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Abstract

In this thesis, we propose and demonstrate a perceptual interface for pen-based input that
captures live video of handwriting and recovers the time-ordered sequence of strokes that
were written. Our approach uses a novel combination of frame differencing, pen-tracking,
and ink-detection to reconstruct the temporal information in the input video sequence. We
present the design and implementation of PADCAM, a prototype handwriting capture system,
along with preliminary results and useful applications. Specifications for extending PADCAM
for use on handheld devices are also included, along with an extensive discussion of future
directions for this research.
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Chapter 1

Introduction

Perceptual interfaces that allow natural human-computer interaction are an integral part of

pervasive computing initiatives such as MIT's Project Oxygen. We propose and demonstrate

a perceptual interface for pen-based input.

1.1 Human-Centric Computing

In part to address the lack of progress in human-computer interfaces, many prominent tech-

nology companies and academic institutions are initiating projects that strive to move the

technology industry from computer-centric to human-centric computing. At MIT, this move-

ment is embodied by Project Oxygen, a joint effort between the Laboratory for Computer

Science and the Artificial Intelligence Laboratory at MIT. As Rudolph explains:

The Oxygen vision is to bring an abundance of computation and communication

within easy reach of humans through natural perceptual interfaces of speech and

vision so computation blends into peoples' lives enabling them to easily do tasks

they want to do-collaborate, access knowledge, automate routine tasks and their

environment. In other words, pervasive, human-centric computing. [25]

Of interest in the context of this thesis is the goal of natural perceptual interfaces. Specif-

ically, we aim to provide a new interface that is based on an old but indispensable means of

recording information-handwriting on paper.
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1.2 The "Paper-and-Pencil" Approach

The paper-and-pencil approach to recording information is both powerful and convenient. It

accepts virtually all types and formats of notes, bounded only by the fact that the paper is

two-dimensional. It provides an easy and natural way to delete notes and correct mistakes

(i.e. using the eraser). And it is incredibly reliable-you never have to worry about the

"system" crashing and wiping out all of your work.

Despite these strengths, the paper-and-pencil approach leaves much to be desired in the

areas of information exchange and replay. After a notetaking session, one often has to type

up the notes on a computer to send to others. Scanners and digital cameras help by allowing

digital capture of the raw information as images. However, a more desirable solution would

provide a meaningful interpretation of the raw information-the actual text that was written

or sketch that was drawn rather than an image of it. This interpretation would be more

useful and easier to store. It would also be helpful if one could replay the entire notetaking

session, perhaps with the sound from the original session.

We aim to develop a perceptual interface for handwriting capture. Because of its basic

strengths as an information capture medium, the paper-and-pencil model is at the core of

our own approach. We augment this with a system that uses visual input to reconstruct the

temporal information associated with the handwriting and uses this information to recognize

what was written.

1.3 Outline

This thesis will discuss an interface for handwriting input that combines the ease-of-use

of paper-and-pencil with the power of electronic information capture. Section 2 surveys

the problem of handwriting capture, defines a useful taxonomy for discourse on the topic,

examines some of the interesting challenges of the problem, and finally presents related

research. After this thorough inspection of the problem, we dive into our solution, PADCAM.

The design and implementation of PADCAM is presented in detail in Section 3. The key

components to this system are a sequence of pre-processing stages and temporal recovery
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stages. Included in pre-processing is a novel page detection algorithm and a method for

monitoring blocks in the page. We present two main approaches to temporal recovery-one

based on frame differencing and the other based on pen tracking. Finally, we present the

results of each stage and the system as a whole.

Section 4 provides a specification for extending the prototype system for use on hand-

held devices, specifically the Compaq iPAQ. We discuss the challenges we faced in adapting

PADCAM for the iPAQ and the specific design decisions we made in our implementation.

Next, we submit experimental results and discuss some of the blocking issues that affected

the performance. We conclude this section by suggesting ideas to improve our iPAQ imple-

mentation.

Next, Section 5 proposes some applications for PADCAM. Finally, we provide suggestions

for improving PADCAM's performance, ideas for future work, and conclusions in Section 6.
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Chapter 2

Problem Overview

At a high-level, our overall task is simply to capture pen-based input and extract the mean-

ingful information associated with it. Though this seems like a straightforward description

of our problem, it is far from complete and unambiguous. In this section, we will drill down

on the details of the problem, first defining useful terms, then outlining some considerations

that drove our design, and finally surveying the relevant body of research.

2.1 Terminology

In order to minimize ambiguity, it is necessary to specify more clearly the problem we aim

to solve with our new system. Along the way, we will also define some of the terms that

we will be using in our description of handwriting recognition tasks. First, it is important

to note the distinction between on-line and off-line recognition systems. On-line systems

capture handwriting as the user writes on a digitizer tablet or some other input device. Note

that in this context the term on-line implies nothing about when or how fast the recognition

occurs, only how the input is obtained. In contrast to on-line systems, off-line recognition

accepts as input an already-written sample of handwriting, such as a scanned image of a

page of handwriting. The difference is that on-line systems can use temporal information to

disambiguate the input, while off-line systems have only the final image and are thus faced

with a more challenging recognition task. Our handwriting capture system observes the page
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as the user writes on it; thus, it is an on-line system.

Now we turn to the actual handwriting input. We will refer to the action of placing the

pen tip on the page as a pen-down event. Similarly, when the pen tip is picked up from the

page, it is a pen-up event. Our fundamental unit of handwriting will be the point, a time-

stamped location on the page. A series of consecutive points occuring between a pen-down

and the next pen-up event is called a stroke. A sequence of strokes comprise a handwritten

expression.

2.2 Design Goals

2.2.1 Natural, Human-Centric Setup

Our basic intention is to design a handwriting capture system that provides a natural, human-

centric interface for handwriting input. We wanted to allow the user to write with regular

handwriting utensils, as opposed to a specialized stylus and surface required by commercial

digitizer tablets. To satisfy this goal, we designed our interface for use with notes taken on

any surface with practically any regular pen. While our prototype system was tested using

a pen on paper, dry eraser markers on whiteboards, and even chalk on the sidewalk would

be acceptable forms of input.

Another degree of freedom we provide the user is that of writing surface placement. Other

vision-based handwriting interface systems dictate exactly where the writing surface must

be located in relation to the camera [28]. Such restrictions require the user to adapt to the

interface rather than the other way around, and thus provide only a marginal improvement

over commercial digitizer tablets. We avoided such restrictions and instead allow the user

to place the writing surface anywhere in the camera's view. This choice is made not only to

provide the greatest convenience to the user but also to allow for the possibility of extending

the system to support multiple unregistered cameras, which are becoming typical in pervasive

computing environments.
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2.2.2 Generality of Content

In the initial brainstorming of this project, we considered developing it as an all-in-one

solution to the problem of mathematical expression recognition from notes taken on pa-

per. Doing so would have tied our interface to a particular type of content-mathematical

expressions-and in a sense would have violated the end-to-end design principle of system

design [26], which states that extra features should be layered on top of core functionality

rather than included therein. Thus, we decided against a limited all-in-one solution in favor

of a general handwriting interface that accepts any type of content-printed text, cursive

text, mathematical equations, and even drawings-and passes the task of recognition or

meaningful interpretation to a higher-level application. We will see in Section 5 that this

choice allows us to use our system as an input adaptor to existing recognition applications

with little or no change to the application software.

2.3 Related Work

A survey of the existing body of work in this field will prove useful both for background

and to provide a baseline for comparison for our new work. We begin by describing on-line

systems that use video to recover the pen-based input, focusing primarily on the system on

which PADCAM is based. After that, we present off-line approaches and some commercial

products, highlighting the key ideas learned in each case.

2.3.1 Video-Based Recovery

The pioneering work in capturing pen-based input using computer vision comes from Mario

Munich of Caltech. In his 1996 paper in ICPR, he introduced the problem of recovering

pen-based input from video sequences and proposed a solution [22, 24]. His system consisted

of a correlation-based pen-tip tracker, a recursive estimator for prediction of pen movement,

and a classifier for pen-up and pen-down events. We incorporated Munich's tracker and

recursive estimator into PADCAM and compared its performance to our own versions of

these components.
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Since his initial work, Munich has improved his system, adding a component to perform

subpixel interpolation on the video images and thus achieving much higher spatial resolution

[23, 21]. This modification made the interface sufficiently accurate for signature verification,

which was the application that Munich had intended for it. Also, the speed of his system

was improved, and enabling it to process frames in real-time at 60Hz. We aim to produce

similar results and adapt the system for use on handheld devices.

