Skip to content

acsl-technion/gaia_nvidia

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NVIDIA Accelerated Linux Graphics Driver README and Installation Guide

    NVIDIA Corporation
    Last Updated: Wed Jul 19 23:46:03 PDT 2017
    Most Recent Driver Version: 384.59

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA
95050


NOTICE:

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS")
ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Information furnished is believed to be accurate and
reliable. However, NVIDIA Corporation assumes no responsibility for the
consequences of use of such information or for any infringement of patents or
other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of
NVIDIA Corporation. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all
information previously supplied. NVIDIA Corporation products are not
authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

NVIDIA, the NVIDIA logo, NVIDIA nForce, GeForce, NVIDIA Quadro, Vanta, TNT2,
TNT, RIVA, RIVA TNT, Tegra, and TwinView are registered trademarks or
trademarks of NVIDIA Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds. Fedora and Red Hat are
trademarks of Red Hat, Inc. SuSE is a registered trademark of SuSE AG.
Mandriva is a registered trademark of Mandriva S.A. Intel and Pentium are
registered trademarks of Intel Corporation. Athlon is a registered trademark
of Advanced Micro Devices. OpenGL is a registered trademark of Silicon
Graphics Inc. PCI Express is a registered trademark and/or service mark of
PCI-SIG. Windows is a registered trademark of Microsoft Corporation in the
United States and other countries. Other company and product names may be
trademarks or registered trademarks of the respective owners with which they
are associated.


Copyright 2006 - 2013 NVIDIA Corporation. All rights reserved.

______________________________________________________________________________

TABLE OF CONTENTS
______________________________________________________________________________

Chapter 1. Introduction
Chapter 2. Minimum Requirements
Chapter 3. Selecting and Downloading the NVIDIA Packages for Your System
Chapter 4. Installing the NVIDIA Driver
Chapter 5. Listing of Installed Components
Chapter 6. Configuring X for the NVIDIA Driver
Chapter 7. Frequently Asked Questions
Chapter 8. Common Problems
Chapter 9. Known Issues
Chapter 10. Allocating DMA Buffers on 64-bit Platforms
Chapter 11. Specifying OpenGL Environment Variable Settings
Chapter 12. Configuring Multiple Display Devices on One X Screen
Chapter 13. Configuring GLX in Xinerama
Chapter 14. Configuring Multiple X Screens on One Card
Chapter 15. Support for the X Resize and Rotate Extension
Chapter 16. Configuring a Notebook
Chapter 17. Using the NVIDIA Driver with Optimus Laptops
Chapter 18. Programming Modes
Chapter 19. Configuring Flipping and UBB
Chapter 20. Using the Proc Filesystem Interface
Chapter 21. Configuring Power Management Support
Chapter 22. Using the X Composite Extension
Chapter 23. Using the nvidia-settings Utility
Chapter 24. Using the nvidia-smi Utility
Chapter 25. The NVIDIA Management Library
Chapter 26. Using the nvidia-debugdump Utility
Chapter 27. Using the nvidia-persistenced Utility
Chapter 28. Configuring SLI and Multi-GPU FrameRendering
Chapter 29. Configuring Frame Lock and Genlock
Chapter 30. Configuring SDI Video Output
Chapter 31. Configuring Depth 30 Displays
Chapter 32. Offloading Graphics Display with RandR 1.4
Chapter 33. Direct Rendering Manager Kernel Modesetting (DRM KMS)
Chapter 34. Addressing Capabilities
Chapter 35. NVIDIA Contact Info and Additional Resources
Chapter 36. Acknowledgements

Appendix A. Supported NVIDIA GPU Products
Appendix B. X Config Options
Appendix C. Display Device Names
Appendix D. GLX Support
Appendix E. Dots Per Inch
Appendix F. i2c Bus Support
Appendix G. VDPAU Support
Appendix H. Audio Support
Appendix I. Tips for New Linux Users
Appendix J. Application Profiles
Appendix K. GPU Names

______________________________________________________________________________

Chapter 1. Introduction
______________________________________________________________________________


1A. ABOUT THE NVIDIA ACCELERATED LINUX GRAPHICS DRIVER

The NVIDIA Accelerated Linux Graphics Driver brings accelerated 2D
functionality and high-performance OpenGL support to Linux x86_64 with the use
of NVIDIA graphics processing units (GPUs).

These drivers provide optimized hardware acceleration for OpenGL and X
applications and support nearly all recent NVIDIA GPU products (see Appendix A
for a complete list of supported GPUs).


1B. ABOUT THIS DOCUMENT

This document provides instructions for the installation and use of the NVIDIA
Accelerated Linux Graphics Driver. Chapter 3, Chapter 4 and Chapter 6 walk the
user through the process of downloading, installing and configuring the
driver. Chapter 7 addresses frequently asked questions about the installation
process, and Chapter 8 provides solutions to common problems. The remaining
chapters include details on different features of the NVIDIA Linux Driver.
Frequently asked questions about specific tasks are included in the relevant
chapters. These pages are posted on NVIDIA's web site (http://www.nvidia.com),
and are installed in '/usr/share/doc/NVIDIA_GLX-1.0/'.


1C. ABOUT THE AUDIENCE

It is assumed that the user and reader of this document has at least a basic
understanding of Linux techniques and terminology. However, new Linux users
can refer to Appendix I for details on parts of the installation process.


1D. ADDITIONAL INFORMATION

In case additional information is required, Chapter 35 provides contact
information for NVIDIA Linux driver resources, as well as a brief listing of
external resources.

______________________________________________________________________________

Chapter 2. Minimum Requirements
______________________________________________________________________________


2A. MINIMUM SOFTWARE REQUIREMENTS



    Software Element         Supported versions       Check With...
    ---------------------    ---------------------    ---------------------
    Linux kernel             2.6.9* and newer         `cat /proc/version`
    XFree86**                4.0.1 and newer          `XFree86 -version`
    X.Org**                  1.0, 1.1, 1.2, 1.3,      `Xorg -version`
                             1.4, 1.5, 1.6, 1.7,  
                             1.8, 1.9, 1.10, 1.11,
                             1.12, 1.13, 1.14,    
                             1.15, 1.16, 1.17,    
                             1.18, 1.19           
    Kernel modutils          2.1.121 and newer        `insmod --version`
    glibc                    2.0                      `ls /lib/libc.so.*` >
                                                      6
    libvdpau ***             0.2                      `pkg-config
                                                      --modversion vdpau`


* The nvidia-uvm.ko kernel module, which provides Unified Virtual Memory (UVM)
functionality to the CUDA driver, requires a 2.6.32 or newer Linux kernel. On
systems with older kernels, UVM functionality will not be available to CUDA.

** It is only required that you have one of XFree86 or X.Org, not both.

*** Required for hardware-accelerated video playback. See Appendix G for more
information.

Please see "Q. How do I interpret X server version numbers?" in Chapter 7 for
a note about X server version numbers.

If you need to build the NVIDIA kernel module:

    Software Element         Min Requirement          Check With...
    ---------------------    ---------------------    ---------------------
    binutils                 2.9.5                    `size --version`
    GNU make                 3.77                     `make --version`
    gcc                      2.91.66                  `gcc --version`


All official stable kernel releases from 2.6.9 and up are supported;
pre-release versions, such as 2.6.23-rc1, are not supported. The Linux kernel
can be downloaded from http://www.kernel.org or one of its mirrors.

binutils and gcc can be retrieved from http://www.gnu.org or one of its
mirrors.

If you are using XFree86, but do not have a file '/var/log/XFree86.0.log',
then you probably have a 3.x version of XFree86 and must upgrade.

Sometimes very recent X server versions are not supported immediately
following release, but we aim to support all new versions as soon as possible.
Support is not added for new X server versions until after the video driver
ABI is frozen, which usually happens at the release candidate stage.
Prerelease versions that are not release candidates, such as "1.10.99.1", are
not supported.

If you are setting up the X Window System for the first time, it is often
easier to begin with one of the open source drivers that ships with XFree86
and X.Org (either "vga", "vesa", or "fbdev"). Once your system is operating
properly with the open source driver, you may then switch to the NVIDIA
driver.

These software packages may also be available through your Linux distributor.

______________________________________________________________________________

Chapter 3. Selecting and Downloading the NVIDIA Packages for Your System
______________________________________________________________________________

NVIDIA drivers can be downloaded from the NVIDIA website
(http://www.nvidia.com).

The NVIDIA graphics driver uses a Unified Driver Architecture: the single
graphics driver supports all modern NVIDIA GPUs. "Legacy" GPU support has been
moved from the unified driver to special legacy GPU driver releases. See
Appendix A for a list of legacy GPUs.

The NVIDIA graphics driver is bundled in a self-extracting package named
'NVIDIA-Linux-x86_64-384.59.run'. On Linux-x86_64, that file contains
both the 64-bit driver binaries as well as 32-bit compatibility driver
binaries; the 'NVIDIA-Linux-x86_64-384.59-no-compat32.run' file only
contains the 64-bit driver binaries.

______________________________________________________________________________

Chapter 4. Installing the NVIDIA Driver
______________________________________________________________________________

This chapter provides instructions for installing the NVIDIA driver. Note that
after installation, but prior to using the driver, you must complete the steps
described in Chapter 6. Additional details that may be helpful for the new
Linux user are provided in Appendix I.


4A. BEFORE YOU BEGIN

Before you begin the installation, exit the X server and terminate all OpenGL
applications (note that it is possible that some OpenGL applications persist
even after the X server has stopped). You should also set the default run
level on your system such that it will boot to a VGA console, and not directly
to X. Doing so will make it easier to recover if there is a problem during the
installation process. See Appendix I for details.

If you're installing on a system that is set up to use the Nouveau driver,
then you should first disable it before attempting to install the NVIDIA
driver. See Interaction with the Nouveau Driver for details.


4B. STARTING THE INSTALLER

After you have downloaded the file 'NVIDIA-Linux-x86_64-384.59.run',
change to the directory containing the downloaded file, and as the 'root' user
run the executable:

    # cd yourdirectory
    # sh NVIDIA-Linux-x86_64-384.59.run

The '.run' file is a self-extracting archive. When executed, it extracts the
contents of the archive and runs the contained 'nvidia-installer' utility,
which provides an interactive interface to walk you through the installation.

 'nvidia-installer' will also install itself to '/usr/bin/nvidia-installer',
which may be used at some later time to uninstall drivers, auto-download
updated drivers, etc. The use of this utility is detailed later in this
chapter.

You may also supply command line options to the '.run' file. Some of the more
common options are listed below.

Common '.run' Options

--info

    Print embedded info about the '.run' file and exit.

--check

    Check integrity of the archive and exit.

--extract-only

    Extract the contents of './NVIDIA-Linux-x86_64-384.59.run', but do
    not run 'nvidia-installer'.

--help

    Print usage information for the common commandline options and exit.

--advanced-options

    Print usage information for common command line options as well as the
    advanced options, and then exit.



4C. INSTALLING THE KERNEL INTERFACE

The NVIDIA kernel module has a kernel interface layer that must be compiled
specifically for each kernel. NVIDIA distributes the source code to this
kernel interface layer.

When the installer is run, it will check your system for the required kernel
sources and compile the kernel interface. You must have the source code for
your kernel installed for compilation to work. On most systems, this means
that you will need to locate and install the correct kernel-source,
kernel-headers, or kernel-devel package; on some distributions, no additional
packages are required.

After the correct kernel interface has been compiled, the kernel interface
will be linked with the closed-source portion of the NVIDIA kernel module.
This requires that you have a linker installed on your system. The linker,
usually '/usr/bin/ld', is part of the binutils package. You must have a linker
installed prior to installing the NVIDIA driver.


4D. REGISTERING THE NVIDIA KERNEL MODULE WITH DKMS

The installer will check for the presence of DKMS on your system. If DKMS is
found, you will be given the option of registering the kernel module with
DKMS, and using the DKMS infrastructure to build and install the kernel
module. On most systems with DKMS, DKMS will take care of automatically
rebuilding registered kernel modules when installing a different Linux kernel.

If 'nvidia-installer' is unable to install the kernel module through DKMS, the
installation will be aborted and no kernel module will be installed. If this
happens, installation should be attempted again, without the DKMS option.

