
e

m
u
s
t

r
e
t
a
i
n

t
h
e

a
b
o
v
e

c
o
p
y
r
i
g
h
t

1
4

/
/

n
o
t
i
c
e
,

t
h
i
s

l
i
s
t

o
f

c
o
n
d
i
t
i
o
n
s

a
n
d

t
h
e

f
o
l
l
o
w
i
n
g

d
i
s
c
l
a
i
m
e
r
.

1
5

/
/

1
6

/
/

2
.

R
e
d
i
s
t
r
i
b
u
t
i
o
n
s

i
n

b
i
n
a
r
y

f
o
r
m

m
u
s
t

r
e
p
r
o
d
u
c
e

t
h
e

a
b
o
v
e

c
o
p
y
r
i
g
h
t

1
7

/
/

n
o
t
i
c
e
,

t
h
i
s

l
i
s
t

o
f

c
o
n
d
i
t
i
o
n
s

a
n
d

t
h
e

f
o
l
l
o
w
i
n
g

d
i
s
c
l
a
i
m
e
r

i
n

t
h
e

1
8

/
/

d
o
c
u
m
e
n
t
a
t
i
o
n

a
n
d
/
o
r

o
t
h
e
r

m
a
t
e
r
i
a
l
s

p
r
o
v
i
d
e
d

w
i
t
h

t
h
e

d
i
s
t
r
i
b
u
t
i
o
n
.

1
9

/
/

2
0

/
/

3
.

N
e
i
t
h
e
r

t
h
e

n
a
m
e

o
f

t
h
e

K
I
T

n
o
r

t
h
e

n
a
m
e
s

o
f

i
t
s

c
o
n
t
r
i
b
u
t
o
r
s

m
a
y

b
e

2
1

/
/

u
s
e
d

t
o

e
n
d
o
r
s
e

o
r

p
r
o
m
o
t
e

p
r
o
d
u
c
t
s

d
e
r
i
v
e
d

f
r
o
m

t
h
i
s

s
o
f
t
w
a
r
e

2
2

/
/

w
i
t
h
o
u
t

s
p
e
c
i
f
i
c

p
r
i
o
r

w
r
i
t
t
e
n

p
e
r
m
i
s
s
i
o
n
.

2
3

/
/

2
4

/
/

T
H
I
S

S
O
F
T
W
A
R
E

I
S

P
R
O
V
I
D
E
D

B
Y

T
H
E

K
I
T

A
N
D

C
O
N
T
R
I
B
U
T
O
R
S

“
A
S

I
S
”

A
N
D

A
N
Y

2
5

/
/

E
X
P
R
E
S
S

O
R

I
M
P
L
I
E
D

W
A
R
R
A
N
T
I
E
S
,

I
N
C
L
U
D
I
N
G
,

B
U
T

N
O
T

L
I
M
I
T
E
D

T
O
,

T
H
E

I
M
P
L
I
E
D

2
6

/
/

W
A
R
R
A
N
T
I
E
S

O
F

M
E
R
C
H
A
N
T
A
B
I
L
I
T
Y

A
N
D

F
I
T
N
E
S
S

F
O
R

A

P
A
R
T
I
C
U
L
A
R

P
U
R
P
O
S
E

A
R
E

2
7

/
/

D
I
S
C
L
A
I
M
E
D
.

I
N

N
O

E
V
E
N
T

S
H
A
L
L

T
H
E

K
I
T

O
R

C
O
N
T
R
I
B
U
T
O
R
S

B
E

L
I
A
B
L
E

F
O
R

A
N
Y

2
8

/
/

D
I
R
E
C
T
,

I
N
D
I
R
E
C
T
,

I
N
C
I
D
E
N
T
A
L
,

S
P
E
C
I
A
L
,

E
X
E
M
P
L
A
R
Y
,

O
R

C
O
N
S
E
Q
U
E
N
T
I
A
L

D
A
M
A
G
E
S

2
9

/
/

(
I
N
C
L
U
D
I
N
G
,

B
U
T

N
O
T

L
I
M
I
T
E
D

T
O
,

P
R
O
C
U
R
E
M
E
N
T

O
F

S
U
B
S
T
I
T
U
T
E

G
O
O
D
S

O
R

S
E
R
V
I
C
E
S
;

3
0

/
/

L
O
S
S

O
F

U
S
E
,

D
A
T
A
,

O
R

P
R
O
F
I
T
S
;

O
R

B
U
S
I
N
E
S
S

I
N
T
E
R
R
U
P
T
I
O
N
)

H
O
W
E
V
E
R

C
A
U
S
E
D

A
N
D

3
1

/
/

O
N

A
N
Y

T
H
E
O
R
Y

O
F

L
I
A
B
I
L
I
T
Y
,

W
H
E
T
H
E
R

I
N

C
O
N
T
R
A
C
T
,

S
T
R
I
C
T

L
I
A
B
I
L
I
T
Y
,

O
R

T
O
R
T

3
2

/
/

(
I
N
C
L
U
D
I
N
G

N
E
G
L
I
G
E
N
C
E

O
R

O
T
H
E
R
W
I
S
E
)

A
R
I
S
I
N
G

I
N

A
N
Y

W
A
Y

O
U
T

O
F

T
H
E

U
S
E

O
F

3
3

/
/

T
H
I
S

S
O
F
T
W
A
R
E
,

E
V
E
N

I
F

A
D
V
I
S
E
D

O
F

T
H
E

P
O
S
S
I
B
I
L
I
T
Y

O
F

S
U
C
H

D
A
M
A
G
E
.

3
4

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3
5

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3
6

/
/

F
i
l
e
n
a
m
e
:

P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
.
c
p
p

3
7

/
/

A
u
t
h
o
r
:

D
a
v
i
d

3
8

/
/

D
a
t
e
:

3
0
.
0
4
.
2
0
1
0

3
9

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4
0

4
1

4
2

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4
3

/
/

I
n
c
l
u
d
e
s

4
4

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4
5

4
6

#
i
n
c
l
u
d
e

"
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
.
h
"

4
7

#
i
n
c
l
u
d
e

"
I
m
a
g
e
/
I
m
a
g
e
P
r
o
c
e
s
s
o
r
.
h
"

4
8

#
i
n
c
l
u
d
e

"
I
m
a
g
e
/
B
y
t
e
I
m
a
g
e
.
h
"

4
9

#
i
n
c
l
u
d
e

<
m
a
t
h
.
h
>

5
0

#
i
n
c
l
u
d
e

"
H
e
l
p
e
r
s
/
h
e
l
p
e
r
s
.
h
"

5
1

#
i
n
c
l
u
d
e

"
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
.
h
"

5
2

#
i
n
c
l
u
d
e

"
M
a
t
h
/
C
o
n
s
t
a
n
t
s
.
h
"