We also gathered ideas from other similar systems. In designing their data tablet system

for recognition of Japanese characters, Yamasaki and Hattori used a sequential differencing

algorithm on which our masked difference approach is based [28]. Their system serves as a

proof-of-concept, as it can only handle very slow input handwriting speed (0.8 cm/sec to 1.3

cm/sec) and it imposed strict requirements on the physical setup of the writing environment.

As mentioned earlier, we plan to avoid such requirements in favor of a more natural, human-

centric writing interface.

The idea of using differences between frames was extended by Bunke et al in their system

for acquisition of cursive handwriting [4]. They outlined two challenges in the differential im-

age approach: classification of differences to ignore pen and hand movements and occlusion of

existing ink traces. To deal with these issues, several interesting ideas are proposed, includ-

ing thresholding, dilation, and the use of an aggregate image. As described in Section 3.2.1,

we build upon the idea of the aggregate image in our backward differencing algorithm.

2.3.2 Off-Line Recovery

Though our goal is to design an on-line video-based system, a survey of the recent off-line

approaches may provide useful ideas that can be applied to our on-line task. After all, the

on-line recovery task is essentially the off-line task with the benefit of temporal information,

so any solution that can be applied to the latter should be applicable to the former.

The most comprehensive analysis of the off-line recovery task to date is presented by

Doermann and Rosenfeld [12, 10, 11]. In formulating a system for document image under-

standing, they provide a complete taxonomy for classifying strokes and propose a platform

for temporal recovery. While most other off-line systems rely solely upon continuation of the
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ink trace for temporal recovery, Doermann and Rosenfeld point out several other heuristics

in the document image that aid in the task. For instance, "hooking" is an effect that occurs

in the ink trace when the writer anticipates the placement of the writing instrument for the

next stroke before finishing the current stroke. Using this for temporal recovery, we can

determine the direction of the next stroke by identifying hooks in the current stroke. Such

clues can help us recover the temporal information when on-line approaches fail.

Several other systems attempt to recover temporal information to make handwriting

recognition more accurate. Kato and Yasuhara present a method for finding the drawing

order of single-stroke handwriting images using a graph-based tracing algorithm [16]. One

interesting approach called "OrdRec" is proposed by Lallican et al. They attempt temporal

recovery by constructing a graph of possible temporal orderings of the points in the ink

trace and running an HMM-based recognition on the candidates to determine the most

likely ordering [17]. We touch upon this idea of using a recognizer to select the most likely

ordering in our search for the corrent page orientation, discussed in Section 3.1.2.

2.3.3 Commercial Products

In designing our system, it is useful to study both the academic literature and commercial

products that are already available. The technology that is perhaps most similar in purpose

to our perceptual interface is the Anoto digital pen and paper system. This system allows the

user to write on special paper using a digital pen, which contains a tiny camera that registers

the pen's movement across a grid surface on the paper [1]. Though this technology offers

clear advantages over less natural digitizer systems and even digital whiteboard products [2],

it still requires the user to adapt to a special pen and paper. Until a commercial pen-based

input system allows the user to write using regular pens and writing surfaces, there is still

room for human-centric research in this area.
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Chapter 3

Handwriting Capture

The main component of PADCAM provides handwriting capture capabilities; from a video of

handwriting it recovers the time-ordered strokes that were written. We achieve this task by

sending the video frames through a pipeline of sequential stages of processing, outlined in

Figure 3-1. At a high-level, these stages are roughly classified into pre-processing, temporal

recovery, and stroke segmentation. In this stage, we describe in detail the computer vision

algorithms we use in each stage.

Pre-Processing

Webcam
Writing Surface Color Model Perspective

Conversion Transforming

Block
Monitoring

Meaningful Temporal Recovery
Interpretation

PC Frame Differencing

Recognition 44_
"a" Application

Strok Kalman 4__11 Tip
Segmen itation FitrSearch

---- ....-.--------- .-L .. ...--- -------------------- ...-- ------------.- - - - - - -

Figure 3-1: Block Diagram of PADCAM.
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3.1 Pre-Processing

Before we begin recovery of the strokes, our pipeline requires initialization and other pre-

processing.

3.1.1 Color Model Conversion

The first step in the pipeline is to get the data into a standard, useful format. In order to

support a wide range of cameras, we use the video4linux interface to access the video. The

problem is that different cameras deliver the video frames with different color models. Since

most of our image processing is based on luminance, we convert the frame to a color model

that separates luminance (brightness) from chrominance (color). We chose YUV because it

is such a color model commonly used for video.

3.1.2 Page Detection

Because our interface allows the user to place the writing surface anywhere in the camera's

view, the first step after color model conversion is to locate the surface. We make the

reasonable assumption that the surface will be four-sided and roughly monochromatic. Note

that monochromatism is not a strict limitation-in our tests, the system worked well with

white and yellow pads with horizontal lines.

To detect the surface, we use a simple and intuitive algorithm. First, we perform Canny

edge detection on the image which gives us a binary image with edge pixels colored white and

all other pixels colored black [5]. In most cases, the contrast between the writing surface and

the underlying desk is sufficient for the Canny edge detection to highlight the borders of the

writing surface. However, due to noise from the camera and ambient lighting, the detected

border often contains gaps. We fill the gaps by using a dilation filter, which "bleeds" the

white parts of the image, as illustrated in Figure 3-2. Then we find lines in the resulting

image using a Hough transform [27]. In most cases, the lines found coincide with the borders

of the page.

Once we have lines bordering the writing surface, we need to find the corners in order to

17



Figure 3-2: An Example of Dilation. (a) Sample Canny edge detection results. (b) The
effect of dilation on the detected edges.

transform the image from coordinates in the image-plane to coordinates in the page-plane.

First, we assume that the intersections between adjacent lines on the border occur near the

corners of the page. We find these by calculating the intersections between lines for which the

difference in slopes is above a certain threshold-which we call high-angle intersections. By

limiting our search to high-angle intersections, we both reduce computation and eliminate

non-corner intersections, such as those between almost-parallel lines.

The next step is to classify each high-angle intersection based on which corner it repre-

sents. To do this, a bounding box containing all high-angle intersections is computed and

the center point of this box is chosen as the partition for classification. Each high-angle

18



intersection is then compared to the center point and classified as one of the four corners,

and the centroid for each corner is computed. Note that at this point in the algorithm, we

do not know the orientation of any of the corners (i.e. which is top-left, bottom-right, etc.).

However, we do know their relation to each other-adjacent corners will remain adjacent and

opposite corners will remain opposite in the correctly-oriented page. Because these relations

are important, we store the corners in the order that they were classified: top-left, top-right,

bottom-right, then bottom-left.

At this point, the only remaining task is to determine the orientation of the writing surface

we have outlined. To avoid placing strict requirements on the orientation, we devised a simple

way for the user to communicate this information to the system. Before page detection, the

user draws a small red dot in the top-left corner of the writing surface. After acquiring

the corner coordinates, the system searches for this mark in the neighborhood around each

corner. Because we found the corners in clockwise order, we can easily deduce that the

marked corner is the top-left; the next is top-right; the next is bottom-right, and the final

corner is the bottom-left.

Note that finding the orientation explicitly is not always necessary. In many cases, the

orientation can be deduced from the domain of the pen input. For instance, if the domain

is handwriting, a general left-to-right, top-to-bottom pattern is expected in the input, so

the corners can be assigned based on the spatial relation of sequential strokes. In fact, as

a general solution the input can be run through the recognizer in all four orientations in

parallel, and the actual orientation can be chosen based on which recognition produced the

best results. Despite the elegance of these implicit orientation strategies, they require some

knowledge of the input domain, which we did not want to assume. Because of this, we kept

our explicit method of searching for the red dot.