Note that versions of 'nvidia-installer' shipped with drivers before release
304 do not interact with DKMS. If you choose to register the NVIDIA kernel
module with DKMS, please ensure that the module is removed from the DKMS
database before using a non-DKMS aware version of 'nvidia-installer' to
install an older driver; otherwise, module source files may be deleted without
first unregistering the module, potentially leaving the DKMS database in an
inconsistent state. Running 'nvidia-uninstall' before installing a driver
using an older installer will invoke the correct `dkms remove` command to
clean up the installation.

Due to the lack of secure storage for private keys that can be utilized by
automated processes such as DKMS, it is not possible to use DKMS in
conjunction with the module signing support built into 'nvidia-installer'.


4E. SIGNING THE NVIDIA KERNEL MODULE

Some kernels may require that kernel modules be cryptographically signed by a
key trusted by the kernel in order to be loaded. In particular, many
distributions require modules to be signed when loaded into kernels running on
UEFI systems with Secure Boot enabled. 'nvidia-installer' includes support for
signing the kernel module before installation, to ensure that it can be loaded
on such systems. Note that not all UEFI systems have Secure Boot enabled, and
not all kernels running on UEFI Secure Boot systems will require signed kernel
modules, so if you are uncertain about whether your system requires signed
kernel modules, you may try installing the driver without signing the kernel
module, to see if the unsigned kernel module can be loaded.

In order to sign the kernel module, you will need a private signing key, and
an X.509 certificate for the corresponding public key. The X.509 certificate
must be trusted by the kernel before the module can be loaded: we recommend
ensuring that the signing key be trusted before beginning the driver
installation, so that the newly signed module can be used immediately. If you
do not already have a key pair suitable for module signing use, you must
generate one. Please consult your distribution's documentation for details on
the types of keys suitable for module signing, and how to generate them.
'nvidia-installer' can generate a key pair for you at install time, but it is
preferable to have a key pair already generated and trusted by the kernel
before installation begins.

Once you have a key pair ready, you can use that key pair in
'nvidia-installer' by passing the keys to the installer on the command line
with the --module-signing-secret-key and --module-signing-public-key options.
As an example, it is possible to install the driver with a signed kernel
module in silent mode (i.e., non-interactively) by running:

 # sh ./NVIDIA-Linux-x86_64-384.59.run -s \
--module-signing-secret-key=/path/to/signing.key \
--module-signing-public-key=/path/to/signing.x509

In the example above, 'signing.key' and 'signing.x509' are a private/public
key pair, and the public key is already enrolled in one of the kernel's
trusted module signing key sources.

On UEFI systems with secure boot enabled, nvidia-installer will present a
series of interactive prompts to guide users through the module signing
process. As an alternative to setting the key paths on the command line, the
paths can be provided interactively in response to the prompts. These prompts
will also appear when building the NVIDIA kernel module against a kernel which
has CONFIG_MODULE_SIG_FORCE enabled in its configuration, or if the installer
is run in expert mode.


KEY SOURCES TRUSTED BY THE KERNEL

In order to load a kernel module into a kernel that requires module
signatures, the module must be signed by a key that the kernel trusts. There
are several sources that a kernel may draw upon to build its pool of trusted
keys. If you have generated a key pair, but it is not yet trusted by your
kernel, you must add a certificate for your public key to a trusted key source
before it can be used to verify signatures of signed kernel modules. These
trusted sources include:

Certificates embedded into the kernel image

    On kernels with CONFIG_MODULE_SIG set, a certificate for the public key
    used to sign the in-tree kernel modules is embedded, along with any
    additional module signing certificates provided at build time, into the
    kernel image. Modules signed by the private keys that correspond to the
    embedded public key certificates will be trusted by the kernel.

    Since the keys are embedded at build time, the only way to add a new
    public key is to build a new kernel. On UEFI systems with Secure Boot
    enabled, the kernel image will, in turn, need to be signed by a key that
    is trusted by the bootloader, so users building their own kernels with
    custom embedded keys should have a plan for making sure that the
    bootloader will load the new kernel.

Certificates stored in the UEFI firmware database

    On kernels with CONFIG_MODULE_SIG_UEFI, in addition to any certificates
    embedded into the kernel image, the kernel can use certificates stored in
    the 'db', 'KEK', or 'PK' databases of the computer's UEFI firmware to
    verify the signatures of kernel modules, as long as they are not in the
    UEFI 'dbx' blacklist.

    Any user who holds the private key for the Secure Boot 'PK', or any of the
    keys in the 'KEK' list should be able to add new keys that can be used by
    a kernel with CONFIG_MODULE_SIG_UEFI, and any user with physical access to
    the computer should be able to delete any existing Secure Boot keys, and
    install his or her own keys instead. Please consult the documentation for
    your UEFI-based computer system for details on how to manage the UEFI
    Secure Boot keys.

Certificates stored in a supplementary key database

    Some distributions include utilities that allow for the secure storage and
    management of cryptographic keys in a database that is separate from the
    kernel's built-in key list, and the key lists in the UEFI firmware. A
    prominent example is the MOK (Machine Owner Key) database used by some
    versions of the 'shim' bootloader, and the associated management
    utilities, 'mokutil' and 'MokManager'.

    Such a system allows users to enroll additional keys without the need to
    build a new kernel or manage the UEFI Secure Boot keys. Please consult
    your distribution's documentation for details on whether such a
    supplementary key database is available, and if so, how to manage its
    keys.



GENERATING SIGNING KEYS IN NVIDIA-INSTALLER

'nvidia-installer' can generate keys that can be used for module signing, if
existing keys are not readily available. Note that a module signed by a newly
generated key cannot be loaded into a kernel that requires signed modules
until its key is trusted, and when such a module is installed on such a
system, the installed driver will not be immediately usable, even if the
installation was successful.

When 'nvidia-installer' generates a key pair and uses it to sign a kernel
module, an X.509 certificate containing the public key will be installed to
disk, so that it can be added to one of the kernel's trusted key sources.
'nvidia-installer' will report the location of the installed certificate: make
a note of this location, and of the certificate's SHA1 fingerprint, so that
you will be able to enroll the certificate and verify that it is correct,
after the installation is finished.

By default, 'nvidia-installer' will attempt to securely delete the generated
private key with 'shred -u' after the module is signed. This is to prevent the
key from being exploited to sign a malicious kernel module, but it also means
that the same key can't be used again to install a different driver, or even
to install the same driver on a different kernel. 'nvidia-installer' can
optionally install the private signing key to disk, as it does with the public
certificate, so that the key pair can be reused in the future.

If you elect to install the private key, please make sure that appropriate
precautions are taken to ensure that it cannot be stolen. Some examples of
precautions you may wish to take:

Prevent the key from being read by anybody without physical access to the
computer

    In general, physical access is required to install Secure Boot keys,
    including keys managed outside of the standard UEFI key databases, to
    prevent attackers who have remotely compromised the security of the
    operating system from installing malicious boot code. If a trusted key is
    available to remote users, even root, then it will be possible for an
    attacker to sign arbitrary kernel modules without first having physical
    access, making the system less secure.

    One way to ensure that the key is not available to remote users is to keep
    it on a removable storage medium, which is disconnected from the computer
    except when signing modules.

Do not store the unencrypted private key

    Encrypting the private key can add an extra layer of security: the key
    will not be useful for signing modules unless it can be successfully
    decrypted, first. Make sure not to store unencrypted copies of the key on
    persistent storage: either use volatile storage (e.g. a RAM disk), or
    securely delete any unencrypted copies of the key when not in use (e.g.
    using 'shred' instead of 'rm'). Note that using 'shred' may not be
    sufficient to fully purge data from some storage devices, in particular,
    some types of solid state storage.



ALTERNATIVES TO THE INSTALLER'S MODULE SIGNING SUPPORT

It is possible to load the NVIDIA kernel module on a system that requires
signed modules, without using the installer's module signing support.
Depending on your particular use case, you may find one of these alternatives
more suitable than signing the module with 'nvidia-installer':

Disable UEFI Secure Boot, if applicable

    On some kernels, a requirement for signed modules is only enforced when
    booted on a UEFI system with Secure Boot enabled. Some users of such
    kernels may find it more convenient to disable Secure Boot; however, note
    that this will reduce the security of your system by making it easier for
    malicious users to install potentially harmful boot code, kernels, or
    kernel modules.

Use a kernel that doesn't require signed modules

    The kernel can be configured not to check module signatures, or to check
    module signatures, but allow modules without a trusted signature to be
    loaded, anyway. Installing a kernel configured in such a way will allow
    the installation of unsigned modules. Note that on Secure Boot systems,
    you will still need to ensure that the kernel be signed with a key trusted
    by the bootloader and/or boot firmware, and that a kernel that doesn't
    enforce module signature verification may be slightly less secure than one
    that does.



4F. ADDING PRECOMPILED KERNEL INTERFACES TO THE INSTALLER PACKAGE

When 'nvidia-installer' runs, it searches for a pre-compiled kernel interface
layer for the target kernel: if one is found, then the complete kernel module
can be produced by linking the precompiled interface with 'nv-kernel.o',
instead of needing to compile the kernel interface on the target system.
'nvidia-installer' includes a feature which allows users to add a precompiled
interface to the installer package. This is useful in many use cases; for
example, an administrator of a large group of similarly configured computers
can prepare an installer package with a precompiled interface for the kernel
running on those computers, then deploy the customized installer, which will
be able to install the NVIDIA kernel module without needing to have the kernel
development headers or a compiler installed on the target systems. (A linker
is still required.)

To use this feature, simply invoke the '.run' installer package with the
--add-this-kernel option; e.g.

 # sh ./NVIDIA-Linux-x86_64-384.59.run --add-this-kernel

This will unpack 'NVIDIA-Linux-x86_64-384.59.run', compile a kernel
interface layer for the currently running kernel (use the --kernel-source-path
and --kernel-output-path options to specify a target kernel other than the
currently running one), and create a new installer package with the kernel
interface layer added.

Administrators of large groups of similarly configured computers that are
configured to require trusted signatures in order to load kernel modules may
find this feature especially useful when combined with the built-in support
for module signing in 'nvidia-installer'. To package a .run file with a
precompiled kernel interface layer, plus a detached module signature for the
linked module, just use the --module-signing-secret-key and
--module-signing-public-key options alongside the --add-this-kernel option.
The resulting package, besides being installable without kernel headers or a
compiler on the target system, has the added benefit of being able to produce
a signed module without needing access to the private key on the install
target system. Note that the detached signature will only be valid if the
result of linking the precompiled interface with 'nv-kernel.o' on the target
system is exactly the same as the result of linking those two files on the
system that was used to create the custom installer. To ensure optimal
compatibility, the linker used on both the package preparation system and the
install target system should be the same.


4G. OTHER FEATURES OF THE INSTALLER

Without options, the '.run' file executes the installer after unpacking it.
The installer can be run as a separate step in the process, or can be run at a
later time to get updates, etc. Some of the more important commandline options
of 'nvidia-installer' are:

'nvidia-installer' options

--uninstall

    During installation, the installer will make backups of any conflicting
    files and record the installation of new files. The uninstall option
    undoes an install, restoring the system to its pre-install state.

--ui=none

    The installer uses an ncurses-based user interface if it is able to locate
    the correct ncurses library. Otherwise, it will fall back to a simple
    commandline user interface. This option disables the use of the ncurses
    library.