5
3

#
i
n
c
l
u
d
e

<
f
l
o
a
t
.
h
>

5
4

5
5

5
6

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

5
7

/
/

C
o
n
s
t
r
u
c
t
o
r

/

D
e
s
t
r
u
c
t
o
r

5
8

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

5
9

6
0

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
:
:
C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
(
i
n
t

n
P
a
r
t
i
c
l
e
s
,

f
l
o
a
t

*
f
S
i
g
m
a
,

C
O
p
e
n
G
L
V
i
s
u
a
l
i
z
e
r

*
p
V
i
s
u
a
l
i
z
e
r
,

C
F
l
o
a
t
M
a
t
r
i
x

*
p
O
b
j
e
c
t
,

C
F
l
o
a
t
M
a
t
r
i
x

*
p
O
b
j
e
c
t
T
e
x
t
u
r
e
,

C
B
y
t
e
I
m
a
g
e

*

p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e
,

b
o
o
l

b
T
e
x
t
u
r
e
,

f
l
o
a
t

*
f
C
o
n
f
i
g
u
r
a
t
i
o
n
,

i
n
t

w
i
d
t
h
,

i
n
t

h
e
i
g
h
t
,

i
n
t

n
L
o
w
T
h
r
e
s
h
o
l
d
,

i
n
t

n
H
i
g
h
T
h
r
e
s
h
o
l
d
,

i
n
t

n
T
h
r
e
s
h
o
l
d
,

i
n
t

t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n
)
:

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
F
r
a
m
e
w
o
r
k
(
n
P
a
r
t
i
c
l
e
s
,
6
)
{

6
1

m
_
p
V
i
s
u
a
l
i
z
e
r

=

p
V
i
s
u
a
l
i
z
e
r
;

6
2

m
_
p
O
b
j
e
c
t

=

p
O
b
j
e
c
t
;

6
3

m
_
p
O
b
j
e
c
t
T
e
x
t
u
r
e

=

p
O
b
j
e
c
t
T
e
x
t
u
r
e
;

6
4

m
_
p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e

=

p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e
;

6
5

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n

=

n
e
w

f
l
o
a
t

[
6
]
;

6
6

f
o
r
(
i
n
t

i
=
0
;
i
<
6
;
i
+
+
)

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
i
]

=

f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
i
]
;

6
7

m
_
n
L
o
w
T
h
r
e
s
h
o
l
d

=

n
L
o
w
T
h
r
e
s
h
o
l
d
;

6
8

m
_
n
H
i
g
h
T
h
r
e
s
h
o
l
d

=

n
H
i
g
h
T
h
r
e
s
h
o
l
d
;

6
9

m
_
n
T
h
r
e
s
h
o
l
d

=

n
T
h
r
e
s
h
o
l
d
;

7
0

m
_
t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n

=

t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n
;

7
1

m
_
f
S
i
g
m
a

=

n
e
w

f
l
o
a
t

[
6
]
;

7
2

f
o
r
(
i
n
t

i
=
0
;
i
<
6
;
i
+
+
)
m
_
f
S
i
g
m
a
[
i
]

=

f
S
i
g
m
a
[
i
]
;

7
3

m
_
b
T
e
x
t
u
r
e

=

b
T
e
x
t
u
r
e
;

7
4

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e

=

n
e
w

C
B
y
t
e
I
m
a
g
e
(
w
i
d
t
h
,

h
e
i
g
h
t
,

C
B
y
t
e
I
m
a
g
e
:
:
e
G
r
a
y
S
c
a
l
e
)
;

7
5

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2

=

n
e
w

C
B
y
t
e
I
m
a
g
e
(
w
i
d
t
h
,

h
e
i
g
h
t
,

C
B
y
t
e
I
m
a
g
e
:
:
e
G
r
a
y
S
c
a
l
e
)
;

7
6

m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
0
]

=

n
e
w

f
l
o
a
t
[
m
_
n
P
a
r
t
i
c
l
e
s
]
;

7
7

m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
1
]

=

n
e
w

f
l
o
a
t
[
m
_
n
P
a
r
t
i
c
l
e
s
]
;

7
8

m
_
n
P
a
r
t
i
c
l
e
I
n
d
e
x

=

0
;

7
9

m
_
p
G
e
t
C
o
l
o
r
O
b
j
e
c
t

=

n
e
w

C
B
y
t
e
I
m
a
g
e
(
6
4
0
,

4
8
0
,

C
B
y
t
e
I
m
a
g
e
:
:
e
R
G
B
2
4
)
;

8
0

}

8
1

8
2

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
:
:
~
C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
(
)
{

8
3

i
f

(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
)

d
e
l
e
t
e

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
;

8
4

i
f

(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
)

d
e
l
e
t
e

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
;

8
5

i
f

(
m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
)

d
e
l
e
t
e

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
;

8
6

i
f

(
m
_
f
S
i
g
m
a
)

d
e
l
e
t
e

m
_
f
S
i
g
m
a
;

8
7

i
f

(
m
_
p
G
e
t
C
o
l
o
r
O
b
j
e
c
t
)

d
e
l
e
t
e

m
_
p
G
e
t
C
o
l
o
r
O
b
j
e
c
t
;

8
8

}

8
9

9
0

9
1

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

9
2

/
/

M
e
t
h
o
d
s

9
3

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

9
4

9
5

v
o
i
d

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
:
:
S
e
t
I
m
a
g
e
(
c
o
n
s
t

C
B
y
t
e
I
m
a
g
e

*
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
)

9
6

{

9
7

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
C
o
p
y
I
m
a
g
e
(
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
,
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
)
;

9
8

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
D
i
l
a
t
e
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
,
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
)
;

9
9

}

1
0
0

1
0
1

v
o
i
d

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
:
:
U
p
d
a
t
e
M
o
d
e
l
(
i
n
t

n
P
a
r
t
i
c
l
e
)

1
0
2

{

1
0
3

M
a
t
h
3
d
:
:
S
e
t
V
e
c
(
m
_
m
o
d
e
l
.
t
r
a
n
s
l
a
t
i
o
n
,

(
f
l
o
a
t
)

s
[
n
P
a
r
t
i
c
l
e
]
[
0
]
,

(
f
l
o
a
t
)

s
[
n
P
a
r
t
i
c
l
e
]

[
1
]
,

(
f
l
o
a
t
)

s
[
n
P
a
r
t
i
c
l
e
]
[
2
]
)
;

1
0
4

f
l
o
a
t

a
n
g
l
e

=

0
;

1
0
5

V
e
c
3
d

a
x
i
s

=

{

(
f
l
o
a
t
)
s
[
n
P
a
r
t
i
c
l
e
]
[
3
]
,

(
f
l
o
a
t
)
s
[
n
P
a
r
t
i
c
l
e
]
[
4
]
,

(
f
l
o
a
t
)
s
[
n
P
a
r
t
i
c
l
e
]