Our procedure for detecting the page is explained in pseudocode in Algorithm 1. While

page detection involves a great deal of computation, we expect to have to perform it only

once at the beginning of the video sequence; thus, the overall performance of the system is

not adversely affected by this step.
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Algorithm 1 Detects the Page in the Current Video Frame
edges <- CannyEdgeDetection(f rame)
smoothEdges +- Dilate(edges)
lines <- HoughLineFinder(smoothEdges)
num <- 0
for i = 0 to lines.size do

for j = 0 to i do
if Ilines[i].angle - lines[j].angle| > threshold then

intersections [num] +- Intersect AtPoint(lines [i], lines[j])
num +- num + 1

end if
end for

end for
bbox +- CalculateBounding Box(intersections)
center +- Centroid(bbox)
cornerbuckets +- Classif yClockwise(inter sections, center)
redmax +- 0
for i = 0 to 4 do

corners[i] <- Centroid(cornerbuckets[i])
redvalue +- SearchForRed(corners[i])
if redvalue > redmax then

redmax +- redvalue
redcorner +- i

end if
end for
toplef t +- corners [redcorner]
topright &- corners[(redcorner + 1) mod 4]
bottomright +- corners[(redcorner + 2) mod 4]
bottomleft +- corners[(redcorner + 3) mod 4]

Explanation of Subroutines:
CannyEdgeDetection(image) - applies Canny edge detector on image and returns an
image containing edges in white.
Dilate(image) - returns a dilated version of image.
HoughLineFinder(image) - applies a Hough transform on image and returns an array of
infinite lines, specified by their offsets and angles.
IntersectAtPoint(linel, line2) - returns the point at which line1 and line2 intersect.
CalculateBoundingBox(points) - scans through the input array of points and returns a
rectangle specifying the bounding box that contains all points.
Centroid(box) - returns the point at the centroid of input rectangle or the input array of
points.
ClassifyClockwise(points, center) - classifies each point in points based on its relation
to center, assigning points in a clockwise direction.
SearchForRed(point) - calculates the amount of red in the pixels around point.
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Figure 3-3: Page Detection. (a) Original video frame. (b) Results of Canny edge detection.
(c) Lines found in Hough transform and the high-angle intersections in green. (d) Centroid
in blue, corners in yellow, and red dot search space in red. (e) Detected borders of the page
where red is top, blue is right, green is bottom, and yellow is the left. (f) Transformed page
with the same border colors. Note: for the best results, view this figure in color.
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3.1.3 Perspective Transforming

Once we know the corners and orientation of the writing surface, we can transform the

video frame from coordinates in the image-plane to coordinates in the page-plane. We do

this by first calculating a matrix that defines the necessary perspective transform based

on the corners and applying this transform on the frame. This helps us by both reducing

computation and simplifying the tracking because all further image processing is restricted

to just the writing surface.

3.1.4 Background Recording

Our frame differencing algorithms attempt to determine the change in the appearance of

the writing surface due to ink, which requires us to record what it looked like before the

ink. Though it may seem sufficient to simply store an initial frame as the pre-ink image,

we found that using a slightly more sophisticated approach yields more robust tracking. We

model each pixel on the writing surface, or background, as a mixture of Gaussian random

variables. To acquire our model of the background, we record a few seconds of frames and

then compute the mean and standard deviation of each pixel. By saving this information,

we can compare subsequent frames to the mean background frame and determine whether

each pixel's deviation from its mean value significantly exceeds its standard deviation. This

more sophisticated comparison compensates for noise in the image acquisition, such as from

the camera or lighting conditions.

3.1.5 Block Monitoring

In addition to a model of the background, our frame differencing algorithms also require

information on when writing began and ended in each of the areas, which we will refer to

as blocks, on the writing surface. Rather than processing the whole video sequence from

start to finish, these algorithms segment the writing into blocks and process each block

independently. As we shall see later in Section 3.2.1, we need to provide initial and final

frames for each block. We obtain these frames using an algorithm we call block monitoring.
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The basic idea of block monitoring is to "watch" the page for significant changes and

save snapshots at key times between changes. In each iteration, a key frame is saved, and

all subsequent frames are compared to this frame to detect if anything has changed on the

page. If so, this change frame is saved, and subsequent frames are compared against the

change frame to determine if any large rectangular block that changed from the key to the

change frame did not change since the change frame. If so, we assume that this block is

stable, and we use the key and change frames as the initial and final frames for that block.

If no stable block can be found, there must still be motion on the page, and we must wait

until the motion moves to another area of the page before declaring the block stable.

From this description, it seems that our block monitoring algorithm requires a great deal

of storage space in order to save key and change frames. One key aspect of this problem is

that there is no penalty for waiting too long before declaring a block stable-the ink does not

change once it is on the paper (assuming no smudges). We can take advantage of this fact

by lowering the temporal resolution of our block monitoring algorithm. Instead of running

this algorithm on each frame in the video sequence (or 30 times per second in a real-time

video feed), we run it once every second. Even at this low temporal resolution, we can still

accurately monitor the ink pattern and find blocks effectively.

3.1.6 Tip Acquisition

The tracking-based algorithms we used for temporal recovery must be initialized with a

model of the pen tip. To satisfy this requirement we have two options:

1. Save a model of some predetermined pen and require that only that pen be used with

the system.

2. Allow any pen to be used with the system and perform initialization to acquire a model

of that pen's tip.

In keeping with our design goal of allowing a natural, human-centric setup, we chose the

latter option, which allows the most freedom in terms of writing instruments. The cost

of this option is that our system must be able to acquire the tip of any arbitrary writing
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instrument. Fortunately, Munich had already developed a robust algorithm for doing this,

so rather than reinventing the wheel, we used his approach, explained in Algorithm 2.

Algorithm 2 Acquires a Model of the Pen Tip (original algorithm from Munich [21])
1: Compute the difference between the current and previous frames within the rectangular

box until enough pixels have a difference that exceeds a threshold, then proceed to step
2.

2: Compute the difference between the current and previous frames within the rectangular
box until there is no motion detected in the box, then go to step 3.

3: Perform Canny edge detection within the box and fit a parabolic cylinder to the contrast
surface in the neighborhood of each pixel.

4: Within the neighborhood, select a pixel only if it has sufficient contrast and the axis of
its parabolic cylinder is close enough to the pixel's center.

5: Find the centroid of the selected pixels.
6: Classify each selected pixel into one of the four quadrants and take the mean orientation

and count of the pixels in each quadrant.
7: Repeat steps 3-6 for several frames to compensate for noise in the frames, then proceed

to step 8.
8: Find the mean position of the centroids from step 5.
9: Determine the most voted quadrant, which represents the edge of the pen tip that was

detected most reliably. Compute the mean orientation for this quadrant.
10: Determine the second most voted quadrant, which is the second most reliably detected

edge of the pen tip. Given the mean centroid position and the estimated orientation
of one edge of the pen tip, the profile of the image is searched perpendicular to this
orientation to find points with the highest contrast.

11: Calculate the pen tip's orientation as the mean of the orientations obtained in steps 9
and 10.

12: Get the profile of the image along a line that passes through the centroid obtained in
step 6 with the orientation from step 9.

13: Find the position of the tip point and the finger in this profile by applying 1D edge
detection on the image profile. Recompute the centroid position as the mean of the
locations of the finger and the tip point.

14: Extract the template of the pen tip by copying the neighborhood around the centroid
computed in step 11.

3.2 Temporal Recovery

We experimented with two different high-level approaches to recover the time-ordered points

in a video sequence. The first was our own conception, based on the differences between

consecutive frames in the video sequence. Within this broad approach, we tried two different
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algorithms for finding the points. The second high-level approach was based on pen-tracking

and was inspired by Munich's system. We tested an implementation of Munich's original

Kalman tracker. The descriptions of each algorithm follow.

3.2.1 Frame Differencing

Our initial idea for reconstructing the time information in handwriting came by simply

applying common sense to the problem. We assumed that while the user is writing on the

page, the instantaneous change that we will see will consist of the movement of the user's

hand and the current blob of ink being left on the page. We speculated that if can find a

way to segment out the user's hand, then we can recover the ink blobs in the order they

were left on the page, thus solving our problem. Now the challenge becomes finding an

effective way to distinguish between movement of the user's hand (which we want to ignore)

and the new ink blobs. Using the differences between consecutive frames to approximate

instantaneous change, we developed two algorithms, each with its own method for classifying

the differences, for reconstructing the order of the ink blobs.

Masked Differencing

Our initial solution based on frame differencing was straightforward but somewhat naive.

First, we realized that the overall ink trace left on the page could be computed by simply

finding the difference between the initial and final frames, assuming that neither frame

contains the user's hand. By thresholding the overall ink trace, we could essentially create

an ink mask with ones where ink was left and zeros elsewhere. Recall from above that

the effectiveness of our frame differencing approach was contingent upon how well we can

distinguish between movement of the hand and ink blobs. To make this classification, we

decided to assume any motion occurring within our ink mask was due to ink blobs. So in

this algorithm, the intersection between the ink mask and each frame-to-frame difference is

computed, leaving only the ink blobs in the order that they were left. Algorithm 3 lists the

procedure in pseudocode, and Figure 3-4 illustrates a simple example of the algorithm in

action.
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Algorithm 3 Recovers Points using Masked Difference between Frames.
init +- frame
num +- 0

repeat
savedframes[num] +- frame
num +- num + 1

until final frame signal received from block monitoring
final +- frames[num - 1]
inktrace +- final - init|
inkmask +- Threshold(inktrace, K, 0, 255)
for i =1 to num do

dif f +- savedframes[i] - savedframes[i - 1]
points[i] +- Centroid(inkmask&diff)

end for
return points

Explanation of Subroutines:
Threshold(image, K, low, high) - compares each pixel in image to K and sets the corre-
sponding pixel in the returned image to low if less than and high if greater.
Centroid(image) - computes the mean position of the nonzero pixels in image.
Note: Arithmetic operations on frames are performed on all pixels in that frame.