______________________________________________________________________________

Chapter 5. Listing of Installed Components
______________________________________________________________________________

The NVIDIA Accelerated Linux Graphics Driver consists of the following
components (filenames in parentheses are the full names of the components
after installation). Some paths may be different on different systems (e.g., X
modules may be installed in /usr/X11R6/ rather than /usr/lib/xorg/).

   o An X driver ('/usr/lib/xorg/modules/drivers/nvidia_drv.so'); this driver
     is needed by the X server to use your NVIDIA hardware.

   o A GLX extension module for X
     ('/usr/lib/xorg/modules/extensions/libglx.so.384.59'); this module
     is used by the X server to provide server-side GLX support.

   o An X module for wrapped software rendering
     ('/usr/lib/xorg/modules/libnvidia-wfb.so.384.59' and optionally,
     '/usr/lib/xorg/modules/libwfb.so'); this module is used by the X driver
     to perform software rendering on GeForce 8 series GPUs. If 'libwfb.so'
     already exists, nvidia-installer will not overwrite it. Otherwise, it
     will create a symbolic link from 'libwfb.so' to
     'libnvidia-wfb.so.384.59'.

   o EGL and OpenGL ES libraries ( '/usr/lib/libEGL.so.1',
     '/usr/lib/libGLESv1_CM.so.384.59', and
     '/usr/lib/libGLESv2.so.384.59' ); these libraries provide the API
     entry points for all OpenGL ES and EGL function calls. They are loaded at
     run-time by applications.

   o A Wayland EGL external platform library
     ('/usr/lib/libnvidia-egl-wayland.so.1') and its corresponding
     configuration file (
     '/usr/share/egl/egl_external_platform.d/10_nvidia_wayland.json' ); this
     library provides client-side Wayland support on top of the EGLDevice and
     EGLStream families of extensions, for use in combination with an
     EGLStream-enabled Wayland compositor:
     https://cgit.freedesktop.org/~jjones/weston/

     More information can be found along with the EGL external interface and
     Wayland library source code at
     https://github.com/NVIDIA/eglexternalplatform and
     https://github.com/NVIDIA/egl-wayland.

   o Vendor neutral graphics libraries provided by libglvnd
     ('/usr/lib/libOpenGL.so.0', '/usr/lib/libGLX.so.0', and
     '/usr/lib/libGLdispatch.so.0'); these libraries are currently used to
     provide full OpenGL dispatching support to NVIDIA's implementation of
     EGL.

     Source code for libglvnd is available at
     https://github.com/NVIDIA/libglvnd

   o GLVND vendor implementation libraries for GLX
     ('/usr/lib/libGLX_nvidia.so.0') and EGL ('/usr/lib/libEGL_nvidia.so.0');
     these libraries provide NVIDIA implementations of OpenGL functionality
     which may be accessed using the GLVND client-facing libraries.

   o A GLX client library and Vulkan ICD ('/usr/lib/libGL.so.1'), either as
     part of the GLVND infrastructure, or a legacy, non-GLVND GLX client
     library. This library provides API entry points for all GLX function
     calls, and is loaded at run-time by applications. Users may choose one or
     the other at installation time by using either the --glvnd-glx-client or
     the --no-glvnd-glx-client command line option to 'nvidia-installer'.

     Note that although both the GLVND and non-GLVND GLX client libraries
     share the same SONAME of libGL.so.1, only one of them at a time may be
     installed at a time. '/usr/lib/libGL.so.384.59' is the non-GLVND GLX
     client library, and '/usr/lib/libGL.so.1.0.0' is the GLVND GLX client
     library.

     This library is also used as the Vulkan ICD. Its configuration file is
     installed as '/etc/vulkan/icd.d/nvidia_icd.json'.

     Repackagers of the driver are encouraged to provide the GLVND-based
     driver stack to promote adoption of the new infrastructure, but those who
     choose to package the legacy GLX client library instead of, or as an
     alternative to, the GLVND GLX client library should be aware that the
     NVIDIA EGL driver depends upon GLVND for proper functionality. The legacy
     GLX client library may coexist with most GLVND libraries, with the
     exception of 'libGL.so.1' and 'libGLX.so.0', so it is possible to support
     both NVIDIA EGL and legacy, non-GLVND NVIDIA GLX by installing all of the
     GLVND libraries except for libGL and libGLX alongside the legacy libGL.

   o Various libraries that are used internally by other driver components.
     These include '/usr/lib/libnvidia-cfg.so.384.59',
     '/usr/lib/libnvidia-compiler.so.384.59',
     '/usr/lib/libnvidia-eglcore.so.384.59',
     '/usr/lib/libnvidia-glcore.so.384.59', and
     '/usr/lib/libnvidia-glsi.so.384.59'.

   o A VDPAU (Video Decode and Presentation API for Unix-like systems) library
     for the NVIDIA vendor implementation,
     ('/usr/lib/vdpau/libvdpau_nvidia.so.384.59'); see Appendix G for
     details.

   o The CUDA library ('/usr/lib/libcuda.so.384.59') which provides
     runtime support for CUDA (high-performance computing on the GPU)
     applications.

   o The Fatbinary Loader library
     ('/usr/lib/libnvidia-fatbinaryloader.so.384.59') provides support
     for the CUDA driver to work with CUDA fatbinaries. Fatbinary is a
     container format which can package multiple PTX and Cubin files compiled
     for different SM architectures.

   o The PTX JIT Compiler library
     ('/usr/lib/libnvidia-ptxjitcompiler.so.384.59') is a JIT compiler
     which compiles PTX into GPU machine code and is used by the CUDA driver.

   o Two OpenCL libraries ('/usr/lib/libOpenCL.so.1.0.0',
     '/usr/lib/libnvidia-opencl.so.384.59'); the former is a
     vendor-independent Installable Client Driver (ICD) loader, and the latter
     is the NVIDIA Vendor ICD. A config file '/etc/OpenCL/vendors/nvidia.icd'
     is also installed, to advertise the NVIDIA Vendor ICD to the ICD Loader.

   o The 'nvidia-cuda-mps-control' and 'nvidia-cuda-mps-server' applications,
     which allow MPI processes to run concurrently on a single GPU.

   o A kernel module ('/lib/modules/`uname
     -r`/kernel/drivers/video/nvidia-modeset.ko'); this kernel module is
     responsible for programming the display engine of the GPU. User-mode
     NVIDIA driver components such as the NVIDIA X driver, OpenGL driver, and
     VDPAU driver communicate with nvidia-modeset.ko through the
     /dev/nvidia-modeset device file.

   o A kernel module ('/lib/modules/`uname
     -r`/kernel/drivers/video/nvidia.ko'); this kernel module provides
     low-level access to your NVIDIA hardware for all of the above components.
     It is generally loaded into the kernel when the X server is started, and
     is used by the X driver and OpenGL. nvidia.ko consists of two pieces: the
     binary-only core, and a kernel interface that must be compiled
     specifically for your kernel version. Note that the Linux kernel does not
     have a consistent binary interface like the X server, so it is important
     that this kernel interface be matched with the version of the kernel that
     you are using. This can either be accomplished by compiling yourself, or
     using precompiled binaries provided for the kernels shipped with some of
     the more common Linux distributions.

   o NVIDIA Unified Memory kernel module ('/lib/modules/`uname
     -r`/kernel/drivers/video/nvidia-uvm.ko'); this kernel module provides
     functionality for sharing memory between the CPU and GPU in CUDA
     programs. It is generally loaded into the kernel when a CUDA program is
     started, and is used by the CUDA driver on supported platforms.

   o The nvidia-tls libraries ('/usr/lib/libnvidia-tls.so.384.59' and
     '/usr/lib/tls/libnvidia-tls.so.384.59'); these files provide thread
     local storage support for the NVIDIA OpenGL libraries (libGL,
     libnvidia-glcore, and libglx). Each nvidia-tls library provides support
     for a particular thread local storage model (such as ELF TLS), and the
     one appropriate for your system will be loaded at run time.

   o The nvidia-ml library ('/usr/lib/libnvidia-ml.so.384.59'); The
     NVIDIA Management Library provides a monitoring and management API. See
     Chapter 25 for more information.

   o The application nvidia-installer ('/usr/bin/nvidia-installer') is
     NVIDIA's tool for installing and updating NVIDIA drivers. See Chapter 4
     for a more thorough description.

     Source code is available at
     https://download.nvidia.com/XFree86/nvidia-installer/.

   o The application nvidia-modprobe ('/usr/bin/nvidia-modprobe') is installed
     as setuid root and is used to load the NVIDIA kernel module and create
     the '/dev/nvidia*' device nodes by processes (such as CUDA applications)
     that don't run with sufficient privileges to do those things themselves.

     Source code is available at
     https://download.nvidia.com/XFree86/nvidia-modprobe/.

   o The application nvidia-xconfig ('/usr/bin/nvidia-xconfig') is NVIDIA's
     tool for manipulating X server configuration files. See Chapter 6 for
     more information.

     Source code is available at
     https://download.nvidia.com/XFree86/nvidia-xconfig/.

   o The application nvidia-settings ('/usr/bin/nvidia-settings') is NVIDIA's
     tool for dynamic configuration while the X server is running. See Chapter
     23 for more information.

   o The libnvidia-gtk libraries ('/usr/lib/libnvidia-gtk2.so.384.59' and
     on some platforms '/usr/lib/libnvidia-gtk3.so.384.59'); these
     libraries are required to provide the nvidia-settings user interface.

     Source code is available at
     https://download.nvidia.com/XFree86/nvidia-settings/.

   o The application nvidia-smi ('/usr/bin/nvidia-smi') is the NVIDIA System
     Management Interface for management and monitoring functionality. See
     Chapter 24 for more information.

   o The application nvidia-debugdump ('/usr/bin/nvidia-debugdump') is
     NVIDIA's tool for collecting internal GPU state. It is normally invoked
     by the nvidia-bug-report.sh ('/usr/bin/nvidia-bug-report.sh') script. See
     Chapter 26 for more information.

   o The daemon nvidia-persistenced ('/usr/bin/nvidia-persistenced') is the
     NVIDIA Persistence Daemon for allowing the NVIDIA kernel module to
     maintain persistent state when no other NVIDIA driver components are
     running. See Chapter 27 for more information.

     Source code is available at
     https://download.nvidia.com/XFree86/nvidia-persistenced/.

   o The NVCUVID library ('/usr/lib/libnvcuvid.so.384.59'); The NVIDIA
     CUDA Video Decoder (NVCUVID) library provides an interface to hardware
     video decoding capabilities on NVIDIA GPUs with CUDA.

   o The NvEncodeAPI library ('/usr/lib/libnvidia-encode.so.384.59'); The
     NVENC Video Encoding library provides an interface to video encoder
     hardware on supported NVIDIA GPUs.

   o The NvIFROpenGL library ('/usr/lib/libnvidia-ifr.so.384.59'); The
     NVIDIA OpenGL-based Inband Frame Readback library provides an interface
     to capture and optionally encode an OpenGL framebuffer.

   o The NvFBC library ('/usr/lib/libnvidia-fbc.so.384.59'); The NVIDIA
     Framebuffer Capture library provides an interface to capture and
     optionally encode the framebuffer of an X server screen.

   o An X driver configuration file
     ('/usr/share/X11/xorg.conf.d/nvidia-drm-outputclass.conf'); If the X
     server is sufficiently new, this file will be installed to configure the
     X server to load the 'nvidia_drv.so' driver automatically if it is
     started after the NVIDIA DRM kernel module (nvidia-drm.ko) is loaded.
     This feature is supported in X.Org xserver 1.16 and higher when running
     on Linux kernel 3.13 or higher with CONFIG_DRM enabled.

   o Predefined application profile keys and documentation for those keys can
     be found in the following files in the directory '/usr/share/nvidia/':
     'nvidia-application-profiles-384.59-rc',
     'nvidia-application-profiles-384.59-key-documentation'.

     See Appendix J for more information.


Problems will arise if applications use the wrong version of a library. This
can be the case if there are either old libGL libraries or stale symlinks left
lying around. If you think there may be something awry in your installation,
check that the following files are in place (these are all the files of the
NVIDIA Accelerated Linux Graphics Driver, as well as their symlinks):

    /usr/lib/xorg/modules/drivers/nvidia_drv.so
    /usr/lib/xorg/modules/libwfb.so (if your X server is new enough), or
    /usr/lib/xorg/modules/libnvidia-wfb.so and
    /usr/lib/xorg/modules/libwfb.so -> libnvidia-wfb.so

    /usr/lib/xorg/modules/extensions/libglx.so.384.59
    /usr/lib/xorg/modules/extensions/libglx.so -> libglx.so.384.59

    (the above may also be in /usr/lib/modules or /usr/X11R6/lib/modules)

    /usr/lib/libGL.so.384.59
    /usr/lib/libGL.so.1 -> libGL.so.384.59
    /usr/lib/libGL.so -> libGL.so.1

    (on GLVND-based installations, libGL.so.1 from GLVND may be used instead
    of libGL.so.384.59 as shown above.)

    /usr/lib/libnvidia-glcore.so.384.59

    /usr/lib/libcuda.so.384.59
    /usr/lib/libcuda.so -> libcuda.so.384.59

    /lib/modules/`uname -r`/video/nvidia.{o,ko}, or
    /lib/modules/`uname -r`/kernel/drivers/video/nvidia.{o,ko}

If there are other libraries whose "soname" conflicts with that of the NVIDIA
libraries, ldconfig may create the wrong symlinks. It is recommended that you
manually remove or rename conflicting libraries (be sure to rename clashing
libraries to something that ldconfig will not look at -- we have found that
prepending "XXX" to a library name generally does the trick), rerun
'ldconfig', and check that the correct symlinks were made. An example of a
library that often creates conflicts is "/usr/lib/mesa/libGL.so*".