[
5
]

}
;

1
0
6

a
n
g
l
e

=

M
a
t
h
3
d
:
:
L
e
n
g
t
h
(
a
x
i
s
)
;

1
0
7

M
a
t
h
3
d
:
:
N
o
r
m
a
l
i
z
e
V
e
c
(
a
x
i
s
)
;

1
0
8

i
f

(
f
a
b
s
f
(
a
n
g
l
e
)

<

0
.
0
0
1
f
)

1
0
9

M
a
t
h
3
d
:
:
S
e
t
M
a
t
(
m
_
m
o
d
e
l
.
r
o
t
a
t
i
o
n
,

M
a
t
h
3
d
:
:
u
n
i
t
_
m
a
t
)
;

1
1
0

e
l
s
e

1
1
1

M
a
t
h
3
d
:
:
S
e
t
R
o
t
a
t
i
o
n
M
a
t
A
x
i
s
(
m
_
m
o
d
e
l
.
r
o
t
a
t
i
o
n
,

a
x
i
s
,

a
n
g
l
e
)
;

1
1
2

}

1
1
3

1
1
4

1
1
5

v
o
i
d

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
:
:
P
r
e
d
i
c
t
N
e
w
B
a
s
e
s
(
d
o
u
b
l
e

d
S
i
g
m
a
F
a
c
t
o
r
)

1
1
6

{

1
1
7

/
/
s
e
t

i
t

f
o
r

d
y
n
a
m
i
c

m
o
t
i
o
n

m
o
d
e
l
l

1
1
8

c
o
n
s
t

f
l
o
a
t

V
E
L
O
C
I
T
Y
_
F
A
C
T
O
R

=

0
.
0
f
;

1
1
9

i
n
t

n
N
e
w
I
n
d
e
x

=

0
;

1
2
0

1
2
1

f
o
r

(
n
N
e
w
I
n
d
e
x

=

0
;

n
N
e
w
I
n
d
e
x

<

m
_
n
P
a
r
t
i
c
l
e
s
;

n
N
e
w
I
n
d
e
x
+
+
)

1
2
2

{

1
2
3

i
n
t

n
O
l
d
I
n
d
e
x

=

P
i
c
k
B
a
s
e
S
a
m
p
l
e
(
)
;

1
2
4

1
2
5

c
o
n
s
t

d
o
u
b
l
e

x
x

=

s
[
n
O
l
d
I
n
d
e
x
]
[
0
]

+

V
E
L
O
C
I
T
Y
_
F
A
C
T
O
R

*

(
m
e
a
n
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
0
]

-

l
a
s
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
0
]
)

+

d
S
i
g
m
a
F
a
c
t
o
r

*

s
i
g
m
a
[
0
]

*

g
a
u
s
s
i
a
n
_
r
a
n
d
o
m
(
)
;

1
2
6

c
o
n
s
t

d
o
u
b
l
e

y
y

=

s
[
n
O
l
d
I
n
d
e
x
]
[
1
]

+

V
E
L
O
C
I
T
Y
_
F
A
C
T
O
R

*

(
m
e
a
n
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
1
]

-

l
a
s
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
1
]
)

+

d
S
i
g
m
a
F
a
c
t
o
r

*

s
i
g
m
a
[
1
]

*

g
a
u
s
s
i
a
n
_
r
a
n
d
o
m
(
)
;

1
2
7

c
o
n
s
t

d
o
u
b
l
e

z
z

=

s
[
n
O
l
d
I
n
d
e
x
]
[
2
]

+

V
E
L
O
C
I
T
Y
_
F
A
C
T
O
R

*

(
m
e
a
n
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
2
]

-

l
a
s
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
2
]
)

+

d
S
i
g
m
a
F
a
c
t
o
r

*

s
i
g
m
a
[
2
]

*

g
a
u
s
s
i
a
n
_
r
a
n
d
o
m
(
)
;

1
2
8

1
2
9

c
o
n
s
t

d
o
u
b
l
e

a
l
p
h
a

=

s
[
n
O
l
d
I
n
d
e
x
]
[
3
]

+

V
E
L
O
C
I
T
Y
_
F
A
C
T
O
R

*

(
m
e
a
n
_
c
o
n
f
i
g
u
r
a
t
i
o
n

[
3
]

-

l
a
s
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
3
]
)

+

d
S
i
g
m
a
F
a
c
t
o
r

*

s
i
g
m
a
[
3
]

*

(
f
l
o
a
t
)

F
L
O
A
T
_
P
I

/

1
8
0

*

g
a
u
s
s
i
a
n
_
r
a
n
d
o
m
(
)
;

1
3
0

c
o
n
s
t

d
o
u
b
l
e

b
e
t
a

=

s
[
n
O
l
d
I
n
d
e
x
]
[
4
]

+

V
E
L
O
C
I
T
Y
_
F
A
C
T
O
R

*

(
m
e
a
n
_
c
o
n
f
i
g
u
r
a
t
i
o
n

[
4
]

-

l
a
s
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
4
]
)

+

d
S
i
g
m
a
F
a
c
t
o
r

*

s
i
g
m
a
[
4
]

*

(
f
l
o
a
t
)

F
L
O
A
T
_
P
I

/

1
8
0

*

g
a
u
s
s
i
a
n
_
r
a
n
d
o
m
(
)
;

1
3
1

c
o
n
s
t

d
o
u
b
l
e

g
a
m
m
a

=

s
[
n
O
l
d
I
n
d
e
x
]
[
5
]

+

V
E
L
O
C
I
T
Y
_
F
A
C
T
O
R

*

(
m
e
a
n
_
c
o
n
f
i
g
u
r
a
t
i
o
n

[
5
]

-

l
a
s
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
5
]
)

+

d
S
i
g
m
a
F
a
c
t
o
r

*

s
i
g
m
a
[
5
]

*

(
f
l
o
a
t
)

F
L
O
A
T
_
P
I

/

1
8
0

*

g
a
u
s
s
i
a
n
_
r
a
n
d
o
m
(
)
;

1
3
2

1
3
3

s
_
t
e
m
p
[
n
N
e
w
I
n
d
e
x
]
[
0
]

=

x
x
;

1
3
4

s
_
t
e
m
p
[
n
N
e
w
I
n
d
e
x
]
[
1
]

=

y
y
;

1
3
5

s
_
t
e
m
p
[
n
N
e
w
I
n
d
e
x
]
[
2
]

=

z
z
;

1
3
6

1
3
7

s
_
t
e
m
p
[
n
N
e
w
I
n
d
e
x
]
[
3
]

=

a
l
p
h
a
;