Though our masked differencing algorithm seems as though it would work, our results

show that it does not accurately recover the points. The main problem is with our assumption

that any motion occurring within the ink mask was due to ink blobs; this does not hold.

Though we can safely assume that motion outside of the ink mask is not due to ink, we

cannot conversely assume that motion inside the ink mask is necessarily due to ink. The

following scenario illustrates this fact. Suppose the while writing the numeral "7" a right-

handed user draws the top line from left to right, then the diagonal line from top to bottom.

While scribing the top line, the user's hand and pen obscure the pixels where the diagonal

line will soon be, which looks like ink motion to the masked difference algorithm. Because of

this, the algorithm will incorrectly determine that the first ink blobs occurred at the bottom

of the numeral rather than at the top-left corner, as shown in Figure 3-5.
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(a.)

(b.)UU

(c.) (d.)

Figure 3-4: Example of Masked Differencing. (a) Simplified video sequence showing the
sketching of a diagonal line. (b) Masked differences between frames with black indicating
ink blobs. (c) Final sequence of points with more recent points in lighter blue. (d) Resulting
path specified by an arrow.

Backward Differencing

After testing our masked differencing algorithm and learning from its flaws, we developed a

new algorithm for recovering the temporal information in the pen input. In this approach,

we model the change in a pixel's intensity and use this to determine if and when it becomes

part of the ink trace. As before, the ink mask is obtained by thresholding the difference

between the initial and final frames. To help determine the order of the points, we construct

a specialized data structure called a motion history image (MHI). In general terms, a MHI

is essentially an image with pixel intensity values corresponding to when the more recent

motion occur in that pixel's position-so a bright area of the MHI indicates that there was

recent activity in that area of the video sequence [8]. In the context of our task, the MHI is

used to store a timestamp indicating the most recent significant change in a pixel's intensity.

We call a pixel that undergoes such a change a transition pixel. To construct the MHI, the

algorithm iterates backward through the sequence of frames and calculates the difference

between each frame and the final frame. This difference image is then thresholded and all

intensity values exceeding some constant K (transition pixels) are set to the timestamp of

the current frame in the resulting motion image. Then the MHI is updated to reflect any

new timestamped transition pixels. After iterating through all frames in the sequence, the

ink blobs are found by iterating forward through the timestamps in the MHI and computing
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(a.)

(b.)

(d.)

(e.)

Figure 3-5: Problem with Masked Differencing. (a) Example video sequence showing the
construction of the numeral "T" with non-ink pixels (such as from the pen or the hand) in red
and ink pixels in black. (b) Masked differences between frames with blue indicating non-ink
motion pixels and black indicating ink blobs. (c) Centroids of each masked difference. (d)
Final sequence of pixels with more recent pixels in lighter blue and the corresponding path
indicated by the arrows. (e) Actual sequence of pixels and corresponding path.
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the centroid of the transition pixels for each timestamp. Algorithm 4 lists the pseudocode

for this procedure.

Algorithm 4 Recovers Points using Backward Differencing.
init +- frame

num +- 0
repeat

savedframes[num] <- frame
num +- num + 1

until final frame signal received from block monitoring
f inal <- frames[num - 1]
inktrace +- final - init|

inkmask <- Threshold(inktrace, K, 0, 255)
for each pixel p in mhi do

p -- -1
end for
for i = num - 1 to 0 do

dif f +-- savedframes[i] - final|
motion +- Threshold(dif f, K, 0, i)
mhi +- Max(mhi, motion)

end for
for j = 0 to num do

inkblob = Equals(mhi, j)
points[j] = Centroid(inkmask & inkblob)

end for

Explanation of Subroutines:
Threshold(image, K, low, high) - compares each pixel in image to K and sets the corre-
sponding pixel in the returned image to low if less than and high if greater.
Max(imagel, image2) - returns an image with the maximum pixel values from imagel
and image2.
Centroid(image) - computes the mean position of the nonzero pixels in image.
Equals(image, k) - compares each pixel in image to k and sets the corresponding pixel in
the returned image to 1 if equal and 0 if not equal.
Note: Arithmetic operations on frames are performed on all pixels in that frame.

3.2.2 Pen Tracking

An alternative approach to detecting ink blobs would be to track the pen tip in the video

sequence and use its position to approximate where ink blobs will be placed on the page.

This approach can be broken down into four steps: pen tip acquisition, tip search, filtering,
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and stroke segmentation. As described in Section 3.1.6, the first step is performed during

initialization of the system. The remaining three steps are explained below.

Tip Search

The most basic goal in visual tracking is finding the tracked object in each frame in the video

sequence. Since we obtained a model of the tracked object in our tip acquisition step, the

remaining task is to search the video frames for this pen tip. We approach this problem as a

signal detection task, where the input 2-D signal is the array of pixel intensities in the video

frame and the desired signal to be detected is the array of pixel intensities in the acquired

pen tip model. A straightforward solution is to apply a matched filter-a linear filter that

looks like the signal to be detected-to the entire input signal. We employ this approach

in our tip search by calculating the normalized correlation between the pen tip model and

the neighborhood of the input frame centered on the predicted position of the pen tip. The

next section will describe how this position is predicted. We assume that if the pen tip

is contained within the searched neighborhood, it will be located at the point yielding the

maximum normalized correlation, so this point is taken as the position of the pen tip. If

the maximum normalized correlation is below some threshold, we claim that the pen tip is

not currently in the search neighborhood, and we must expand the neighborhood until it is

found again.

Kalman Filter

Our tip search method is based upon the notion of a search neighborhood around a predicted

position of the pen tip. Following Munich's lead, we use a recursive estimation scheme called

a Kalman Filter to provide these predictions [15]. The filter takes as input the observed

historical pen trajectory and a model for the pen tip's motion and outputs a prediction for

where the pen tip will be next. The model for the pen tip's motion is based on simple

kinematics:

1
x(t + 1) = x(t) + v(t) + -a(t) (3.1)

2
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v(t + 1) = v(t) + a(t) (3.2)

a(t + 1) = a(t) + na(t) (3.3)

y(t) = x(t) + ny (t) (3.4)

where x(t), v(t), a(t) are the two-dimensional components of position, velocity, and accel-

eration of the pen tip, na(t) and ny(t) are zero-mean Gaussian random variables, and y(t)

is the predicted position of the pen tip given a noisy observation. The specifics of Munich's

implementation, which serves as the basis for our tracking module, are covered in detail in

reference [21].

Stroke Segmentation

One key distinction between our frame differencing algorithms and the pen tracking approach

is that the latter does not provide pen-up and pen-down events. Instead it returns a complete

time-ordered list of the pen's trajectory as though it were a single stroke. For applications

such as cursive handwriting, this unsegmented output may be acceptable. However, we

aim to handle arbitrary pen input which requires us to segment the pen tracker's output

into strokes based upon when pen-up and pen-down events were detected. We considered

approaches based on tracking and ink detection.

Tracking-Based Stroke Segmentation

While testing the tracking system, we found that it would often lose track of the pen

when writing expressions with multiple strokes. We observed that very often the reason

that tracking was lost was that the user picked up the pen and moved it quickly to another

location to start another stroke. Usually the system would reacquire tracking shortly after

the start of the next stroke, coinciding with the pen-down event. From these observations,

we decided to interpret a loss of tracking as a pen-up event and reacquisition of tracking as a

pen-down event. Though this yielded reasonable qualitative results as shown in Figure 3-6,

not all of the pen-up and pen-down events would be detected using this simple approach, so

we explored other methods of stroke segmentation.
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Figure 3-6: Demonstration of Tracking-Based Stroke Segmentation. (a) Tracking begins.
(b) Tracking continues to the end of the stroke. (c) User picks up the pen tip and moves
toward the beginning of the next stroke; tracking is lost. (d) User places the tip down on the
page. (e) Tracking is reacquired and a new stroke is started. (f) Tracking resumes normally
on the second stroke.
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Ink-Based Stroke Segmentation

Perhaps the most direct way to detect pen-up and pen-down events is to check whether

each tracked position of the pen tip resulted in an ink trace. Modeling our pen input as a

finite state machine, we can easily determine whether the current state is either ink trace or

pen movement based on the most recent pen-up or pen-down event, as illustrated in Figure 3-

7. Because our tracker returns the location of the pen tip in the current frame, we cannot

Pen- Up

Pen-Down Pen-Up

Ink Trace Pen Movement
(Stroke) (Non-stroke)

Pen-Down

Figure 3-7: Pen Input as a Finite State Machine. The two states, ink trace and pen move-
ment, are shown in bold. Transition events are shown in italics.

immediately test for the presence of ink at this location because it will be occupied by the

tip. Thus, our ink-based stroke segmentation module waits a few frames for the pen tip to

leave that location and then measures the observed intensity. Recall that in initialization

we recorded a model of the writing surface with the mean and standard deviation of each

pixel location's intensities. We use this information in stroke segmentation to compute the

normalized difference between the observed intensity and the mean for the writing surface.