If the libraries appear to be correct, then verify that the application is
using the correct libraries. For example, to check that the application
/usr/bin/glxgears is using the NVIDIA libraries, run:

    % ldd /usr/bin/glxgears
	linux-gate.so.1 =>  (0xffffe000)
	libGL.so.1 => /usr/lib/libGL.so.1 (0xb7ed1000)
	libXext.so.6 => /usr/lib/libXext.so.6 (0xb7ec0000)
	libX11.so.6 => /usr/lib/libX11.so.6 (0xb7de0000)
	libpthread.so.0 => /lib/tls/libpthread.so.0 (0x00946000)
	libm.so.6 => /lib/tls/libm.so.6 (0x0075d000)
	libc.so.6 => /lib/tls/libc.so.6 (0x00631000)
	libnvidia-tls.so.384.59 => /usr/lib/tls/libnvidia-tls.so.384.59
(0xb7ddd000)
	libnvidia-glcore.so.384.59 => /usr/lib/libnvidia-glcore.so.384.59
(0xb5d1f000)
	libdl.so.2 => /lib/libdl.so.2 (0x00782000)
	/lib/ld-linux.so.2 (0x00614000)

In the example above, the list of libraries reported by 'ldd' includes
'libnvidia-tls.so.384.59' and 'libnvidia-glcore.so.384.59': this is
because 'glxgears' links 'libGL.so.1', which in this case is the legacy,
non-GLVND NVIDIA GLX client library. When 'libGL.so.1' is provided by GLVND
instead, 'libGLX.so.0' and 'libGLdispatch.so.0' should appear in the output of
'ldd'. If the GLX client library is something other than the NVIDIA or GLVND
'libGL.so.1', then you will need to either remove the library that is getting
in the way or adjust your dynamic loader search path using the
'LD_LIBRARY_PATH' environment variable. You may want to consult the man pages
for 'ldconfig' and 'ldd'.

______________________________________________________________________________

Chapter 6. Configuring X for the NVIDIA Driver
______________________________________________________________________________

The X configuration file provides a means to configure the X server. This
section describes the settings necessary to enable the NVIDIA driver. A
comprehensive list of parameters is provided in Appendix B.

The NVIDIA Driver includes a utility called nvidia-xconfig, which is designed
to make editing the X configuration file easy. You can also edit it by hand.


6A. USING NVIDIA-XCONFIG TO CONFIGURE THE X SERVER

nvidia-xconfig will find the X configuration file and modify it to use the
NVIDIA X driver. In most cases, you can simply answer "Yes" when the installer
asks if it should run it. If you need to reconfigure your X server later, you
can run nvidia-xconfig again from a terminal. nvidia-xconfig will make a
backup copy of your configuration file before modifying it.

Note that the X server must be restarted for any changes to its configuration
file to take effect.

More information about nvidia-xconfig can be found in the nvidia-xconfig
manual page by running.

    % man nvidia-xconfig




6B. MANUALLY EDITING THE CONFIGURATION FILE

In April 2004 the X.Org Foundation released an X server based on the XFree86
server. While your release may use the X.Org X server, rather than XFree86,
the differences between the two should have no impact on NVIDIA Linux users
with two exceptions:

   o The X.Org configuration file is '/etc/X11/xorg.conf' while the XFree86
     configuration file is '/etc/X11/XF86Config'. The files use the same
     syntax. This document refers to both files as "the X config file".

   o The X.Org log file is '/var/log/Xorg.#.log' while the XFree86 log file is
     '/var/log/XFree86.#.log' (where '#' is the server number -- usually 0).
     The format of the log files is nearly identical. This document refers to
     both files as "the X log file".

In order for any changes to be read into the X server, you must edit the file
used by the server. While it is not unreasonable to simply edit both files, it
is easy to determine the correct file by searching for the line

    (==) Using config file:

in the X log file. This line indicates the name of the X config file in use.

If you do not have a working X config file, there are a few different ways to
obtain one. A sample config file is included both with the XFree86
distribution and with the NVIDIA driver package (at
'/usr/share/doc/NVIDIA_GLX-1.0/'). The 'nvidia-xconfig' utility, provided with
the NVIDIA driver package, can generate a new X configuration file. Additional
information on the X config syntax can be found in the XF86Config manual page
(`man XF86Config` or `man xorg.conf`).

If you have a working X config file for a different driver (such as the "vesa"
or "fbdev" driver), then simply edit the file as follows.

Remove the line:

      Driver "vesa"
  (or Driver "fbdev")

and replace it with the line:

    Driver "nvidia"

Remove the following lines:

    Load "dri"
    Load "GLCore"

In the "Module" section of the file, add the line (if it does not already
exist):

    Load "glx"

If the X config file does not have a "Module" section, you can safely skip the
last step if the X server installed on your system is an X.Org X server or an
XFree86 X release version 4.4.0 or greater. If you are using an older XFree86
X server, add the following to your X config file:

Section "Module"
    Load "extmod"
    Load "dbe"
    Load "type1"
    Load "freetype"
    Load "glx"
EndSection

There are numerous options that may be added to the X config file to tune the
NVIDIA X driver. See Appendix B for a complete list of these options.

Once you have completed these edits to the X config file, you may restart X
and begin using the accelerated OpenGL libraries. After restarting X, any
OpenGL application should automatically use the new NVIDIA libraries. (NOTE:
If you encounter any problems, see Chapter 8 for common problem diagnoses.)


6C. RESTORING THE X CONFIGURATION AFTER UNINSTALLING THE DRIVER

If X is explicitly configured to use the NVIDIA driver, then the X config file
should be edited to use a different X driver after uninstalling the NVIDIA
driver. Otherwise, X may fail to start, since the driver it was configured to
use will no longer be present on the system after uninstallation.

If you edited the file manually, revert any edits you made. If you used the
'nvidia-xconfig' utility, either by answering "Yes" when prompted to configure
the X server by the installer, or by running it manually later on, then you
may restore the backed-up X config file, if it exists and reflects the X
config state that existed before the NVIDIA driver was installed.

If you do not recall any manual changes that you made to the file, or do not
have a backed-up X config file that uses a non-NVIDIA X driver, you may want
to try simply renaming the X configuration file, to see if your X server loads
a sensible default.

______________________________________________________________________________

Chapter 7. Frequently Asked Questions
______________________________________________________________________________

This section provides answers to frequently asked questions associated with
the NVIDIA Linux x86_64 Driver and its installation. Common problem diagnoses
can be found in Chapter 8 and tips for new users can be found in Appendix I.
Also, detailed information for specific setups is provided in the Appendices.


NVIDIA-INSTALLER

Q. How do I extract the contents of the '.run' without actually installing the
   driver?

A. Run the installer as follows:
   
       # sh NVIDIA-Linux-x86_64-384.59.run --extract-only
   
   This will create the directory NVIDIA-Linux-x86_64-384.59, containing
   the uncompressed contents of the '.run' file.


Q. How can I see the source code to the kernel interface layer?

A. The source files to the kernel interface layer are in the kernel directory
   of the extracted .run file. To get to these sources, run:
   
       # sh NVIDIA-Linux-x86_64-384.59.run --extract-only
       # cd NVIDIA-Linux-x86_64-384.59/kernel/
   
   

Q. How and when are the NVIDIA device files created?

A. When a user-space NVIDIA driver component needs to communicate with the
   NVIDIA kernel module, and the NVIDIA character device files do not yet
   exist, the user-space component will first attempt to load the kernel
   module and create the device files itself.

   Device file creation and kernel module loading generally require root
   privileges. The X driver, running within a setuid root X server, will have
   these privileges, but not, e.g., the CUDA driver within the environment of
   a normal user.

   If the user-space NVIDIA driver component cannot load the kernel module or
   create the device files itself, it will attempt to invoke the setuid root
   nvidia-modprobe utility, which will perform these operations on behalf of
   the non-privileged driver.

   See the nvidia-modprobe(1) man page, or its source code, available here:
   https://download.nvidia.com/XFree86/nvidia-modprobe/

   When possible, it is recommended to use your Linux distribution's native
   mechanisms for managing kernel module loading and device file creation.
   nvidia-modprobe is provided as a fallback to work out-of-the-box in a
   distribution-independent way.

   Whether a user-space NVIDIA driver component does so itself, or invokes
   nvidia-modprobe, it will default to creating the device files with the
   following attributes:
   
         UID:  0     - 'root'
         GID:  0     - 'root'
         Mode: 0666  - 'rw-rw-rw-'
   
   Existing device files are changed if their attributes don't match these
   defaults. If you want the NVIDIA driver to create the device files with
   different attributes, you can specify them with the "NVreg_DeviceFileUID"
   (user), "NVreg_DeviceFileGID" (group) and "NVreg_DeviceFileMode" NVIDIA
   Linux kernel module parameters.

   For example, the NVIDIA driver can be instructed to create device files
   with UID=0 (root), GID=44 (video) and Mode=0660 by passing the following
   module parameters to the NVIDIA Linux kernel module:
   
         NVreg_DeviceFileUID=0
         NVreg_DeviceFileGID=44
         NVreg_DeviceFileMode=0660
   
   The "NVreg_ModifyDeviceFiles" NVIDIA kernel module parameter will disable
   dynamic device file management, if set to 0.


Q. Why does NVIDIA not provide RPMs?

A. Not every Linux distribution uses RPM, and NVIDIA provides a single
   solution that works across all Linux distributions. NVIDIA encourages Linux
   distributions to repackage and redistribute the NVIDIA Linux driver in
   their native package management formats. These repackaged NVIDIA drivers
   are likely to inter-operate best with the Linux distribution's package
   management technology. For this reason, NVIDIA encourages users to use
   their distribution's repackaged NVIDIA driver, where available.


Q. What is the significance of the '-no-compat32' suffix on Linux-x86_64
   '.run' files?

A. To distinguish between Linux-x86_64 driver package files that do or do not
   also contain 32-bit compatibility libraries, "-no-compat32" is be appended
   to the latter. 'NVIDIA-Linux-x86_64-384.59.run' contains both 64-bit
   and 32-bit driver binaries; but
   'NVIDIA-Linux-x86_64-384.59-no-compat32.run' omits the 32-bit
   compatibility libraries.


Q. Can I add my own precompiled kernel interfaces to a '.run' file?

A. Yes, the --add-this-kernel  '.run' file option will unpack the '.run' file,
   build a precompiled kernel interface for the currently running kernel, and
   repackage the '.run' file, appending '-custom' to the filename. This may be
   useful, for example. if you administer multiple Linux computers, each
   running the same kernel.


Q. Where can I find the source code for the 'nvidia-installer' utility?

A. The 'nvidia-installer' utility is released under the GPL. The source code
   for the version of nvidia-installer built with driver 384.59 is in
   'nvidia-installer-384.59.tar.bz2' available here:
   https://download.nvidia.com/XFree86/nvidia-installer/



NVIDIA DRIVER

Q. Where should I start when diagnosing display problems?

A. One of the most useful tools for diagnosing problems is the X log file in
   '/var/log'. Lines that begin with "(II)" are information, "(WW)" are
   warnings, and "(EE)" are errors. You should make sure that the correct
   config file (i.e. the config file you are editing) is being used; look for
   the line that begins with:
   
       (==) Using config file:
   
   Also make sure that the NVIDIA driver is being used, rather than another
   driver. Search for
   
       (II) LoadModule: "nvidia"
   
   Lines from the driver should begin with:
   
       (II) NVIDIA(0)
   
   

Q. How can I increase the amount of data printed in the X log file?

A. By default, the NVIDIA X driver prints relatively few messages to stderr
   and the X log file. If you need to troubleshoot, then it may be helpful to
   enable more verbose output by using the X command line options -verbose and
   -logverbose, which can be used to set the verbosity level for the 'stderr'
   and log file messages, respectively. The NVIDIA X driver will output more
   messages when the verbosity level is at or above 5 (X defaults to verbosity
   level 1 for 'stderr' and level 3 for the log file). So, to enable verbose
   messaging from the NVIDIA X driver to both the log file and 'stderr', you
   could start X with the verbosity level set to 5, by doing the following
   
       % startx -- -verbose 5 -logverbose 5
   
   

Q. What is NVIDIA's policy towards development series Linux kernels?

A. NVIDIA does not officially support development series kernels. However, all
   the kernel module source code that interfaces with the Linux kernel is
   available in the 'kernel/' directory of the '.run' file. NVIDIA encourages
   members of the Linux community to develop patches to these source files to
   support development series kernels. A web search will most likely yield
   several community supported patches.