69

1
3
8

s
_
t
e
m
p
[
n
N
e
w
I
n
d
e
x
]
[
4
]

=

b
e
t
a
;

1
3
9

s
_
t
e
m
p
[
n
N
e
w
I
n
d
e
x
]
[
5
]

=

g
a
m
m
a
;

1
4
0

}

1
4
1

1
4
2

/
/

s
w
i
t
c
h

o
l
d
/
n
e
w

1
4
3

d
o
u
b
l
e

*
*
t
e
m
p

=

s
_
t
e
m
p
;

1
4
4

s
_
t
e
m
p

=

s
;

1
4
5

s

=

t
e
m
p
;

1
4
6

}

1
4
7

1
4
8

d
o
u
b
l
e

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
:
:
C
a
l
c
u
l
a
t
e
P
r
o
b
a
b
i
l
i
t
y
(
b
o
o
l

b
S
e
p
a
r
a
t
e
C
a
l
l
)

1
4
9

{

1
5
0

m
_
p
V
i
s
u
a
l
i
z
e
r
-
>
C
l
e
a
r
(
)
;

1
5
1

i
f
(
m
_
b
T
e
x
t
u
r
e
)

1
5
2

m
_
p
V
i
s
u
a
l
i
z
e
r
-
>
D
r
a
w
O
b
j
e
c
t
W
i
t
h
T
e
x
t
u
r
e
(
m
_
p
O
b
j
e
c
t
,

m
_
p
O
b
j
e
c
t
T
e
x
t
u
r
e
,

m
_
p
I
m
a
g
e
O
b
j
e
c
t
T
e
x
t
u
r
e
,

m
_
m
o
d
e
l
)
;

1
5
3

e
l
s
e

1
5
4

m
_
p
V
i
s
u
a
l
i
z
e
r
-
>
D
r
a
w
O
b
j
e
c
t
(
m
_
p
O
b
j
e
c
t
,

m
_
m
o
d
e
l
)
;

1
5
5

m
_
p
V
i
s
u
a
l
i
z
e
r
-
>
G
e
t
I
m
a
g
e
(
m
_
p
G
e
t
C
o
l
o
r
O
b
j
e
c
t
)
;

1
5
6

1
5
7

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
C
o
n
v
e
r
t
I
m
a
g
e
(
m
_
p
G
e
t
C
o
l
o
r
O
b
j
e
c
t
,

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
)
;

1
5
8

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
F
l
i
p
Y
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
)
;

1
5
9

1
6
0

s
w
i
t
c
h
(
m
_
t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n
)

1
6
1

{

1
6
2

c
a
s
e

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
S
o
b
e
l
:

1
6
3

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
C
a
l
c
u
l
a
t
e
G
r
a
d
i
e
n
t
I
m
a
g
e
S
o
b
e
l
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
)
;

1
6
4

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
T
h
r
e
s
h
o
l
d
B
i
n
a
r
i
z
e
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,

m
_
n
T
h
r
e
s
h
o
l
d
)
;

1
6
5

b
r
e
a
k
;

1
6
6

c
a
s
e

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
P
r
e
w
i
t
t
:

1
6
7

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
C
a
l
c
u
l
a
t
e
G
r
a
d
i
e
n
t
I
m
a
g
e
P
r
e
w
i
t
t
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
)
;

1
6
8

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
T
h
r
e
s
h
o
l
d
B
i
n
a
r
i
z
e
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,

m
_
n
T
h
r
e
s
h
o
l
d
)
;

1
6
9

b
r
e
a
k
;

1
7
0

c
a
s
e

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
U
n
i
v
e
r
s
a
l
T
r
a
c
k
e
r
:
:
C
a
n
n
y
:

1
7
1

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
C
a
n
n
y
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,

m
_
n
L
o
w
T
h
r
e
s
h
o
l
d
,

m
_
n
H
i
g
h
T
h
r
e
s
h
o
l
d
)
;

1
7
2

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
D
i
l
a
t
e
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
)
;

1
7
3

b
r
e
a
k
;

1
7
4

d
e
f
a
u
l
t
:

1
7
5

p
r
i
n
t
f
(
"
e
r
r
o
r
:

t
y
p
e
O
f
E
d
g
e
D
e
t
e
c
t
i
o
n
\
n
"
)
;

1
7
6

}

1
7
7

i
n
t

c
o
u
n
t

=

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
P
i
x
e
l
S
u
m
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
)
/
2
5
5
;

1
7
8

1
7
9

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
A
n
d
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
,

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
,

m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
)
;

1
8
0

1
8
1

i
n
t

m
a
t
c
h
i
n
g
c
o
u
n
t

=

I
m
a
g
e
P
r
o
c
e
s
s
o
r
:
:
P
i
x
e
l
S
u
m
(
m
_
p
S
e
g
m
e
n
t
e
d
I
m
a
g
e
2
)
/
2
5
5
;

1
8
2

1
8
3

i
f

(
b
S
e
p
a
r
a
t
e
C
a
l
l
)

r
e
t
u
r
n

e
x
p
f
(
-
2
0
.
0
f

*

(
1
.
0
f

-

(
m
a
t
c
h
i
n
g
c
o
u
n
t

/

(
f
l
o
a
t
)
(
c
o
u
n
t
)
)
)
)

;

1
8
4

1
8
5

m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
0
]
[
m
_
n
P
a
r
t
i
c
l
e
I
n
d
e
x
]

=

(
1
.
0
f

-

(
m
a
t
c
h
i
n
g
c
o
u
n
t

/

(
f
l
o
a
t
)
(
c
o
u
n
t
)
)
)

;

1
8
6

/
/
a
r
b
i
t
r
a
r
y

w
e
i
g
h
t
i
n
g

f
u
n
c
t
i
o
n

1
8
7

m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
1
]
[
m
_
n
P
a
r
t
i
c
l
e
I
n
d
e
x
]

=

(
f
l
o
a
t
)

c
o
u
n
t
*
c
o
u
n
t
;

1
8
8

1
8
9

m
_
n
P
a
r
t
i
c
l
e
I
n
d
e
x
+
+
;

1
9
0

r
e
t
u
r
n

0
;

1
9
1

}

1
9
2

1
9
3

1
9
4

v
o
i
d

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
:
:
I
n
i
t
P
a
r
t
i
c
l
e
s
(
)

1
9
5

{

1
9
6

i
n
t

i
;

1
9
7

1
9
8

/
/

i
n
i
t

p
a
r
t
i
c
l
e

r
e
l
a
t
e
d

a
t
t
r
i
b
u
t
e
s

1
9
9

f
o
r

(
i

=

0
;

i

<

m
_
n
P
a
r
t
i
c
l
e
s
;

i
+
+
)