If this difference exceeds a predefined threshold, it is assumed to be an ink trace. Otherwise,

it is assumed to be pen movement.

3.3 Implementation and Setup

As described, the PADCAM system could be implemented on any hardware configuration

with video capture capabilities. Our testing platform was an Intel Pentium III 1.13MHz

PC with a commodity USB camera. Though we could have opted for a more expensive
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high resolution camera, we wanted to prove that the system could work with commodity

components, so we chose the Philips Vesta Pro Scan PCVC690K webcam. The physical

setup of these components is depicted in Figure 3-8.

The PADCAM software is written in C for the Linux platform. Aside from its attrac-

tiveness as a development platform, the decision to implement on Linux was beneficial for

two reasons. First, we could take advantage of the video4linux interface for video capture

devices, which allowed us to experiment with many cameras without changes to the soft-

ware. Second, the existence of a rapidly maturing handheld Linux distribution meant that

our software would be easily adaptable for iPAQs and other handheld devices.

We made extensive use of Intel's OpenCV computer vision library in our image processing

code. This package provided many useful vision routines and utility functions that simplified

the coding. Also, the library was optimized for Intel's MMX and SSE technologies, which

gave us better performance.

Figure 3-8: Physical Setup of PADCAM System
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Figure 3-9: Screenshot of PADCAM Testing Application
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3.4 Experimental Results

3.4.1 Page Detection

Our page detection algorithm performs well in most cases. We tested the accuracy of this

component by hand-selecting the actual corners of the page and comparing these to the cor-

ners obtained from page detection. By calculating each detected corner's Euclidean distance

from the respective hand-selected corner, we obtained an estimate of the average error in

page detection. For analysis, the length of the diagonal across the page was also recorded-

this gives us some indication of how large the page appeared in the video frames. Though

we might expect that page detection accuracy would increase as this diagonal lengthens, the

plot in Figure 3-10 shows that this is not the case. This result makes sense because although

a larger page gives us a better picture of the page, it also means that our errors will be

larger.
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Figure 3-10: Plot of Page Detection Error versus the Size of the Page
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Table 3.1: Average Error in Page Detection

Distance (inches) Diagonal Length (pixels) Average Error (pixels)
9 540.18 5.47
12 421.36 7.73
18 541.07 6.94

We speculated that as we placed the camera closer to the page, the page detection

accuracy would increase. To test this, we varied the distance between the camera lens and

the center of the page and ran 10 trials at each of the three distances. Our findings are listed

in Table 3.1. As can be seen in the boxplot in Figure 3-11, there was very little correlation

between distance and page detection error. However, we can also see that the variability of

the error is high at the farthest distance we tested, 18 inches. We attribute this to the fact

that when the camera is farther away from the page, the video frame has higher variability

due to illumination changes and interfering objects, so the page detection accuracy will be

more volatile in turn.

Though the page detection module's performance met our expectations, it was interesting

to analyze the cases in which it failed. Figure 3-12 shows an example where too many

interfering objects were placed in the field of view. Since our algorithm expects a somewhat

controlled field of view containing only the page, it cannot handle situations with clutter.

Another problem we encountered stemmed from camera distortion, as illustrated in Figure 3-

13. The pictured page is so distorted that the page detector cannot fit a single line across

each of the top and bottom edges, so instead it fits two lines and takes the average over these

two. While this method will work reasonably, the correct approach would be to calibrate

the camera in initialization and undistort the video frame. However, this would require

additional setup, which would detract from the natural, human-centric feel of the system.
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Page Detection: Error vs. Distance
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Figure 3-11: Boxplots of Page Detection Error for Tested Camera-to-Page Distances.

3.4.2 Temporal Recovery

Frame Differencing

As mentioned in Section 3.2.1, the masked differencing algorithm for temporal recovery was

unsuccessful because it would recognize hand and pen movement as new ink blobs. Though

we tried to solve this problem with backward differencing, in the end neither approach based

on frame differencing yielded usable results.

Upon analysis of the backward differencing results, we found the problem to be that few

of the pixels in the ink trace settle upon their final intensity value until the last few frames.

As a result, the timestamp for each recovered point would usually be toward the end of the

sequence, rather than when the point was actually added to the ink trace. This symptom

seems to indicate that our algorithm is thrown off by transient shadows that are cast during

writing.
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Figure 3-12: Example of a Cluttered Writing Surface. Our page detection algorithm will fail
for this video frame because it contains too many objects that distract away from the actual
page. The frame is shown after the Canny edge detection and Hough line detection steps to
show the effects of the interfering edges. In the top-left corner of the video frame is a ruler
and toward the bottom is a pen.

Pen Tracking

Fortunately, the tracking-based approach to temporal recovery performed well, as illustrated

in Figure 3-14. We evaluated the accuracy of the tip search and Kalman filter separately

from the stroke segmentation module, as the two components solve different problems and

thus require different testing criteria. Then we measured the speed of the overall pen tracking

system.

To determine the accuracy of the tip search and Kalman filter modules, we compared

the their output of time-ordered points to reference points obtained using a Wacom digitizer

tablet. This device has a resolution of 2540 lpi and accuracy of ± 0.01 inches, so the reference

points we obtained from it were quite accurate. Much like our page detection tests, we

varied the distance between the camera and the center of the writing surface. Our measure

for accuracy was the average distance that each tracked point was from its corresponding

reference point. We found that the tracked points were often offset from the reference points

by a certain bias (usually only 4 or 5 pixels), indicating error in the tip acquisition process.

In efforts to separate this error from the actual pen tracking error, we corrected the tracked
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Figure 3-13: Example of a Distorted Page. Note how the bottom of the page is curved due
to camera distortion. While our algorithm will detect most of the page, it is likely that the
bottom corners will be inaccurate because we cannot fit one straight line across the bottom
of the page. We approximate the bottom of the page by fitting two straight lines as shown
in red in the lower panel and averaging the intersection points.

points for the bias. In our test sequences at each distance, we obtained the results shown in

Table 3.2.

We measured the accuracy of both the tracking-based and the ink-based stroke segmenta-

tion algorithms. Recall that the stroke segmentation task basically involves classifying each

tracked point as either ink trace or pen movement. We obtained reference values for our

accuracy tests by hand-classifying each point. The results for 10 trials at different distances

are shown in Table 3.3. Clearly, the tracking-based algorithm outperforms the ink-based

Table 3.2: Average Error in Pen Tracking

Distance Average Unbiased Error Bias in x Bias in y
(inches) (pixels) (pixels) (pixels)
9 6.23 3.4 -1.2
12 4.53 5.7 0.3
18 6.82 -3.9 6.0
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Figure 3-14: Visual Results of Pen Tracking. Recovered points are colored in green and the
white box encloses the current neighborhood for the maximum correlation tip search.

Table 3.3: Accuracy of Stroke Segmentation Algorithms

Distance Tracking-Based Algorithm Ink-Based Algorithm
(inches) % correctly classified % correctly classified
9 87% 48%
12 79% 24%
18 84% 22%

approach considerably. As with most of our other results, there does not seem to be a cor-

relation between camera distance and accuracy, though it would take more trials to confirm

this.