Q. Where can I find the tarballs?

A. Plain tarballs are not available. The '.run' file is a tarball with a shell
   script prepended. You can execute the '.run' file with the --extract-only
   option to unpack the tarball.


Q. How do I tell if I have my kernel sources installed?

A. If you are running on a distro that uses RPM (Red Hat, Mandriva, SuSE,
   etc), then you can use 'rpm' to tell you. At a shell prompt, type:
   
       % rpm -qa | grep kernel
   
   and look at the output. You should see a package that corresponds to your
   kernel (often named something like kernel-2.6.15-7) and a kernel source
   package with the same version (often named something like
   kernel-devel-2.6.15-7). If none of the lines seem to correspond to a source
   package, then you will probably need to install it. If the versions listed
   mismatch (e.g., kernel-2.6.15-7 vs. kernel-devel-2.6.15-10), then you will
   need to update the kernel-devel package to match the installed kernel. If
   you have multiple kernels installed, you need to install the kernel-devel
   package that corresponds to your RUNNING kernel (or make sure your
   installed source package matches the running kernel). You can do this by
   looking at the output of 'uname -r' and matching versions.


Q. What is SELinux and how does it interact with the NVIDIA driver ?

A. Security-Enhanced Linux (SELinux) is a set of modifications applied to the
   Linux kernel and utilities that implement a security policy architecture.
   When in use it requires that the security type on all shared libraries be
   set to 'shlib_t'. The installer detects when to set the security type, and
   sets it on all shared libraries it installs. The option --force-selinux
   passed to the '.run' file overrides the detection of when to set the
   security type.


Q. Why does X use so much memory?

A. When measuring any application's memory usage, you must be careful to
   distinguish between physical system RAM used and virtual mappings of shared
   resources. For example, most shared libraries exist only once in physical
   memory but are mapped into multiple processes. This memory should only be
   counted once when computing total memory usage. In the same way, the video
   memory on a graphics card or register memory on any device can be mapped
   into multiple processes. These mappings do not consume normal system RAM.

   This has been a frequently discussed topic on XFree86 mailing lists; see,
   for example:

    http://marc.theaimsgroup.com/?l=xfree-xpert&m=96835767116567&w=2

   The 'pmap' utility described in the above thread is available in the
   "procps" package shipped with most recent Linux distributions, and is a
   useful tool in distinguishing between types of memory mappings. For
   example, while 'top' may indicate that X is using several hundred MB of
   memory, the last line of output from the output of pmap (note that pmap may
   need to be run as root):
   
       # pmap -d `pidof X` | tail -n 1
       mapped: 161404K    writeable/private: 7260K    shared: 118056K
   
   reveals that X is really only using roughly 7MB of system RAM (the
   "writeable/private" value).

   Note, also, that X must allocate resources on behalf of X clients (the
   window manager, your web browser, etc); the X server's memory usage will
   increase as more clients request resources such as pixmaps, and decrease as
   you close X applications.

   The "IndirectMemoryAccess" X configuration option may cause additional
   virtual address space to be reserved.


Q. Why do applications that use DGA graphics fail?

A. The NVIDIA driver does not support the graphics component of the
   XFree86-DGA (Direct Graphics Access) extension. Applications can use the
   XDGASelectInput() function to acquire relative pointer motion, but
   graphics-related functions such as XDGASetMode() and XDGAOpenFramebuffer()
   will fail.

   The graphics component of XFree86-DGA is not supported because it requires
   a CPU mapping of framebuffer memory. As graphics cards ship with increasing
   quantities of video memory, the NVIDIA X driver has had to switch to a more
   dynamic memory mapping scheme that is incompatible with DGA. Furthermore,
   DGA does not cooperate with other graphics rendering libraries such as Xlib
   and OpenGL because it accesses GPU resources directly.

   NVIDIA recommends that applications use OpenGL or Xlib, rather than DGA,
   for graphics rendering. Using rendering libraries other than DGA will yield
   better performance and improve interoperability with other X applications.


Q. My kernel log contains messages that are prefixed with "Xid"; what do these
   messages mean?

A. "Xid" messages indicate that a general GPU error occurred, most often due
   to the driver misprogramming the GPU or to corruption of the commands sent
   to the GPU. These messages provide diagnostic information that can be used
   by NVIDIA to aid in debugging reported problems.


Q. I use the Coolbits overclocking interface to adjust my graphics card's
   clock frequencies, but the defaults are reset whenever X is restarted. How
   do I make my changes persistent?

A. Clock frequency settings are not saved/restored automatically by default to
   avoid potential stability and other problems that may be encountered if the
   chosen frequency settings differ from the defaults qualified by the
   manufacturer. You can add an 'nvidia-settings' command to '~/.xinitrc' to
   automatically apply custom clock frequency settings when the X server is
   started. See the 'nvidia-settings(1)' manual page for more information on
   setting clock frequency settings on the command line.


Q. Why is the refresh rate not reported correctly by utilities that use the
   XF86VidMode X extension and/or RandR X extension versions prior to 1.2
   (e.g., `xrandr --q1`)?

A. These extensions are not aware of multiple display devices on a single X
   screen; they only see the MetaMode bounding box, which may contain one or
   more actual modes. This means that if multiple MetaModes have the same
   bounding box, these extensions will not be able to distinguish between
   them. In order to support dynamic display configuration, the NVIDIA X
   driver must make each MetaMode appear to be unique and accomplishes this by
   using the refresh rate as a unique identifier.

   You can use `nvidia-settings -q RefreshRate` to query the actual refresh
   rate on each display device.


Q. Why does starting certain applications result in Xlib error messages
   indicating extensions like "XFree86-VidModeExtension" or "SHAPE" are
   missing?

A. If your X config file has a "Module" section that does not list the
   "extmod" module, some X server extensions may be missing, resulting in
   error messages of the form:
   
   Xlib: extension "SHAPE" missing on display ":0.0"
   Xlib: extension "XFree86-VidModeExtension" missing on display ":0.0"
   Xlib: extension "XFree86-DGA" missing on display ":0.0"
   
   You can solve this problem by adding the line below to your X config file's
   "Module" section:
   
       Load "extmod"
   
   

Q. Where can I find older driver versions?

A. Please visit https://download.nvidia.com/XFree86/Linux-x86_64/


Q. What is the format of a PCI Bus ID?

A. Different tools have different formats for the PCI Bus ID of a PCI device.

   The X server's "BusID" X configuration file option interprets the BusID
   string in the format "bus@domain:device:function" (the "@domain" portion is
   only needed if the PCI domain is non-zero), in decimal. More specifically,
   
   "%d@%d:%d:%d", bus, domain, device, function
   
   in printf(3) syntax. NVIDIA X driver logging, nvidia-xconfig, and
   nvidia-settings match the X configuration file BusID convention.

   The lspci(8) utility, in contrast, reports the PCI BusID of a PCI device in
   the format "domain:bus:device.function", printing the values in
   hexadecimal. More specifically,
   
   "%04x:%02x:%02x.%x", domain, bus, device, function
   
   in printf(3) syntax. The "Bus Location" reported in the information file
   matches the lspci format. Also, the name of per-GPU directory in
   /proc/driver/nvidia/gpus is the same as the corresponding GPU's PCI BusID
   in lspci format.

   On systems where both an integrated GPU and a PCI slot are present, setting
   the "BusID" option to "AXI" selects the integrated GPU. By default, not
   specifying this option or setting it to an empty string selects a discrete
   GPU if available, the integrated GPU otherwise.


Q. How do I interpret X server version numbers?

A. X server version numbers can be difficult to interpret because some X.Org X
   servers report the versions of different things.

   In 2003, X.Org created a fork of the XFree86 project's code base, which
   used a monolithic build system to build the X server, libraries, and
   applications together in one source code repository. It resumed the release
   version numbering where it left off in 2001, continuing with 6.7, 6.8,
   etc., for the releases of this large bundle of code. These version numbers
   are sometimes written X11R6.7, X11R6.8, etc. to include the version of the
   X protocol.

   In 2005, an effort was made to split the monolithic code base into separate
   modules with their own version numbers to make them easier to maintain and
   so that they could be released independently. X.Org still occasionally
   releases these modules together, with a single version number. These
   releases are simply referred to as "X.Org releases", or sometimes
   "katamari" releases. For example, X.Org 7.6 was released on December 20,
   2010 and contains version 1.9.3 of the xorg-server package, which contains
   the core X server itself.

   The release management changes from XFree86, to X.Org monolithic releases,
   to X.Org modular releases impacted the behavior of the X server's
   "-version" command line option. For example, XFree86 X servers always
   report the version of the XFree86 monolithic package:
   
   
   XFree86 Version 4.3.0 (Red Hat Linux release: 4.3.0-2)
   Release Date: 27 February 2003
   X Protocol Version 11, Revision 0, Release 6.6
   
   
   X servers in X.Org monolithic and early "katamari" releases did something
   similar:
   
   
   X Window System Version 7.1.1
   Release Date: 12 May 2006
   X Protocol Version 11, Revision 0, Release 7.1.1
   
   
   However, X.Org later modified the X server to start printing its individual
   module version number instead:
   
   
   X.Org X Server 1.9.3
   Release Date: 2010-12-13
   X Protocol Version 11, Revision 0
   
   
   Please keep this in mind when comparing X server versions: what looks like
   "version 7.x" is OLDER than version 1.x.


Q. Why doesn't the NVIDIA X driver make more display resolutions and refresh
   rates available via RandR?

A. Prior to the 302.* driver series, the list of modes reported to
   applications by the NVIDIA X driver was not limited to the list of modes
   natively supported by a display device. In order to expose the largest
   possible set of modes on digital flat panel displays, which typically do
   not accept arbitrary mode timings, the driver maintained separate sets of
   "front-end" and "back-end" mode timings, and scaled between them to
   simulate the availability of more modes than would otherwise be supported.

   Front-end timings were the values reported to applications, and back-end
   timings were what was actually sent to the display. Both sets of timings
   went through the full mode validation process, with the back-end timings
   having the additional constraint that they must be provided by the
   display's EDID, as only EDID-provided modes can be safely assumed to be
   supported by the display hardware. Applications could request any available
   front-end timings, which the driver would implicitly scale to either the
   "best fit" or "native" mode timings. For example, an application might
   request an 800x600 @ 60 Hz mode and the driver would provide it, but the
   real mode sent to the display would be 1920x1080 @ 30 Hz. While the
   availability of modes beyond those natively supported by a display was
   convenient for some uses, it created several problems. For example:
   
      o The complete front-end timings were reported to applications, but
        only the width and height were actually used. This could cause
        confusion because in many cases, changing the front-end timings did
        not change the back-end timings. This was especially confusing when
        trying to change the refresh rate, because the refresh rate in the
        front-end timings was ignored, but was still reported to
        applications.
   
      o The front-end timings reported to the user could be different from
        the backend timings reported in the display device's on screen
        display, leading to user confusion. Finding out the back-end timings
        (e.g. to find the real refresh rate) required using the
        NVIDIA-specific NV-CONTROL X extension.
   
      o The process by which back-end timings were selected for use with any
        given front-end timings was not transparent to users, and this
        process could only be explicitly configured with NVIDIA-specific
        xorg.conf options or the NV-CONTROL X extension. Confusion over how
        changing front-end timings could affect the back-end timings was
        especially problematic in use cases that were sensitive to the
        timings the display device receives, such as NVIDIA 3D Vision.
   
      o User-specified modes underwent normal mode validation, even though
        the timings in those modes were not used. For example, a 1920x1080 @
        100 Hz mode might fail the VertRefresh check, even though the
        back-end timings might actually be 1920x1080 @ 30 Hz.
   