2
0
0

{

2
0
1

/
/

p
a
r
t
i
c
l
e

p
o
s
i
t
i
o
n
s

2
0
2

s
[
i
]
[
0
]

=

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
0
]
;

2
0
3

s
[
i
]
[
1
]

=

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
1
]
;

2
0
4

s
[
i
]
[
2
]

=

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
2
]
;

2
0
5

s
[
i
]
[
3
]

=

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
3
]
;

2
0
6

s
[
i
]
[
4
]

=

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
4
]
;

2
0
7

s
[
i
]
[
5
]

=

m
_
f
C
o
n
f
i
g
u
r
a
t
i
o
n
[
5
]
;

2
0
8

2
0
9

/
/

p
r
o
b
a
b
i
l
i
t
y

f
o
r

e
a
c
h

p
a
r
t
i
c
l
e

2
1
0

p
i
[
i
]

=

1
.
0

/

m
_
n
P
a
r
t
i
c
l
e
s
;

2
1
1

}

2
1
2

2
1
3

/
/

i
n
i
t
i
a
l
i
z
e

c
o
n
f
i
g
u
r
a
t
i
o
n
s

2
1
4

f
o
r

(
i

=

0
;

i

<

6
;

i
+
+
)

2
1
5

{

2
1
6

m
e
a
n
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
i
]

=

s
[
0
]
[
i
]
;

2
1
7

l
a
s
t
_
c
o
n
f
i
g
u
r
a
t
i
o
n
[
i
]

=

s
[
0
]
[
i
]
;

2
1
8

}

2
1
9

2
2
0

c
_
t
o
t
a
l

=

1
.
0
;

2
2
1

2
2
2

/
/

m
a
x
i
m
u
m

o
f
f
s
e
t

f
o
r

n
e
x
t

c
o
n
f
i
g
u
r
a
t
i
o
n

2
2
3

s
i
g
m
a
[
0
]

=

(
f
l
o
a
t
)

m
_
f
S
i
g
m
a
[
0
]
;

2
2
4

s
i
g
m
a
[
1
]

=

(
f
l
o
a
t
)

m
_
f
S
i
g
m
a
[
1
]
;

2
2
5

s
i
g
m
a
[
2
]

=

(
f
l
o
a
t
)

m
_
f
S
i
g
m
a
[
2
]
;

2
2
6

s
i
g
m
a
[
3
]

=

(
f
l
o
a
t
)

m
_
f
S
i
g
m
a
[
3
]
;

2
2
7

s
i
g
m
a
[
4
]

=

(
f
l
o
a
t
)

m
_
f
S
i
g
m
a
[
4
]
;

2
2
8

s
i
g
m
a
[
5
]

=

(
f
l
o
a
t
)

m
_
f
S
i
g
m
a
[
5
]
;

2
2
9

}

2
3
0

2
3
1

2
3
2

v
o
i
d

C
P
a
r
t
i
c
l
e
F
i
l
t
e
r
6
D
:
:
C
a
l
c
u
l
a
t
e
F
i
n
a
l
P
r
o
b
a
b
i
l
i
t
i
e
s
(
)

2
3
3

{

2
3
4

m
_
n
P
a
r
t
i
c
l
e
I
n
d
e
x

=

0
;

2
3
5

2
3
6

f
l
o
a
t

m
i
n
n

=

F
L
T
_
M
A
X
;

2
3
7

f
l
o
a
t

m
a
x
x

=

F
L
T
_
M
I
N
;

2
3
8

i
n
t

i
;

2
3
9

2
4
0

f
o
r

(
i

=

0
;

i

<

2
;

i
+
+
)

2
4
1

{

2
4
2

i
n
t

j
;

2
4
3

2
4
4

f
o
r

(
j

=

0
;

j

<

m
_
n
P
a
r
t
i
c
l
e
s
;

j
+
+
)

2
4
5

{

2
4
6

i
f

(
m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
i
]
[
j
]

<

m
i
n
n
)

2
4
7

m
i
n
n

=

m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
i
]
[
j
]
;

2
4
8

2
4
9

i
f

(
m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
i
]
[
j
]

>

m
a
x
x
)

2
5
0

m
a
x
x

=

m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
i
]
[
j
]
;

2
5
1

}

2
5
2

2
5
3

i
f

(
m
a
x
x

!
=

m
i
n
n
)

2
5
4

{

2
5
5

c
o
n
s
t

f
l
o
a
t

f
F
a
c
t
o
r

=

1
.
0
f

/

(
m
a
x
x

-

m
i
n
n
)
;

2
5
6

2
5
7

f
o
r

(
j

=

0
;

j

<

m
_
n
P
a
r
t
i
c
l
e
s
;

j
+
+
)

2
5
8

m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
i
]
[
j
]

=

(
m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
i
]
[
j
]

-

m
i
n
n
)

*

f
F
a
c
t
o
r
;

2
5
9

}

2
6
0

e
l
s
e

2
6
1

{

2
6
2

f
o
r

(
j

=

0
;

j

<

m
_
n
P
a
r
t
i
c
l
e
s
;

j
+
+
)

2
6
3

m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
i
]
[
j
]

=

1
.
0
f

/

m
_
n
P
a
r
t
i
c
l
e
s
;

2
6
4

}

2
6
5

}

2
6
6

2
6
7

f
l
o
a
t

r
e
s
u
l
t
;

2
6
8

f
o
r

(
i

=

0
;

i

<

m
_
n
P
a
r
t
i
c
l
e
s
;

i
+
+
)

2
6
9

{

2
7
0

/
/
w
e
i
g
h
t

t
h
e

d
i
f
f
e
r
e
n
t

p
a
r
a
m
e
t
e
r
s

2
7
1

r
e
s
u
l
t

=

e
x
p
f
(
-
2
0
.
0
f

*

(
1

*

m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
0
]
[
i
]

+

0

*

m
_
p
p
P
r
o
b
a
b
i
l
i
t
i
e
s
[
1
]

[
i
]
)
)
;

2
7
2

p
i
[
i
]

=

r
e
s
u
l
t
;

2
7
3

}

2
7
4

}

70

Appendix D

Datasheets

The following datasheets1 illustrate the technical details of the Dragonfly R© 2 cameras devel-
oped by Point Grey Research Inc. Throughout this work the DR2-COL-CSBOX version of
these cameras has been used with a 6mm fixed-focus lens for all image sequences taken.

1http://www.ptgrey.com/products/dragonfly2/dragonfly2.pdf

71

http://www.ptgrey.com/products/dragonfly2/dragonfly2.pdf

Dragonfl y®2
FLEXIBLE + FULL-FEATURED

IEEE-1394a (FireWire) digital camera

On-board color processing

1/3” Sony® CCDs, BW or Color

Enclosed or remote head options available*

The Dragonfl y®2 is a fl exible, full-featured IEEE-1394a (FireWire)
camera designed for imaging product development.