3.4.3 Cumulative Performance

We evaluated the speed of PADCAM as one cumulative unit and profiled it to determine which

stages were taking the most time. Because our results from the frame differencing algorithms

did not meet our expectations, we left out these stages, as well as block monitoring (which

provided data necessary only to the frame differencing algorithms). Obtaining accurate

timing data was challenging because we want to avoid the computational cost of displaying
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Table 3.4: Processing Times for Stages in the System

Stage Processing Time (ms) Percentage of Total
Frame Capture 47.0 62.5%
Color Model Conversion 24.8 33.0%
Perspective Transforming 1.0 1.3%
Tip Search 2.4 3.2%
Kalman Filter 0.0 0.0%
Stroke Segmentation 0.0 0.0%
Total 75.2 100%

the GUI, but certain aspects of the tracking require some user interaction. For instance,

positioning the pen for tip acquisition is difficult when the user cannot see the live frame for

feedback. We tried saving a video sequence to disk and playing it back in a GUI-free session,

but this solution simply replaces the GUI overhead with file system operations and JPEG

decompression computations. Our eventual solution was to disable certain costly features of

the GUI when they were not needed. For instance, after the tip was acquired, the application

stopped displaying the video frames and processed them silently instead.

In our testing, we used the Philips webcam at 640x480 resolution and 15 frames per

second. The overall system processed frames at 13.3 frames per second-not far below the

limit of the camera. As shown in Table 3.4 and Figure 3-15, most of the time was spent

capturing the video frames and converting the color models. The actual temporal recovery

takes only 2.4 ms per frame or 3.2% of the overall processing time. Because our overall

framerate is so close to the camera limit, it seems that video capture is the limiting step in

our system. In future versions, we would consider using a camera with a higher framerate

and perhaps switching from USB, which has a 1.5MB/s data transfer rate, to FireWire,

which currently allows rates of up to 50MB/s.
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Breakdown of Processing by Stages
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Figure 3-15: Breakdown of Processing by Stages.
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Chapter 4

Specification for PADCAM on Handheld

Devices

In efforts to keep the system as convenient and human-centric as possible, we attempted to

implement it on a properly outfitted handheld device. This section describes our experience

with this task and presents what we learned.

4.1 Motivation

Perceptual interfaces for pen-and-paper input, such as the system we described in the pre-

vious chapter, make great strides in human-centric computing. However, in keeping with

the goals of Project Oxygen, we also aim to make this technology pervasive. We would like

to implement the system on portable hardware, thus allowing it to go literally anywhere a

pad and pencil can go. Though our prototype system could easily be run on a laptop with

a camera, such a solution is unsatisfactory-a handheld device would provide much more

flexibility and convenience. A handheld PADCAM system is desirable for two specific uses

in the Oxygen view of the world-as a portable device and as a device embedded in the

environment.
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4.1.1 Portable PADCAM

The benefits of a portable interface for pen-based input are easy to see. If PADCAM were

as easy to carry around as pen-and-paper it would be advantageous to always use PADCAM

when taking notes. That way you could have PADCAM meaningfully interpret your notes

while retaining a hardcopy for reliability.

It's also important to note that the hardware needed to support PADCAM is becoming

available in all form factors as an industry trend. Recent advancements in CMOS imaging

technology are making CMOS cameras cheap, low-power, and small enough to embed into

cellular phone handsets. It's projected that by 2004, camera-enabled handsets will comprise

20% to 50% of the global mobile phone market [29]. Clearly, this creates an opportunity for

us to provide PADCAM as a potential "killer app" for these new camera-enabled phones.

4.1.2 PADCAM in the Environment

Intelligent spaces are an essential component of the Oxygen initiative. These environments

are embedded with cameras, microphones, displays, speakers, wireless networks and other

devices called E21s in Oxygen terminology. With this in mind, we envisioned that we could

extend PADCAM for use on a handheld to be used as another E21.

There are many advantages to using handhelds instead of full desktop or laptop PCs to

embed PADCAM into the environment. Perhaps the most obvious are the practical advantages

of space, heat, and power-we can place an iPAQ practically anywhere in the room without

having to worry as much about heat and power consumption. Also, the fact that these

devices are relatively small and light means we can move them around without much effort.

4.2 Special Considerations

Having decided to adapt PADCAM for use on handheld devices, we must consider some of the

challenges we will face in doing so. We cannot simply recompile our code for an iPAQ and

be done-handheld devices are designed with distinctly different specifications than regular

PCs, so we must redesign our system taking these into account.
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4.2.1 Computational Limits

One major concern in developing any software for handheld platforms is adapting to the

reduced computational capacity and resources. Currently, a top-of-the-line handheld device

typically boasts a 206 MHz processor and 64 megabytes of RAM. For comparison, a top-of-

the-line desktop PC features a 2.4 GHz processor with 512 MB of RAM. A further concern

is that handheld processors typically omit the floating-point unit, so any floating-point op-

erations must be performed in a slower emulation mode. This stark contrast in processing

capability and memory size must be taken into account when writing code for handhelds.

Given that our computational capacity is limited, we must be efficient with our code.

However, certain stages of our image processing pipeline are both necessary and computa-

tionally expensive. We deal with this problem by realizing that the handheld, as an E21,

is connected to an Oxygen N21 network, and thus we have the ability to offload certain

computations to desktop PCs in the environment. The next challenge is to determine which

stages to offload, which we will discuss in Section 4.3.3.

4.2.2 Power Consumption

Though we seem to have a solution for the computational limits of the handheld device, we

must consider the consequences of offloading computation. Most notably, power consump-

tion will be an issue, especially if we are using a wireless radio connection to transmit the

data. A typical Cisco Aironet wireless card uses 1.7 watts (W) when transmitting, 1.2W

when receiving, and 1.1W when idle. This amounts to only a few hours of battery life in

typical situations, so we must take power usage into account when determining which data

to transmit when offloading computation.

4.2.3 Software Concerns

Though not as limiting as the reduced computation and power concerns, software-related

issues pose a problem as well. Many of the computer vision and image processing libraries

that are available for the x86 architectures have yet to be built and released for handheld ar-

chitectures. For instance, Intel's OpenCV computer vision library, which we used extensively
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in the PC version of PADCAM, is not available for the StrongARM. Instead, we used Intel's

Integrated Performance Primitives library (IPP), but this was not nearly as comprehensive

a set of image processing routines.

4.3 Implementation and Setup

As a proof-of-concept, we tested components of PADCAM on a properly outfitted Compaq

iPAQ. In this section, we outline the specifications for the hardware, the choices we made

for software, and the physical setup of the system.

4.3.1 Hardware Specifications

We used a Compaq iPAQ 3760, equipped with a 206 MHz StrongARM processor, 32 MB

of flash ROM, and 64 MB of DRAM. To provide video capture capabilities, we used a

BackPAQ expansion pack. This research prototype, developed at Compaq's Cambridge

Research Labs (CRL), features a 640x480 CMOS camera, 2 PC card sockets, 32 MB of

additional flash storage, an a 2-axis accelerometer sensor. The test setup also included a 256

MB CompactFlash card for additional storage and an 802.11b card for wireless networking.

4.3.2 Operating System

Though the iPAQ ships with Microsoft Windows CE, we found this operating system unsuit-

able for our development needs. The Familiar Linux distribution, part of the handhelds.org

project overseen by Compaq CRL, offers a much more attractive platform for developing

video-enabled software for handheld devices. In addition, the open source nature of the un-

derlying code allows us to view and change any aspects of the operating system, which would

involve more non-technical barriers using a closed source OS. Another deciding factor in our

choice of operating systems was the availability of drivers for the hardware we intended to

use. Because the BackPAQ was a recent research prototype, its components only had driver

support in the handhelds.org Linux distributions but not in Windows CE.
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4.3.3 Adaptation of PADCAM Software for Handhelds

As mentioned earlier, handheld devices have different specifications that PCs, and we re-

designed our system taking these into account. Because the most limiting factor is the re-

duced computational power, our design decisions were mainly driven by the goal of avoiding

expensive computation on the iPAQ. However, realizing that network transmissions require

both time and power, we also aimed to minimize the network bandwidth required by our

system.

Our adaptation of PADCAM to the iPAQ splits the software application into RCAMD, a

lightweight component called that runs on the iPAQ, and RPADCAM, the more substantial

component that runs on a PC. We call the resulting system RCAMD-RPADCAM (RRP).

After experimenting with a few different partitions of computation between the iPAQ and

the PC, we decided to have RCAMD capture the video frames, JPEG compress them, and

send them over a TCP socket to RPADCAM. RPADCAM then decompresses the frames and

performs all of the original PADCAM processing. By compressing the frames, we were able to

cut the network usage by a factor of 30 compared to the bandwidth it would have taken to

transfer uncompressed 24-bit color 640x480 frames. Also, by keeping the bulk of the software

on the PC, we avoided the implementation issues involved in switching architectures (such

as being forced to abandon Intel's x86-based OpenCV library).

4.3.4 Physical Setup

Because of the portability of the iPAQ, the physical setup of RRP is remarkably flexible.