   
   Version 1.2 of the X Resize and Rotate extension (henceforth referred to as
   "RandR 1.2") allows configuration of display scaling in a much more
   flexible and standardized way. The protocol allows applications to choose
   exactly which (back-end) mode timing is used, and exactly how the screen is
   scaled to fill that mode. It also allows explicit control over which
   displays are enabled, and which portions of the screen they display. This
   also provides much-needed transparency: the mode timings reported by RandR
   1.2 are the actual mode timings being sent to the display. However, this
   means that only modes actually supported by the display are reported in the
   RandR 1.2 mode list. Scaling configurations, such as the 800x600 to
   1920x1080 example above, need to be configured via the RandR 1.2 transform
   feature. Adding implicitly scaled modes to the mode list would conflict
   with the transform configuration options and reintroduce the same problems
   that the previous front-end/back-end timing system had.

   With the introduction of RandR 1.2 support to the 302.* driver series, the
   front-end/back-end timing system was abandoned, and the list of mode
   timings exposed by the NVIDIA X driver was simplified to include only those
   modes which would actually be driven by the hardware. Although it remained
   possible to manually configure all of the scaling configurations that were
   previously possible, and many scaling configurations which were previously
   impossible, this change resulted in some inconvenient losses of
   functionality:
   
      o Applications which used RandR 1.1 or earlier or XF86VidMode to set
        modes no longer had the implicitly scaled front-end timings available
        to them. Many displays have EDIDs which advertise only the display's
        native resolution, or a list of resolutions that is otherwise small,
        compared to the list that would previously have been exposed as
        front-end timings, preventing these applications from setting modes
        that were possible with previous versions of the NVIDIA driver.
   
      o The 'nvidia-settings' control panel, which formerly listed all
        available front-end modes for displays in its X Server Display
        Configuration page, only listed the actual back-end modes.
   
   
   Subsequent driver releases restored some of this functionality without
   reverting to the front-end/back-end system:
   
      o The NVIDIA X driver now builds a list of "Implicit MetaModes", which
        implicitly scale many common resolutions to a mode that is supported
        by the display. These modes are exposed to applications which use
        RandR 1.1 and XF86VidMode, as neither supports the scaling or other
        transform capabilities of RandR 1.2.
   
      o The resolution list in the 'nvidia-settings' X Server Display
        Configuration page now includes explicitly scaled modes for many
        common resolutions which are not directly supported by the display.
        To reduce confusion, the scaled modes are identified as being scaled,
        and it is not possible to set a refresh rate for any of the scaled
        modes.
   
   
   As mentioned previously, the RandR 1.2 mode list contains only modes which
   are supported by the display. Modern applications that wish to set modes
   other than those available in the RandR 1.2 mode list are encouraged to use
   RandR 1.2 transformations to program any required scaling operations. For
   example, the 'xrandr' utility can program RandR scaling transformations,
   and the following command can scale a 1280x720 mode to a display connected
   to output DVI-I-0 that does not support the desired mode, but does support
   1920x1080:
   
   xrandr --output DVI-I-0 --mode 1920x1080 --scale-from 1280x720
   
   

______________________________________________________________________________

Chapter 8. Common Problems
______________________________________________________________________________

This section provides solutions to common problems associated with the NVIDIA
Linux x86_64 Driver.

Q. My X server fails to start, and my X log file contains the error:
   
   (EE) NVIDIA(0): The NVIDIA kernel module does not appear to
   (EE) NVIDIA(0):      be receiving interrupts generated by the NVIDIA
   graphics
   (EE) NVIDIA(0):      device PCI:x:x:x. Please see the COMMON PROBLEMS
   (EE) NVIDIA(0):      section in the README for additional information.
   
   
A. This can be caused by a variety of problems, such as PCI IRQ routing
   errors, I/O APIC problems, conflicts with other devices sharing the IRQ (or
   their drivers), or MSI compatibility problems.

   If possible, configure your system such that your graphics card does not
   share its IRQ with other devices (try moving the graphics card to another
   slot if applicable, unload/disable the driver(s) for the device(s) sharing
   the card's IRQ, or remove/disable the device(s)).

   Depending on the nature of the problem, one of (or a combination of) these
   kernel parameters might also help:
   
       Parameter         Behavior
       --------------    ---------------------------------------------------
       pci=noacpi        don't use ACPI for PCI IRQ routing
       pci=biosirq       use PCI BIOS calls to retrieve the IRQ routing
                         table
       noapic            don't use I/O APICs present in the system
       acpi=off          disable ACPI
   
   
   The problem may also be caused by MSI compatibility problems. See "MSI
   Interrupts" for details.


Q. My X server fails to start, and my X log file contains the error:
   
   (EE) NVIDIA(0): The interrupt for NVIDIA graphics device PCI:x:x:x
   (EE) NVIDIA(0):      appears to be edge-triggered. Please see the COMMON
   (EE) NVIDIA(0):      PROBLEMS section in the README for additional
   information.
   
   
A. An edge-triggered interrupt means that the kernel has programmed the
   interrupt as edge-triggered rather than level-triggered in the Advanced
   Programmable Interrupt Controller (APIC). Edge-triggered interrupts are not
   intended to be used for sharing an interrupt line between multiple devices;
   level-triggered interrupts are the intended trigger for such usage. When
   using edge-triggered interrupts, it is common for device drivers using that
   interrupt line to stop receiving interrupts. This would appear to the end
   user as those devices no longer working, and potentially as a full system
   hang. These problems tend to be more common when multiple devices are
   sharing that interrupt line.

   This occurs when ACPI is not used to program interrupt routing in the APIC.
   It may also occur when ACPI is disabled, or fails to initialize. In these
   cases, the Linux kernel falls back to tables provided by the system BIOS.
   In some cases the system BIOS assumes ACPI will be used for routing
   interrupts and configures these tables to incorrectly label all interrupts
   as edge-triggered. The current interrupt configuration can be found in
   /proc/interrupts.

   Available workarounds include: updating to a newer system BIOS, a more
   recent Linux kernel with ACPI enabled, or passing the 'noapic' option to
   the kernel to force interrupt routing through the traditional Programmable
   Interrupt Controller (PIC). The Linux kernel also provides an interrupt
   polling mechanism you can use to attempt to work around this problem. This
   mechanism can be enabled by passing the 'irqpoll' option to the kernel.

   Currently, the NVIDIA driver will attempt to detect edge triggered
   interrupts and X will purposely fail to start (to avoid stability issues).
   This behavior can be overridden by setting the "NVreg_RMEdgeIntrCheck"
   NVIDIA Linux kernel module parameter. This parameter defaults to "1", which
   enables the edge triggered interrupt detection. Set this parameter to "0"
   to disable this detection.


Q. X starts for me, but OpenGL applications terminate immediately.

A. If X starts but you have trouble with OpenGL, you most likely have a
   problem with other libraries in the way, or there are stale symlinks. See
   Chapter 5 for details. Sometimes, all it takes is to rerun 'ldconfig'.

   You should also check that the correct extensions are present;
   
       % xdpyinfo
   
   should show the "GLX" and "NV-GLX" extensions present. If these two
   extensions are not present, then there is most likely a problem loading the
   glx module, or it is unable to implicitly load GLcore. Check your X config
   file and make sure that you are loading glx (see Chapter 6). If your X
   config file is correct, then check the X log file for warnings/errors
   pertaining to GLX. Also check that all of the necessary symlinks are in
   place (refer to Chapter 5).


Q. When Xinerama is enabled, my stereo glasses are shuttering only when the
   stereo application is displayed on one specific X screen. When the
   application is displayed on the other X screens, the stereo glasses stop
   shuttering.

A. This problem occurs with DDC and "blue line" stereo glasses, that get the
   stereo signal from one video port of the graphics card. When a X screen
   does not display any stereo drawable the stereo signal is disabled on the
   associated video port.

   Forcing stereo flipping allows the stereo glasses to shutter continuously.
   This can be done by enabling the OpenGL control "Force Stereo Flipping" in
   nvidia-settings, or by setting the X configuration option
   "ForceStereoFlipping" to "1".


Q. Stereo is not in sync across multiple displays.

A. There are two cases where this may occur. If the displays are attached to
   the same GPU, and one of them is out of sync with the stereo glasses, you
   will need to reconfigure your monitors to drive identical mode timings; see
   Chapter 18 for details.

   If the displays are attached to different GPUs, the only way to synchronize
   stereo across the displays is with a Quadro Sync device, which is only
   supported by certain Quadro cards. See Chapter 29 for details.


Q. I just upgraded my kernel, and now the NVIDIA kernel module will not load.

A. The kernel interface layer of the NVIDIA kernel module must be compiled
   specifically for the configuration and version of your kernel. If you
   upgrade your kernel, then the simplest solution is to reinstall the driver.

   ADVANCED: You can install the NVIDIA kernel module for a non running kernel
   (for example: in the situation where you just built and installed a new
   kernel, but have not rebooted yet) with a command line such as this:
   
       # sh NVIDIA-Linux-x86_64-384.59.run --kernel-name='KERNEL_NAME'
   
   
   Where 'KERNEL_NAME' is what 'uname -r' would report if the target kernel
   were running.


Q. Installing the driver fails with:
   
   Unable to load the kernel module 'nvidia.ko'.
   
   
   My X server fails to start, and my X log file contains the error:
   
   (EE) NVIDIA(0): Failed to load the NVIDIA kernel module!
   
   
A.  `nvidia-installer` attempts to load the NVIDIA kernel module before
   installing the driver, and will abort if this test load fails. Similarly,
   if the kernel module fails to load when starting the an X server with the
   NVIDIA X driver, the X server will fail to start.

   If the NVIDIA kernel module fails to load, you should check the output of
   `dmesg` for kernel error messages and/or attempt to load the kernel module
   explicitly with `modprobe nvidia`. There are a number of common failure
   cases:
   
      o Some symbols that the kernel module depends on failed to be resolved.
        If this happens, then the kernel module was most likely built against
        a Linux kernel source tree (or kernel headers) for a kernel revision
        or configuration that doesn't match the running kernel.
   
        In some cases, the NVIDIA kernel module may fail to resolve symbols
        due to those symbols being provided by modules that were built as
        part of the configuration of the currently running kernel, but which
        are not installed. For example, some distributions, such as Ubuntu
        14.04, provide the DRM kernel module in an optionally installed
        package (in the case of Ubuntu 14.04, linux-image-extra), but the
        kernel headers will reflect the availability of DRM regardless of
        whether the module that provides it is actually installed. The NVIDIA
        kernel module build will detect the availability of DRM when
        building, but will fail at load time with messages such as:
        
        nvidia: Unknown symbol drm_open (err 0)
        
        
        If any of the NVIDIA kernel modules fail to load due to unresolved
        symbols, and you are certain that the modules were built against the
        correct kernel source tree (or headers), check to see if there are
        any optionally installable modules that might provide these symbols
        which are not currently installed. If you believe that you might not
        be using the correct kernel sources/headers, you can specify their
        location when you install the NVIDIA driver using the
        --kernel-source-path command line option (see `sh
        NVIDIA-Linux-x86_64-384.59.run --advanced-options` for details).
   
      o Nouveau, or another driver, is already using the GPU. See Interaction
        with the Nouveau Driver for more information on Nouveau and how to
        disable it.
   
      o The kernel requires that kernel modules carry a valid signature from
        a trusted key, and the NVIDIA kernel module is unsigned, or has an
        invalid or untrusted signature. This may happen, for example, on some
        systems with UEFI Secure Boot enabled. See "Signing the NVIDIA Kernel
        Module" in Chapter 4 for more information about signing the kernel
        module.
   
      o No supported GPU is detected, either because no NVIDIA GPUs are
        detected in the system, or because none of the NVIDIA GPUs which are
        present are supported by this version of the NVIDIA kernel module.
        See Appendix A for information on which GPUs are supported by which
        driver versions.
   
   

Q. Installing the NVIDIA kernel module gives an error message like:
   
   #error Modules should never use kernel-headers system headers
   #error but headers from an appropriate kernel-source
   
   
A. You need to install the source for the Linux kernel. In most situations you
   can fix this problem by installing the kernel-source or kernel-devel
   package for your distribution


Q. OpenGL applications crash and print out the following warning:
   
   WARNING: Your system is running with a buggy dynamic loader.
   This may cause crashes in certain applications.  If you
   experience crashes you can try setting the environment
   variable __GL_SINGLE_THREADED to 1.  For more information,
   consult the FREQUENTLY ASKED QUESTIONS section in
   the file /usr/share/doc/NVIDIA_GLX-1.0/README.txt.
   