Models Lense Specifi cation

DR2-BW/COL-XX Sony 1/3” CCD, BW / Color, 648x488 at 60 FPS

DR2-HIBW/HICOL-XX Sony 1/3” CCD, BW / Color, 1032x776 at 30 FPS

DR2-I3S2M/C-CS Sony 1/3” CCD, BW / Color, 1296x964 at 20 FPS

DR2-03S3M/C-EX-CS Sony 1/3” CCD, BW / Color, 648x488 at 60 FPS

DR2-08S3M/C-EX-CS Sony 1/3” CCD, BW / Color, 1032x766 at 30 FPS

North America T +604.242.9937 E sales@ptgrey.com Europe T + 49 7141 488817-0 E eu-sales@ptgrey.com www.ptgrey.com

The Dragonfl y2 has an 8-pin GPIO connector located on the back of

the camera and case. Inputs can be confi gured to accept an exter-

nal trigger signal. Outputs can be confi gured to send an output signal,

strobe or PWM signal and can drive most TTL devices at approximately

10mA. The Dragonfl y2 has a logic level serial port with a bandwidth

capacity of up to 115.2 Kbps.

Triggering and GPIO
Multiple Dragonfl y2 cameras networked on the same IEEE-1394 bus are

automatically synchronized to each other. The maximum deviation be-

tween cameras is 125μs.

Automatic Synchronization

The Dragonfl y2 supports Format_7 custom image modes such as pixel bin-

ning and region of interest (ROI) to achieve faster frame rates and higher

sensitivity. (Example below uses a DR2-BW)

Region of Interest (ROI) & Pixel Binning

The FlyCapture® software development kit (SDK) is included with all Point

Grey imaging products. The SDK is compatible with Microsoft Windows

and includes a camera device driver, full software library with Application

Programming Interface (API), demo programs and C/C++ example source

code. The Dragonfl y2 is also compatible with many third-party software

packages from vendors such as National Instruments, Cognex, MVTec,

A&B Software, Matrox, Mathworks, and Norpix.

Software

The fi eld-programmable gate array (FPGA) chip controls all camera func-

tionality, including exposure, resolution and frame rate, pixel binning, user

memory channels and more. It can also be updated with new functionality

in the fi eld.

Updatable Firmware

The color Dragonfl y2 features on-camera color processing and auto

white balance. Available outputs include YUV411, YUV422 and RGB. If

a reduction in the bus bandwidth is required, users can access the raw

Bayer pattern.

Color Processing

Mode Resolution FPS Description

0 648x488 60 Region of Interest (ROI)

1 320x240 100 2x2 pixel binning

2 640x240 60 1x2 pixel binning

In addition to auto-gain and auto-shutter/exposure controls, the Drag-

onfl y2 has a DC auto-iris output. Using standard CCTV auto-iris lenses,

users can physically control the amount of light that falls onto the CCD.

This feature is particularly important in outdoor applications where the

amount of light can vary greatly.

Auto Iris

The digitization of the images on the camera is achieved using a 12-bit

analog to digital converter. Users can choose either an 8-bit or 16-bit

output from the camera. Gamma can be applied to12-bit data when

8-bit output is used. Lookup table support (LUT) is also available for

custom mapping of image values.

Gamma and Programmable LUT

The Dragonfl y2 has the ability to save and restore camera settings and

imaging parameters via on-board memory channels. This is useful for

saving default power-up settings, such as gain, shutter, video format and

frame rate, etc., that are different from the factory defaults.

On-Board Memory Channels

64mm

51mm

*not available for DR2-13S2M/C-CS models

72

Dragonfl y®2 Specifi cations

North America T +604.242.9937 E sales@ptgrey.com Europe T + 49 7141 488817-0 E eu-sales@ptgrey.com www.ptgrey.com

• CS-mount lens with variable focus and auto iris

• GPIO connector for quick and easy external wiring

• 4.5 meter, 6-pin to 6-pin, IEEE-1394 cable w/ferrites

• IEEE-1394 OHCI PCI Host Adapter 3 port-400Mbps card

• FlyCapture® SDK (C/C++ API and device drivers) CD

Development Kit (DR2-DEVKIT) Includes:

• M12 microlens with 6mm focal length, M12 lens holder†

• Tripod mounting bracket

• Wiring harness for the GPIO connector

• 4.5 meter, 6-pin to 6-pin, IEEE-1394 cable w/ferrites

• IEEE-1394 OHCI PCI Host Adapter 3 port-400Mbps card

• FlyCapture® SDK (C/C++ API and device drivers) CD

OEM Kit (DR2-xxxx-OEMKIT) Includes:

T
h
e

P
o
in

t
G

re
y

R
es

ea
rc

h
, I

n
c.

 L
o
go

, G
ra

ss
h
o
p
p
e
r

an
d
 F

ly
C

ap
tu

re
 a

re
 t

ra
d
e
m

ar
ks

 o
r

re
gi

st
e
re

d
 t

ra
d
e
m

ar
ks

 o
f P

o
in

t
G

re
y

R
es

ea
rc

h
, I

n
c.

 in
 C

an
ad

a
an

d
 o

th
e
r

co
u
n
tr

ie
s.

Specifi cation BW/COL/03S2 HIBW/HICOL/08S2 13S2

Image Sensor Type Sony® 1/3” progressive scan CCDs

Image Sensor Model ICX424 ICX204 ICX445

Sensor Pixel Size 7.4μm square pixels 4.65μm square pixels 3.75μm square pixels

Maximum Resolution 648x488 1032x776 1296x964

Maximum Frame Rate 648x488 at 60 FPS 1032x776 at 30 FPS 1296x964 at 20 FPS

Lens Mount C/CS-mount, M12 microlens C/CS-mount

A/D Converter Analog Devices 12-bit analog-to-digital converter

Video Data Output 8, 16 and 24-bit digital data

Partial Image Modes Pixel binning and region of interest modes via Format_7

Interfaces 6-pin IEEE-1394 for camera control and video data transmission
8 general purpose digital input/output (GPIO) pins

Power Requirements 8-30V, max 2W at 12V max 2.2W at 12V

Gain Automatic/Manual/One-Push Gain modes
0dB to 24dB

Shutter Automatic/Manual/One-Push/Extended Shutter modes
0.01ms to 66.63ms at 15 FPS, greater than 5s in extended mode

Gamma 0.50 to 4.00

Trigger Modes DCAM v1.31 Modes 0, 1, 3, 4, 5 and 14 Modes 0, 1, 3, 14

Signal To Noise Ratio Greater than 60dB at 0dB gain

Dimensions 64mm x 51mm (bare board w/o case or lens holder)

Mass 45 grams (bare board w/ lens holder and C-mount adapter)