Figure 4-1 illustrates just one of many possible ways to place the iPAQ in the system. The

video frames resulting from a given setup can either be previewed on the iPAQ, as shown in

Figure 4-2, or on the PC with the RPADCAM software.

4.4 Experimental Results and Analysis

We tested our software on the iPAQ in several different configurations. We were mainly

concerned with the speed of the resulting system, since the accuracy should not change sig-
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Figure 4-1: RCAMD-RPADCAM on iPAQ Physical Setup

nificantly if we keep the original PADCAM stages. The main parameter we varied was the

partition of work between the iPAQ and the PC, but we also experimented with different

camera resolutions. The first test was of raw video capture capabilities, listed in Table 4.1.

These numbers represent the highest framerates we could achieve by simply grabbing the

video frames and not doing any processing except for the JPEG compression and decompres-

sion in the case of RCAMD-RPADCAM. Thus, this test is mainly to establish the hardware

limits, and we can assume that these results are the upper bounds on framerates we can

expect in our final system. Right away we can see that at 640x480 the iPAQ's performance

is unusable.

With this baseline established, we can explore what happens when processing is added.

We ported the frame difference stage over to the iPAQ for comparison, and our results are

listed in Table 4.2 and Figure 4-3. There are two significant points to observe:
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Figure 4-2: RCAMD-RPADCAM Preview of Video Frame on an iPAQ

" Frame Capture on the iPAQ is a nontrivial stage, and capturing high resolution frames

is prohibitively costly.

* JPEG Compression is by far the most computationally expensive stage for iPAQs.

Note that frame differencing is probably the simplest of the PADCAM stages, so we can

only expect the framerates to decrease as we add more complex stages to the iPAQ imple-

mentation. This discouraging fact prompts us figure out why it is that performance is so

Table 4.1: Framerates for Video Capture for Various System Setups (in frames per second)

System 160x120 320x240 640x480 Camera Limit
PADCAM on PC 14.5 14.5 14.5 15.0
PADCAM on iPAQ 30.0 21.2 5.8 30.0
RCAMD-RPADCAM 15.7 6.2 1.2 30.0
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Table 4.2: Processing Times for each Stage in Various System Setups
fSystem I Resolution Processing Step Time (ms) Framerate (fps)

PADCAM on PC 160x120 Frame Capture 65
Frame Difference 1
Miscellaneous 0
Total 66 15

320x240 Frame Capture 54
Frame Difference 8
Miscellaneous 3
Total 65 15

640x480 Frame Capture 47
Frame Difference 15
Miscellaneous 2
Total 64 15

PADCAM on iPAQ 160x120 Frame Capture 23
Frame Difference 12
Miscellaneous 5
Total 40 23

320x240 Frame Capture 32
Frame Difference 25
Miscellaneous 4
Total 61 16

640x480 Frame Capture 135
Frame Difference 65
Miscellaneous 11
Total 211 5

RCAMD-RPADCAM 160x120 Frame Capture 8
Frame Difference 10
JPEG Compression 35
Transmit Frame 2

Miscellaneous 2
Total 57 17

320x240 Frame Capture 31
Frame Difference 30
JPEG Compression 94
Transmit Frame 4
Miscellaneous 2
Total 161 6

640x480 Frame Capture 139
Frame Difference 95
JPEG Compression 433

Transmit Frame 63

Miscellaneous 12
Total 742 1.3
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Processing Times for Stages in the Various System Setups
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Figure 4-3: Processing Times for each Stage in Various Setups
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slow.

Though we expected reduced computation on the iPAQ, we cannot blame the whole

performance drop on the slower processor. A second look at the frame capture speeds

reveals much of the problem: frame capture basically entails simply transferring data from

the imaging device to the main memory, so why does the iPAQ take so long to capture a

frame? The answer lies further in the iPAQ's hardware specifications: the expansion bus

connecting the BackPAQ to the main processing unit is 16-bits wide and runs at only 8

MHz. The theoretical bandwidth limit for this bus is 16 MB/s. For comparison, a typical

PC has a PCI bus that is 32-bits wide and runs at 33 MHz, yielding a theoretical bandwidth

of 132 MB/s. Note that in practice, data transfer rates over these buses are a fraction of

their theoretical limits; in the iPAQ, we were able to get at most 5.5 MB/s across the bus

(640x480 24-bit pixels at 6 fps). Transferring 640x480 video frames with 24-bit color at 30

frames per second would require 27.7 MB/s. Clearly, a major cause of our performance drop

is bus saturation.

4.4.1 Floating-Point Results

We also tested the iPAQ's floating-point performance. As we mentioned earlier, the Stron-

gARM processor contains no floating-point unit, so all floating-point operations (FLOPS)

must be done in emulation mode. To quantify the performance hit we should expect for

FLOPS, we rewrote the frame difference stage using floating-point arithmetic and ran it for

the 3 target resolutions, recording both the average time spent in the stage and the overall

framerate. The results are shown in Table 4.3. In the extreme case, the iPAQ spent 4.3

seconds in the floating-point stage for a single frame. Our task of recovering time-ordered

stroke information requires high temporal resolution, thus we cannot afford to spend 4.3

seconds or even 260 milliseconds in any one stage. Clearly, we must avoid FLOPS on the

iPAQ at all costs, either by converting to fixed-point operations or offloading the FLOPS to

PCs, which have dedicated hardware for such tasks.

53



Table 4.3: Costs of Floating-Point Operations on PC and iPAQ Systems

System Resolution Time (ms) Framerate (fps)

PADCAM on PC 160x120 0.8 14.6
320x240 4 14.5
640x480 14 13.5

PADCAM on iPAQ 160x120 260 3.54

320x240 1010 0.94
640x480 4300 0.22

4.5 Discussion

Unfortunately, we found that our software was too computationally demanding for the

iPAQ's system architecture. We found that frame capture was a limiting factor in the

system, thus trying to sidestep the slower StrongARM processor in favor of offloading com-

putation turned out to be ineffective. We speculate that the problem is rooted in the low

bandwidth of the expansion bus, which severely limits all communications in and out of

the iPAQ. It would be interesting to attempt the experiments again on a handheld device

with more bandwidth. From our results, we observed about practical data transfer rates of

about a third of the theoretical limit, so if we extrapolate this further, we would need a bus

with a bandwidth limit of 90 MB/s to adequately handle our target capture specification of

640x480 with 24-bit color at 30 frames per second. This ideal bandwidth would be attainable

in a handheld device with a 32-bit bus running at 25 MHz. Rather than waiting for such

handhelds to become available, we suggest alternate software approaches for circumventing

the bus bandwidth problem.

4.6 Suggestions for Future Work

Having revealed the main obstacle preventing our handheld implementation from running at

reasonable framerates, we now propose some solutions to the bus bandwidth problem. This

is followed by some general suggestions for future work that would be useful for handheld

devices.
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4.6.1 Solutions to the Bus Bandwidth Limitations

Subregion Capture

One conceptually simple but technically challenging way to solve the bus bandwidth problem

is to capture only a subregion of the frames. Currently, the driver and firmware for the

BackPAQ camera only provides an API for capturing the entire video frame. If instead we

could request only the subregion of the frame that we are interested in, we could dramatically

reduce our bus bandwidth requirements. Implementing this solution would entail writing

VHDL code to support this feature and reprogramming the BackPAQ's FPGA to reflect the

change.

Image Processing in the FPGA

As introduced above, the BackPAQ contains an FPGA that controls its various peripherals.

Viewing this FPGA as another source of computing power located very close to the camera,

we may be able to offload some of the image processing to it. Doing so might be even

faster than performing the computation in the CPU because the bus connecting the FPGA

to the camera may have higher bandwidth than the expansion bus. Also, depending on

which stages can be implemented in the FPGA, it is possible that the data we need from the

BackPAQ may be much smaller than the full 640x480 frame-in the extreme case, it could

just be a timestamped point, in which case the expansion bus bandwidth would no longer

be a limiting factor. This solution is somewhat speculative, but it may be worth exploring

in future research.

4.6.2 Suggestions for New Features

In our experiments with PADCAM on handhelds, we came across features that would be

useful in a practical implementation.
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Motion Stabilization

One of the most annoying aspects of the iPAQ implementation was the tendency of the iPAQ

to move during handwriting capture. These slight movements would result in large shifts in

the video frame, which PADCAM did not handle well because it does not continually adapt

to its environment. Because of this, we propose to add a motion stabilization feature to the

system which would make it robust to movements.