   
A. The dynamic loader on your system has a bug which will cause applications
   linked with pthreads, and that dlopen() libGL multiple times, to crash.
   This bug is present in older versions of the dynamic loader. Distributions
   that shipped with this loader include but are not limited to Red Hat Linux
   6.2 and Mandrake Linux 7.1. Version 2.2 and later of the dynamic loader are
   known to work properly. If the crashing application is single threaded then
   setting the environment variable '__GL_SINGLE_THREADED' to "1" will prevent
   the crash. In the bash shell you would enter:
   
       % export __GL_SINGLE_THREADED=1
   
   and in csh and derivatives use:
   
       % setenv __GL_SINGLE_THREADED 1
   
   Previous releases of the NVIDIA Accelerated Linux Graphics Driver attempted
   to work around this problem. Unfortunately, the workaround caused problems
   with other applications and was removed after version 1.0-1541.


Q. Quake3 crashes when changing video modes.

A. You are probably experiencing a problem described above. Please check the
   text output for the "WARNING" message described in the previous hint.
   Setting '__GL_SINGLE_THREADED' to "1" as will fix the problem.


Q. I cannot build the NVIDIA kernel module, or, I can build the NVIDIA kernel
   module, but modprobe/insmod fails to load the module into my kernel.

A. These problems are generally caused by the build using the wrong kernel
   header files (i.e. header files for a different kernel version than the one
   you are running). The convention used to be that kernel header files should
   be stored in '/usr/include/linux/', but that is deprecated in favor of
   '/lib/modules/RELEASE/build/include' (where RELEASE is the result of 'uname
   -r'. The 'nvidia-installer' should be able to determine the location on
   your system; however, if you encounter a problem you can force the build to
   use certain header files by using the --kernel-include-dir option. For this
   to work you will of course need the appropriate kernel header files
   installed on your system. Consult the documentation that came with your
   distribution; some distributions do not install the kernel header files by
   default, or they install headers that do not coincide properly with the
   kernel you are running.


Q. Compiling the NVIDIA kernel module gives this error:
   
   You appear to be compiling the NVIDIA kernel module with
   a compiler different from the one that was used to compile
   the running kernel. This may be perfectly fine, but there
   are cases where this can lead to unexpected behavior and
   system crashes.
   
   If you know what you are doing and want to override this
   check, you can do so by setting IGNORE_CC_MISMATCH.
   
   In any other case, set the CC environment variable to the
   name of the compiler that was used to compile the kernel.
   
   
A. You should compile the NVIDIA kernel module with the same compiler version
   that was used to compile your kernel. Some Linux kernel data structures are
   dependent on the version of gcc used to compile it; for example, in
   'include/linux/spinlock.h':
   
           ...
           * Most gcc versions have a nasty bug with empty initializers.
           */
           #if (__GNUC__ > 2)
             typedef struct { } rwlock_t;
             #define RW_LOCK_UNLOCKED (rwlock_t) { }
           #else
             typedef struct { int gcc_is_buggy; } rwlock_t;
             #define RW_LOCK_UNLOCKED (rwlock_t) { 0 }
           #endif
   
   If the kernel is compiled with gcc 2.x, but gcc 3.x is used when the kernel
   interface is compiled (or vice versa), the size of rwlock_t will vary, and
   things like ioremap will fail. To check what version of gcc was used to
   compile your kernel, you can examine the output of:
   
       % cat /proc/version
   
   To check what version of gcc is currently in your '$PATH', you can examine
   the output of:
   
       % gcc -v
   
   

Q. X fails with error
   
   Failed to allocate LUT context DMA
   
   
A. This is one of the possible consequences of compiling the NVIDIA kernel
   interface with a different gcc version than used to compile the Linux
   kernel (see above).


Q. I recently updated various libraries on my system using my Linux
   distributor's update utility, and the NVIDIA graphics driver no longer
   works.

A. Conflicting libraries may have been installed by your distribution's update
   utility; see Chapter 5 for details on how to diagnose this.


Q. I have rebuilt the NVIDIA kernel module, but when I try to insert it, I get
   a message telling me I have unresolved symbols.

A. Unresolved symbols are most often caused by a mismatch between your kernel
   sources and your running kernel. They must match for the NVIDIA kernel
   module to build correctly. Make sure your kernel sources are installed and
   configured to match your running kernel.


Q. OpenGL applications leak significant amounts of memory on my system!

A. If your kernel is making use of the -rmap VM, the system may be leaking
   memory due to a memory management optimization introduced in -rmap14a. The
   -rmap VM has been adopted by several popular distributions, the memory leak
   is known to be present in some of the distribution kernels; it has been
   fixed in -rmap15e.

   If you suspect that your system is affected, try upgrading your kernel or
   contact your distribution's vendor for assistance.


Q. Some OpenGL applications (like Quake3 Arena) crash when I start them on Red
   Hat Linux 9.0.

A. Some versions of the glibc package shipped by Red Hat that support TLS do
   not properly handle using dlopen() to access shared libraries which use
   some TLS models. This problem is exhibited, for example, when Quake3 Area
   dlopen() 's NVIDIA's libGL library. Please obtain at least glibc-2.3.2-11.9
   which is available as an update from Red Hat.


Q. When changing settings in games like Quake 3 Arena, or Wolfenstein Enemy
   Territory, the game crashes and I see this error:
   
   ...loading libGL.so.1: QGL_Init: dlopen libGL.so.1 failed: 
   /usr/lib/tls/libGL.so.1: shared object cannot be dlopen()ed:
   static TLS memory too small
   
   
A. These games close and reopen the NVIDIA OpenGL driver (via dlopen() /
   dlclose()) when settings are changed. On some versions of glibc (such as
   the one shipped with Red Hat Linux 9), there is a bug that leaks static TLS
   entries. This glibc bug causes subsequent re-loadings of the OpenGL driver
   to fail. This is fixed in more recent versions of glibc; see Red Hat bug
   #89692: https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=89692


Q. When I try to install the driver, the installer claims that X is running,
   even though I have exited X.

A. The installer detects the presence of an X server by checking for the X
   server's lock files: '/tmp/.Xn-lock', where 'n' is the number of the X
   Display (the installer checks for X Displays 0-7). If you have exited X,
   but one of these files has been left behind, then you will need to manually
   delete the lock file. DO NOT remove this file if X is still running!


Q. Why does the VBIOS fail to load on my Optimus system?

A. On some notebooks with Optimus graphics, the NVIDIA driver may not be able
   to retrieve the Video BIOS due to interactions between the System BIOS and
   the Linux kernel's ACPI subsystem. On affected notebooks, applications that
   require the GPU will fail, and messages like the following may appear in
   the system log:
   
   
   NVRM: failed to copy vbios to system memory.
   NVRM: RmInitAdapter failed! (0x30:0xffffffff:858)
   NVRM: rm_init_adapter(0) failed
   
   
   Such problems are typically beyond the control of the NVIDIA driver, which
   relies on proper cooperation of ACPI and the System BIOS to retrieve
   important information about the GPU, including the Video BIOS.


Q. OpenGL applications do not work with driver version 364.xx and later, which
   worked with previous driver versions

A. Release 361 of the NVIDIA Linux driver introduced OpenGL libraries built
   upon the libglvnd (GL Vendor Neutral Dispatch) architecture, to allow for
   the coexistence of multiple OpenGL implementations on the same system. The
   .run installer package includes both GLVND and non-GLVND GLX client
   libraries, and beginning with release 364, the GLVND libraries are
   installed by default.

   By design, GLVND conforms with the Linux OpenGL ABI version 1.0 as defined
   at https://www.opengl.org/registry/ABI/ and exposes all required entry
   points; however, applications which depend upon specifics of the NVIDIA
   OpenGL implementation which fall outside of the OpenGL ABI may be
   incompatible with a GLVND-based OpenGL implementation.

   If you encounter an application which is incompatible with GLVND, you may
   install a legacy, non-GLVND GLX client library by adding the
   --no-glvnd-glx-client to the 'nvidia-installer' command line at
   installation time. Please contact the application vendor to inform them
   that their application will need to be updated to ensure compatibility with
   GLVND.


Q. OpenGL applications are running slowly

A. The application is probably using a different library that still remains on
   your system, rather than the NVIDIA supplied OpenGL library. See Chapter 5
   for details.


Q. X takes a long time to start (possibly several minutes).

A. Most of the X startup delay problems we have found are caused by incorrect
   data in video BIOSes about what display devices are possibly connected or
   what i2c port should be used for detection. You can work around these
   problems with the X config option IgnoreDisplayDevices.


Q. Fonts are incorrectly sized after installing the NVIDIA driver.

A. Incorrectly sized fonts are generally caused by incorrect DPI (Dots Per
   Inch) information. You can check what X thinks the physical size of your
   monitor is, by running:
   
    % xdpyinfo | grep dimensions
   
   This will report the size in pixels, and in millimeters.

   If these numbers are wrong, you can correct them by modifying the X
   server's DPI setting. See Appendix E for details.


Q. OpenGL applications don't work, and my X log file contains the error:
   
   (EE) NVIDIA(0): Unable to map device node /dev/zero with read and write
   (EE) NVIDIA(0):     privileges.  The GLX extension will be disabled on this
   
   (EE) NVIDIA(0):     X screen.  Please see the COMMON PROBLEMS section in
   the 
   (EE) NVIDIA(0):     README for more information.
   
   
A. The NVIDIA OpenGL driver must be able to map anonymous memory with read and
   write execute privileges in order to function correctly. The driver needs
   this ability to allocate aligned memory, which is used for certain
   optimizations. Currently, GLX cannot run without these optimizations.


Q. X doesn't start, and my log file contains a message like the following:
   
   
   (EE) NVIDIA(0): Failed to allocate primary buffer: failed to set CPU access
   (EE) NVIDIA(0):     for surface.  Please see Chapter 8: Common Problems in
   (EE) NVIDIA(0):     the README for troubleshooting suggestions.
   
   
   
A. The NVIDIA X driver needs to be able to access the buffers it allocates
   from the CPU, but wasn't able to set up this access. This commonly fails if
   you're using a large virtual desktop size. Although your GPU may have
   enough onboard video memory for the buffer, the amount of usable memory may
   be limited if the "IndirectMemoryAccess" option is disabled, or if not
   enough address space was reserved for indirect memory access (this commonly
   occurs on 32-bit systems). If you're seeing this problem and are using a
   32-bit operating system, it may be resolved by switching to a 64-bit
   operating system.


Q. My log file contains a message like the following:
   
   
   (WW) NVIDIA(GPU-0): Unable to enter interactive mode, because
   non-interactive
   (WW) NVIDIA(GPU-0): mode has been previously requested.  The most common
   (WW) NVIDIA(GPU-0): cause is that a GPU compute application is currently
   (WW) NVIDIA(GPU-0): running. Please see the README for details.
   
   
   
A. This indicates that the X driver was not able to put the GPU in interactive
   mode, because another program has requested non-interactive mode. The GPU
   watchdog will not run, and long-running GPU compute programs may cause the
   X server and OpenGL programs to hang. If you intend to run long-running GPU
   compute programs, set the "Interactive" option to "off" to disable
   interactive mode.


Q. I see a blank screen or an error message instead of a login screen or
   desktop session

A. Installation or configuration problems may prevent the X server, a
   login/session manager, or a desktop environment from starting correctly. If
   your system is failing to display a login screen, or failing to start a
   desktop session, try the following troubleshooting steps:
   
      o Make sure that you are using the correct X driver for your
        configuration. Recent X servers will be able to automatically select
        the correct X driver in many cases, but if your X server does not
        automatically select the correct driver, you may need to manually
        configure it. For example, systems with multiple GPUs will likely
        require a PCI BusID in the "Device" section of the X configuration
        file, in order to specify which GPU is to be used.
   
        If you are planning to use NVIDIA GPUs for graphics, you can run the
        'nvidia-xconfig' utility to automatically generate a simple X
        configuration file that uses the NVIDIA X driver. If you are not
        using NVIDIA GPUs for graphics (e.g. on a server system where
        displays are driven by an onboard graphics controller, and NVIDIA
        GPUs are used for non-graphical computational purposes only), DO NOT
        run 'nvidia-xconfig'.
   
      o Some recent desktop environments (e.g. GNOME 3, Unity), window
        managers (e.g. mutter, compiz), and session managers (e.g. gdm3)
        require a working OpenGL driver in order to function correctly. In
        addition to making sure that the X server is configured to use the
        correct X driver for your configuration, please ensure that you are
        using the correct OpenGL driver to match your X driver.
   