Camera Specifi cation IIDC 1394-based Digital Camera Specifi cation v1.31

Emissions Compliance Complies with CE rules and Part 15 Class A of FCC Rules

Operating Temp. Commercial grade electronics rated from 0° to 45°C

Storage Temperature -30° to 60°C

Remote Head Option Available with 6-inch shielded ribbon cable Not available

Case Enclosed Option Available (except with remote head option) Not available

• Windows® XP Service Pack 1

• 512MB of RAM

• Intel® Pentium 4 2.0GHZ or compatible processor

• AGP video card with 128MB video memory

• 32-bit PCI slot for IEEE-1394 PCI card

• Microsoft® Visual C++ 6.0 (to compile and run example code)

† Not compatible with DR2-13S2M/C-CS camera models

Recommended System Confi guration:

21
.7

7

8.
20

9.
77

00 2.
54

31
.7

4

60
.9

6

2.54

70
.2

9

0

25.40

48.26
50.80

63
.5

0

3.18

Dimensional Drawings - DR2-xxxx-EX-CS

Dimensional Drawings - DR2-xxxx-CS Dimensional Drawings - DR2-xxxx-CSBOX

Sept 2009

M12 Lens Mount Drawing
This mount is used for attaching an M12 microlens
to the camera board.

73

74

Bibliography

[1] T. Gockel, “Latex-Template für Seminar-, Studien- und Diplomarbeiten und
Dissertationen (V0.99),” 2007. [Online]. Available: http://wwwiaim.ira.uka.de/
form-der-wissenschaftlichen-ausarbeitung

[2] D. G. Lowe, “Three-dimensional object recognition from single two-dimensional images,”
Artif. Intell., vol. 31, no. 3, pp. 355–395, 1987.

[3] ——, “Robust model-based motion tracking through the integration of search and esti-
mation,” Int. J. Comput. Vision, vol. 8, no. 2, pp. 113–122, 1992.

[4] C. Harris and C. Stennett, “Rapid - a video rate object tracker,” in 1st British Machine
Vision Conference, 1990.

[5] C. Harris, “Tracking with rigid models,” in Active Vision, A. Blake, Ed. MIT Press,
1992, ch. 4, pp. 59–73.

[6] M. Armstrong and A. Zisserman, “Robust object tracking,” in Proceedings of the
Asian Conference on Computer Vision, vol. I, 1995, pp. 58–61. [Online]. Available:
http://www.robots.ox.ac.uk/˜vgg

[7] Éric Marchand, P. Bouthemy, and F. Chaumette, “A 2d-3d model-based approach
to real-time visual tracking,” Image and Vision Computing, vol. 19, no. 13, pp.
941 – 955, 2001. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V09-44B23S3-B/2/0733bb46a9406e2768273a5611828a85

[8] M. Pupilli and A. Calway, “Real-time camera tracking using a particle filter,” in In Proc.
British Machine Vision Conference, 2005, pp. 519–528.

[9] ——, “Real-time camera tracking using known 3d models and a particle filter,” in ICPR
’06: Proceedings of the 18th International Conference on Pattern Recognition. Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 199–203.

[10] G. Klein and D. Murray, “Full-3d edge tracking with a particle filter,” in Proc. British
Machine Vision Conference (BMVC’06), vol. 3. Edinburgh: BMVA, September 2006,
pp. 1119–1128.

[11] T. Asfour, K. Regenstein, P. Azad, J. Schröder, and R. Dillmann, “Armar-iii: A hu-
manoid platform for perception-action integration,” in 2nd International Workshop on
Human-Centered Robotic Systems (HCRS), 2006.

[12] V. Lepetit and P. Fua, “Monocular model-based 3d tracking of rigid objects,” Found.
Trends. Comput. Graph. Vis., vol. 1, no. 1, pp. 1–89, 2005.

75

http://wwwiaim.ira.uka.de/form-der-wissenschaftlichen-ausarbeitung
http://wwwiaim.ira.uka.de/form-der-wissenschaftlichen-ausarbeitung
http://www.robots.ox.ac.uk/~vgg
http://www.sciencedirect.com/science/article/B6V09-44B23S3-B/2/0733bb46a9406e2768273a5611828a85
http://www.sciencedirect.com/science/article/B6V09-44B23S3-B/2/0733bb46a9406e2768273a5611828a85

[13] P. Azad, Visual Perception for Manipulation and Imitation in Humanoid Robots. Berlin
Heidelberg: Springer, 2008, vol. 4.

[14] V. Kyrki and D. Kragic, “Tracking rigid objects using integration of model-based
and model-free cues,” Machine Vision and Applications, 2009. [Online]. Available:
http://www.springerlink.com/content/b623117p8566k503/

[15] C. Harris and M. Stephens, “A combined corner and edge detection,” in Proceedings
of The Fourth Alvey Vision Conference, 1988, pp. 147–151. [Online]. Available:
http://www.bmva.org/bmvc/1988/avc-88-023.pdf

[16] P. Bouthemy, “A maximum likelihood framework for determining moving edges,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 11, no. 5, pp. 499–511, 1989.

[17] J. M. Odobez and P. Bouthemy,“Robust multiresolution estimation of parametric motion
models,” Jal of Vis. Comm. and Image Representation, 1995.

[18] D. F. Dementhon and L. S. Davis, “Model-based object pose in 25 lines of code,” Int. J.
Comput. Vision, vol. 15, no. 1-2, pp. 123–141, 1995.

[19] R. E. Kalman,“A new approach to linear filtering and prediction problems,”Transactions
of the ASME Journal of Basic Engineering, no. 82 (Series D), pp. 35–45, 1960. [Online].
Available: http://www.cs.unc.edu/˜welch/kalman/media/pdf/Kalman1960.pdf

[20] O. Mateo Lozano and K. Otsuka, “Real-time visual tracker by stream processing,” J.
Signal Process. Syst., vol. 57, no. 2, pp. 285–295, 2009.

[21] P. A. Viola and M. J. Jones, “Rapid object detection using a boosted cascade of simple
features.” in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on. IEEE Computer Society, 2001, pp.
511–518.

[22] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vision,
vol. 57, no. 2, pp. 137–154, 2004.

[23] P. Azad, T. Asfour, and R. Dillmann, “Combining appearance-based and model-based
methods for real-time object recognition and 6d localization,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2006, pp. 5339–5344.

[24] ——, “Accurate shape-based 6-dof pose estimation of single-colored objects,” in Proceed-
ings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St.
Louis, USA, 2009.

[25] P. Azad, T. Gockel, and R. Dillmann, Computer Vision – Das Praxisbuch. Aachen:
Elektor-Verlag, 2007. [Online]. Available: http://wwwiaim.ira.uka.de/computer-vision

[26] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-gaussian
bayesian state estimation,” Radar and Signal Processing, IEE Proceedings F, vol. 140,
no. 2, pp. 107 –113, apr 1993.