We devised two approaches to implement this feature. The easiest way would be to

have page detection run periodically instead of just once in initialization. This way, any

significant change in the appearance of the page in the full video frame would result in new

corners and accordingly a new perspective transform. A more powerful approach would

involve calibrating and registering the camera and maintaining a 3-D model of the page. If

there is movement, the system can use 3 or more reference points to update its 3-D model

and calculate the change in the perspective transform. This "feature" is powerful enough to

warrant its own dedicated system, as it would basically be capable of acquiring 3-D models

with minimal setup.

Out-Of-Order Execution

We noticed early on that certain stages in our pipeline could be relocated to allow more

efficient partitioning of computation between the iPAQ and the PC. For instance, the per-

spective transform could be computed at any time as long as it occurs before the timestamped

points are returned (or sent to the recognition application). We can take advantage of this

flexibility by moving computationally intensive stages, such as those involving floating-point

operations, to the PC while keeping simple fixed-point operations on the iPAQ.

4.6.3 Low-Bandwidth Remote Processing

Realizing that frame-to-frame differences often contain much less data than full frames, we

propose another tactic to improve efficiency on RCAMD-RPADCAM. Instead of sending each

frame across the network to a PC for processing, our tactic entails sending a sparse data

structure that stores frame-to-frame differences. By only transferring the changed pixels

56



as opposed to every single pixel, this approach could reduce the time spent in network

communications, freeing up time for more computation.
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Chapter 5

Applications

By itself, PADCAM does not offer much of an advantage over the paper and pencil approach

to taking notes. As we discussed in Section 2.2.2, we opted against building a recognition

system into the system to allow more general content. We found that there is already an

abundance of applications that provide meaningful interpretation of mouse input or other

stroke information. We can take advantage of this by sending the stroke information obtained

by our system to such higher-level applications for meaningful interpretation. Essentially,

we can use PADCAM as an input adaptor between a natural interface (writing on paper) and

a useful form of data (stroke information) to be used in existing recognition applications. A

description of just a few of the possible recognition applications follows.

5.1 Natural Log

Our baseline application was Natural Log (NL), a mathematical expression recognition sys-

tem. Designed and implemented in Java by Nicholas Matsakis, NL receives input in the form

of mouse events and converts these into strokes before performing recognition [20]. Recogni-

tion consists of three high-level steps: isolated symbol classification, expression partitioning,

and parsing. Though the details of each of these steps are beyond the scope of this thesis,

the recognition results in three meaningful interpretations of the expression: an image of the

typeset expression, a TEXstring, and a MathML expression. Figure 5-1 shows a screenshot
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of the demonstration program.

Figure 5-1: The Natural Log Demonstration Program. As the user writes symbols in the
white canvas, the system recognizes the mathematical expression and displays an image of the
typeset expression, a string specifying how to format it in TEVX, and a MathML expression.

Adapting NL to accept input from PADCAM was simple and straightforward. Rather

than feeding fake mouse events into NL, we decided to send the stroke data at a lower level

of abstraction. Minor modifications to the NL Java application allowed it to accept strokes

as time-ordered points over a TCP socket connection. In the resulting combined system,

PADCAM sends a stroke as soon as it is finished to NL, which recognizes the mathemati-

cal symbol represented. As more strokes are sent, NL updates the resulting mathematical

expression accordingly.

The NL-PADCAM combination provides an easy way to capture mathematical expressions

quickly and naturally. Simple expressions were recognized correctly. The combined system

would benefit from better ink detection on the PADCAM side-often strokes were not properly

segmented before being sent to NL, which led to recognition errors. Despite these issues, our

initial implementation of NL-PADCAM yielded encouraging results.
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5.2 Sketchpad

Another suite of applications aimed at interpreting meaning from stroke information comes

from the Sketchpad project at the MIT Al Laboratory. One of the main goals of this project

is to develop perceptual interfaces that allow natural human input such as sketches. To

demonstrate this idea, Davis and his research group have developed software applications to

recognize mechanical drawings and software architecture sketches [9].

5.2.1 ASSIST

The initial prototype demonstrating the Sketchpad team's vision is ASSIST, or A Shrewd

Sketch Interpretation and Simulation Tool. This tool allows an engineer to sketch a mechani-

cal system using a pen-based input device, such as a digitizer, and then allows for interaction

with this design [3]. For instance, from a drawing of a simple car on a ramp, ASSIST can

simulate the motion in the system based on kinematics, as illustrated in Figure 5-2.

5.2.2 Tahuti

Another application that brings sketch-based input and recognition closer to reality is Tahuti.

This sketch recognition environment interprets pen-based input of Unified Modeling Lan-

guage (UML) diagrams, a commonly used method for describing the architecture of software

applications [14].

Both ASSIST and Tahuti expect stroke information as input, and thus would make good

targets PADCAM's output.

5.3 Handwriting Recognition

Perhaps the most straightforward application to consider for PADCAM is for handwriting

recognition. While some efforts have been made to design handwriting recognition systems

specifically for video-based interfaces [13], it is both convenient and desirable to use existing

pen-based input recognition systems. Many such systems have been demonstrated to work
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Figure 5-2: An Example Use of ASSIST. The user sketches a car, a ramp, and certain other
symbols that indicate mechanical properties. ASSIST recognizes the sketched objects and
performs a simulation of the kinematics in this mechanical system.

61



well [7, 6, 19, 18], and it makes sense to leverage these existing software applications to make

PADCAM more valuable.

In our exposure to handheld devices, we became familiar with xstroke, an open source

version of the popular Graffiti text input system used on PalmPilots. This program rec-

ognizes handwriting gestures based on each stroke's trajectory through a virtual 3x3 grid

spanning the stroke's bounding box. We propose that this software would be easy to adapt

for use with PADCAM, thus providing a quick and robust solution to character recognition.
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Chapter 6

Discussion

Having proposed and evaluated our system for handwriting capture, we now take a mo-

ment to recommend future directions to take this research and then pause to draw some

conclusions.

6.1 Recommendations for Future Work

In addition to the suggestions we made in Section 4.6 for improving the handheld implemen-

tation, we have recognized many ideas that would extend the original PADCAM system. Our

future work is clearly divided into two distinct families of ideas: performance improvements

and new features.

6.1.1 Performance Improvements

Switch from USB to FireWire

We would advise a transition from USB to FireWire cameras, because USB is too limiting

to allow 640x480 frames at 30 fps. This would require nontrivial changes, since our imple-

mentation is based on the video4linux interface rather than one of the existing FireWire

interfaces. While this change would allow us to double our capture framerate from 15 to 30

fps, it would mean that the processing would have even less time in between frames to get

done.
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Fix Backward Differencing

As discussed in Section 3.4.2, neither of our frame differencing techniques yielded usable

results. We speculate that this was due to transient shadows that affect the ink trace, but

it would be interesting to test this claim and propose a solution.

6.1.2 New Features

The most exciting ideas fall in the category of new features that add to the utility of the

system.

Subpixel Resolution

Though camera jitter ruined video sequences every now and then, the annoying effect led us

to propose a solution that can be generalized to solve other related problems. As described

earlier, there are two clear solutions: one involving periodic page detection and the other

involving 3-D modeling. We will leave the details of the former to Section 4.6.2, but the latter

is interesting because it allows so much more than simple motion stabilization. Not only

could we acquire 3-D models with this setup, but also we could make intelligent use of camera

jitter to improve resolution to subpixel levels. This also opens the door for possibilities such

as an environment with multiple unregistered cameras with which one can mosaic a large

sketch surface or whiteboard.

Whiteboards

In the future, we plan to generalize PADCAM for use with whiteboards. This should only

require minor modifications to the video capture module. This feature would be useful in

meeting situations where the minutes of the meeting are to be recorded and made available

to all participants.

Multimodal Uses

Also, adding a speech recognition module to provide context to the handwriting recognition

module may increase accuracy. Such an architecture would take advantage of multimodal
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input to provide better guess as to what is being written. In fact, the information exchange

between the handwriting and speech recognition modules could be in either direction (or

both), depending on which recognition task requires the most accuracy.

6.2 Conclusions

We proposed and demonstrated a perceptual interface for pen-based input that captures live

video of handwriting and recovers the time-ordered sequence of strokes that were written.

By experimenting with frame differencing, pen tracking, and ink detection, we were able

to construct a working prototype with good results. We also motivated and presented an

implementation of PADCAM for handheld devices, focusing on the challenges and the future

work to be done on this front. Finally we discussed applications and future directions for

this research. It is clear that this system is a useful interface, and our work has spawned an

abundance of ideas that will help develop this prototype system into a practical method of

pen-based input.
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