[27] G. Kitagawa, “Monte carlo filter and smoother for non-gaussian nonlinear state space
models,” Journal of Computational and Graphical Statistics, vol. 5, no. 1, pp. 1–25,
1996. [Online]. Available: http://www.jstor.org/stable/1390750

76

http://www.springerlink.com/content/b623117p8566k503/
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://wwwiaim.ira.uka.de/computer-vision
http://www.jstor.org/stable/1390750

[28] A. Blake and M. Isard, “The condensation algorithm - conditional density propagation
and applications to visual tracking,” in Advances in Neural Information Processing Sys-
tems. The MIT Press, 1996, pp. 36–1.

[29] J. Deutscher, A. Blake, and I. Reid, “Articulated body motion capture by annealed
particle filtering,” in IEEE Conference on Computer Vision and Pattern Recognition.,
vol. 2, 2000, pp. 126 –133 vol.2.

[30] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated anneal-
ing,” Science, vol. 220, pp. 671–680, 1983.

[31] M. Segal and K. Akeley, “The opengl graphics system: A specification,” Mar. 2010.
[Online]. Available: http://www.opengl.org/registry/doc/glspec33.core.20100311.pdf

[32] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 8, no. 6, pp. 679–698, 1986.

[33] Parallel Programming, vol. 1, 1958.

[34] G. Wilson, 1994. [Online]. Available: http://ei.cs.vt.edu/˜history/Parallel.html

[35] M. J. Atallah, Algorithms and theory of computation handbook. CRC Press, 1999.

[36] D. B. Kirk, Programming massively parallel processors : a hands-on approach, W.-m. W.
Hwu, Ed. Amsterdam: Elsevier/Morgan Kaufmann, 2010.

[37] E. Gamma, Design patterns : elements of reusable object-oriented software, 28th ed., ser.
Addison-Wesley professional computing series. Boston: Addison-Wesley, 2004.

[38] R. Becher, P. Steinhaus, and R. Dillmann, “Interactive object modelling for a humanoid
service robot.” in Proceedings of the Conference on Humanoids., 2003.

[39] R. Becher, P. Steinhaus, R. Zöllner, and R. Dillmann, “Design and implementation of
an interactive object modelling system,” in Proc. Robotik/IRS, 2006.

[40] A. Kasper, R. Becher, P. Steinhaus, and R. Dillmann, “Developing and analyzing intu-
itive modes for interactive object modeling,” in International Conference on Multimodal
Interfaces, 2007.

[41] L. Vacchetti, V. Lepetit, and P. Fua, “Combining edge and texture information for real-
time accurate 3d camera tracking,” in ISMAR ’04: Proceedings of the 3rd IEEE/ACM
International Symposium on Mixed and Augmented Reality. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 48–57.

[42] L. Euler, Novi Commentarii academiae scientiarum Petropolitanae 20. n.n., 1776.

77

http://www.opengl.org/registry/doc/glspec33.core.20100311.pdf
http://ei.cs.vt.edu/~history/Parallel.html

78

Index

2D-3D tracking, 7
3D model, 24
6-DoF tracking, 17

Acknowledgments, VII
Affine model, 7
AND, 21
Annealing rate, 14
ARMAR-III, 17

Bandwidth bottleneck, 55
Beer, 1

Camera model, 11
Camera parameters

Extrinsic, 11
Intrinsic, 11

Canny edge detector, 17
Class diagram, 32
Clutter, 23
CONDENSATION, 12
Coordinate system

Camera, 11
Image, 11
World, 11

CUDA, 8, 17, 26, 30, 55

Diffusion, 13, 19
Dilation operation, 18, 21
DragonFly 2, 71
Drift, 13, 19

Edge image, 23
Edge junction, 7
Euler angles, 59
Evaluation, 35

Accuracy, 35
CUDA, 55
Runtime, 47

FlyCapture, 29
Framebuffer, 15

Harris corner detector, 6
Humanoid robot, 1

Illumination, 23
Image plane, 11
Image sequence, 17

Precaptured, 17
Initial pose, 18
IVT, 29

Kalman filter, 7, 12
Extension, 6
Iterated extended, 6

KPP, 30, 55

Layer, 19

Model
Surface, 2
Wireframe, 2

Model-free cues, 6
Motion model, 7

Normalization, 25

Object recognition
Appearance-based, 9

ObjectModels Web Database, 33
OpenGL, 8, 15, 26
Optimization, 26

Parameter file, 63
Particle, 13, 20

Equally distributed, 18
Particle filter, 7, 12, 19

Annealed, 7, 14, 19
Perceptual Organization, 5
Pixel buffer object, 16
Pose correction, 9
POSIT, 7
Prewitt operator, 17, 61
Primitive, 15

79

Principal axis, 11
Principal point, 11

RAPID, 6
Rating, 20, 24
Rating function, 21, 25
Rigid objects, 17
Rotation matrix, 59

Simulated artificial scene, 17
Simulation mode, 41
Sobel operator, 17, 61
Source code, 65
Stereo triangulation, 9

Template method, 32
Texture, 63
Tracking

Edge-based, 5
Model-based, 5

User interface, 32

Variance, 19
Viola and Jones’ detector, 8

Weighting, 13, 19

80

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Aim and Contribution
	Structure and Overview

	State of the Art
	Perceptual Organization
	RAPID – A Video Rate Object Tracker
	Integration of Model-Based and Model-Free Cues
	2D-3D Tracking
	Particle Filtering Approaches
	Real-Time Camera Tracking Using Known 3D Models
	Real-Time Visual Tracker by Stream Processing
	Full-3D Edge Tracking on GPU

	Accurate Shape-Based 6-DoF Pose Estimation of Single-Colored Objects
	Comparison

	Fundamentals
	Camera Model
	Particle Filter
	Annealed Particle Filter
	Open Graphics Library

	Developed Approach
	Implementation of 6-DoF Tracking
	Preprocessing the Image Sequence
	Annealed Particle Filtering and Rating the Different Poses
	Visualization of the Result

	Challenges
	Quality of the Input Image
	Object Model
	Rating

	Optimizations

	Software and Interfaces
	Hardware
	Software
	Integrating Vision Toolkit
	Keyetech Performance Primitives
	Compute Unified Device Architecture
	Class Diagram
	User Interface

	KIT ObjectModels Web Database

	Evaluation
	Accuracy
	Comparison of Different Parameters
	6-DoF Tracking in Simulation Mode
	Real World Experiments

	Runtime
	Optimized with CUDA

	Conclusion
	Summary and Results
	Future Work

	Mathematics
	Structure of Parameter Files
	Source Code
	Datasheets
	References
	Index