        If you are not using NVIDIA GPUs for graphical purposes, try
        installing the driver with the --no-opengl-files option on the
        installer's command line to prevent the installer from overwriting
        any existing OpenGL installation, which may be needed for proper
        OpenGL functionality on whichever graphics controller is to be used
        on the system.
   
      o Some desktop environments (e.g. GNOME 3, Unity) and window managers
        (e.g. mutter) do not properly support multiple X screens, leaving you
        with a blank screen displaying only a cursor on the non-primary X
        screen. If you encounter such a problem, try configuring X with a
        single X screen, or switching to a different desktop environment or
        window manager.
   
      o Desktop environments, window managers, and session managers that
        require OpenGL typically also require the X Composite extension. If
        you have disabled the Composite extension, either explicitly, or by
        enabling a feature that is not compatible with it, try re-enabling
        the extension (possibly by disabling any incompatible features). If
        you are unable to satisfy your desired use case with the Composite
        extension enabled, try switching to a different desktop environment,
        window manager, and/or session manager that does not require
        Composite.
   
      o Check the X log (e.g. '/var/log/Xorg.0.log') for additional errors
        not covered above. Warning or error messages in the log may highlight
        a specific problem that can be fixed with a configuration adjustment.
   
   

Q. The display settings I configured in 'nvidia-settings' do not persist.

A. Depending on the type of configuration being performed, 'nvidia-settings'
   will save configuration changes to one of several places:
   
      o Static X server configuration changes are saved to the X
        configuration file (e.g. '/etc/X11/xorg.conf'). These settings are
        loaded by the X server when it starts, and cannot be changed without
        restarting X.
   
      o Dynamic, user-specific configuration changes are saved to
        '~/.nvidia-settings-rc'. 'nvidia-settings' loads this file and
        applies any settings contained within. These settings can be changed
        without restarting the X server, and can typically be configured
        through the 'nvidia-settings' command line interface as well, or via
        the RandR and/or NV-CONTROL APIs.
   
      o User-specific application profiles edited in 'nvidia-settings' are
        saved to '~/.nv/nvidia-application-profiles-rc'. This file is loaded
        along with the other files in the application profile search path by
        the NVIDIA OpenGL driver when it is loaded by an OpenGL application.
        The driver evaluates the application profiles to determine which
        settings apply to the application. Changes made to this configuration
        file while an application is already running will be applied when the
        application is next restarted. See Appendix J for more information
        about application profiles.
   
   
   Settings in '~/.nvidia-settings-rc' only take effect when processed by
   'nvidia-settings', and therefore will not be loaded by default when
   starting a new X session. To load settings from '~/.nvidia-settings-rc'
   without actually opening the 'nvidia-settings' control panel, use the
   --load-config-only option on the 'nvidia-settings' command line.
   'nvidia-settings --load-config-only' can be added to your login scripts to
   ensure that your settings are restored when starting a new desktop session.

   Even after 'nvidia-settings' has been run to restore any settings set in
   '~/.nvidia-settings-rc', some desktop environments (e.g. GNOME, KDE, Unity,
   Xfce) include advanced display configuration tools that may override
   settings that were configured via 'nvidia-settings'. These tools may
   attempt to restore their own display configuration when starting a new
   desktop session, or when events such as display hotplugs, resolution
   changes, or VT switches occur.

   These tools may also override some types of settings that are stored in and
   loaded from the X configuration file, such as any MetaMode strings that may
   specify the initial display layouts of NVIDIA X screens. Although the
   configuration of the initial MetaMode is static, it is possible to
   dynamically switch to a different MetaMode after X has started. This can
   have the effect of making the set of active displays, their resolutions,
   and layout positions as configured in the 'nvidia-settings' control panel
   appear to be ineffective, when in reality, this configuration was active
   when starting X and then overridden later by the desktop environment.

   If you believe that your desktop environment is overriding settings that
   you configured in 'nvidia-settings', some possible solutions are:
   
      o Use the display configuration tools provided as part of the desktop
        environment (e.g. 'gnome-control-center display',
        'gnome-display-properties', 'kcmshell4 display',
        'unity-control-center display', 'xfce4-display-settings') to
        configure your displays, instead of the 'nvidia-settings' control
        panel or the 'xrandr' command line tool. Setting your desired
        configuration using the desktop environment's tools should cause that
        configuration to be the one which is restored when the desktop
        environment overrides the existing configuration from
        'nvidia-settings'. If you are not sure which tools your desktop
        environment uses for display configuration, you may be able to
        discover them by navigating any available system menus for "Display"
        or "Monitor" control panels.
   
      o For settings loaded from '~/.nvidia-settings-rc' which have been
        overridden, run 'nvidia-settings --load-config-only' as needed to
        reload the settings from '~/.nvidia-settings-rc'.
   
      o Disable any features your desktop environment may have for managing
        displays. (Note: this may disable other features, such as display
        configuration tools that are integrated into the desktop.)
   
      o Use a different desktop environment which does not actively manage
        display configuration, or do not use any desktop environment at all.
   
   
   Some systems may have multiple different display configuration utilities,
   each with its own way of managing settings. In addition to conflicting with
   'nvidia-settings', such tools may conflict with each other. If your system
   uses more than one tool for configuring displays, make sure to check the
   configuration of each tool when attempting to determine the source of any
   unexpected display settings.


Q. My displays are reconfigured in unexpected ways when I plug in or unplug a
   display, or power a display off and then power it on again.

A. This is a special case of the issues described in "Q. The display settings
   I configured in nvidia-settings do not persist." in Chapter 8. Some desktop
   environments which include advanced display configuration tools will
   automatically configure the display layout in response to detected
   configuration changes. For example, when a new display is plugged in, such
   a desktop environment may attempt to restore the previous layout that was
   used with the set of currently connected displays, or may configure a
   default layout based upon its own policy.

   On X servers with support for RandR 1.2 or later, the NVIDIA X driver
   reports display hotplug events to the X server via RandR when displays are
   connected and disconnected. These hotplug events may trigger a desktop
   environment with advanced display management capabilities to change the
   display configuration. These changes may affect settings such as the set of
   active displays, their resolutions and positioning relative to each other,
   per-display color correction settings, and more.

   In addition to hotplug events generated by connecting or disconnecting
   displays, DisplayPort displays will generate a hot unplug event when they
   power off, and a hotplug event when they power on, even if no physical
   plugging in or unplugging takes place. This can lead to hotplug-induced
   display configuration changes without any actual hotplug action taking
   place.

   If display hotplug events are resulting in undesired configuration changes,
   try the solutions and workarounds listed in "Q. The display settings I
   configured in nvidia-settings do not persist." in Chapter 8. Another
   workaround would be to disable the NVIDIA X driver's reporting of hotplug
   events with the "UseHotplugEvents" X configuration option. Note that this
   option will have no effect on DisplayPort devices, which must report all
   hotplug events to ensure proper functionality.



INTERACTION WITH THE NOUVEAU DRIVER

Q. What is Nouveau, and why do I need to disable it?

A. Nouveau is a display driver for NVIDIA GPUs, developed as an open-source
   project through reverse-engineering of the NVIDIA driver. It ships with
   many current Linux distributions as the default display driver for NVIDIA
   hardware. It is not developed or supported by NVIDIA, and is not related to
   the NVIDIA driver, other than the fact that both Nouveau and the NVIDIA
   driver are capable of driving NVIDIA GPUs. Only one driver can control a
   GPU at a time, so if a GPU is being driven by the Nouveau driver, Nouveau
   must be disabled before installing the NVIDIA driver.

   Nouveau performs modesets in the kernel. This can make disabling Nouveau
   difficult, as the kernel modeset is used to display a framebuffer console,
   which means that Nouveau will be in use even if X is not running. As long
   as Nouveau is in use, its kernel module cannot be unloaded, which will
   prevent the NVIDIA kernel module from loading. It is therefore important to
   make sure that Nouveau's kernel modesetting is disabled before installing
   the NVIDIA driver.


Q. How do I prevent Nouveau from loading and performing a kernel modeset?

A. A simple way to prevent Nouveau from loading and performing a kernel
   modeset is to add configuration directives for the module loader to a file
   in one of the system's module loader configuration directories: for
   example, '/etc/modprobe.d/' or '/usr/local/modprobe.d'. These configuration
   directives can technically be added to any file in these directories, but
   many of the existing files in these directories are provided and maintained
   by your distributor, which may from time to time provide updated
   configuration files which could conflict with your changes. Therefore, it
   is recommended to create a new file, for example,
   '/etc/modprobe.d/disable-nouveau.conf', rather than editing one of the
   existing files, such as the popular '/etc/modprobe.d/blacklist.conf'. Note
   that some module loaders will only look for configuration directives in
   files whose names end with '.conf', so if you are creating a new file, make
   sure its name ends with '.conf'.

   Whether you choose to create a new file or edit an existing one, the
   following two lines will need to be added:
   
   blacklist nouveau
   options nouveau modeset=0
   
   The first line will prevent Nouveau's kernel module from loading
   automatically at boot. It will not prevent manual loading of the module,
   and it will not prevent the X server from loading the kernel module; see
   "How do I prevent the X server from loading Nouveau?" below. The second
   line will prevent Nouveau from doing a kernel modeset. Without the kernel
   modeset, it is possible to unload Nouveau's kernel module, in the event
   that it is accidentally or intentionally loaded.

   You will need to reboot your system after adding these configuration
   directives in order for them to take effect.

   If nvidia-installer detects Nouveau is in use by the system, it will offer
   to create such a modprobe configuration file to disable Nouveau.

Q. What if my initial ramdisk image contains Nouveau?

A. Some distributions include Nouveau in an initial ramdisk image (henceforth
   referred to as "initrd" in this document, and sometimes also known as
   "initramfs"), so that Nouveau's kernel modeset can take place as early as
   possible in the boot process. This poses an additional challenge to those
   who wish to prevent the modeset from occurring, as the modeset will occur
   while the system is executing within the initrd, before any directives in
   the module loader configuration files are processed.

   If you have an initrd which loads the Nouveau driver, you will additionally
   need to ensure that Nouveau is disabled in the initrd. In most cases,
   rebuilding the initrd will pick up the module loader configuration files,
   including any which may disable Nouveau. Please consult your distribution's
   documentation on how to rebuild the initrd, as different distributions have
   different tools for building and modifying the initrd. Some popular distro
   initrd tools include: 'dracut', 'mkinitrd', and 'update-initramfs'.

   Some initrds understand the rdblacklist parameter. On these initrds, as an
   alternative to rebuilding the initrd, you can add the option
   rdblacklist=nouveau to your kernel's boot parameters. On initrds that do
   not support rdblacklist, it is possible to prevent Nouveau from performing
   a kernel modeset by adding the option nouveau.modeset=0 to your kernel's
   boot parameters. Note that nouveau.modeset=0 will prevent a kernel modeset,
   but it may not prevent Nouveau from being loaded, so rebuilding the initrd
   or using rdblacklist may be more effective than using nouveau.modeset=0.

   Any changes to the default kernel boot parameters should be made in your
   bootloader's configuration file(s), so that the options get passed to your
   kernel every time the system is booted. Please consult your distribution's
   documentation on how to configure your bootloader, as different
   distributions use different bootloaders and configuration files.


Q. How do I prevent the X server from loading Nouveau?

A. Blacklisting Nouveau will only prevent it from being loaded automatically
   at boot. If an X server is started as part of the normal boot process, and
   that X server uses the Nouveau X driver, then the Nouveau kernel module
   will still be loaded. Should this happen, you will be able to unload
   Nouveau with `modprobe -r nouveau` after stopping the X server, as long as
   you have taken care to prevent it from doing a kernel modeset; however, it
   is probably better to just make sure that X does not load Nouveau in the
   first place.

   If your system is not configured to start an X server at boot, then you can
   simply run the NVIDIA driver installer after rebooting. Otherwise, the
   easiest thing to do is to edit your X server's configuration file so that
   your X server uses a non-modesetting driver that is compatible with your
   card, such as the 'vesa' driver. You can then stop X and install the driver
   as usual. Please consult your X server's documentation to determine where
   your X server configuration file is located.



______________________________________________________________________________

Chapter 9. Known Issues
______________________________________________________________________________

The following problems still exist in this release and are in the process of
being resolved.

Known Issues

OpenGL and dlopen()

    There are some issues with older versions of the glibc dynamic loader
    (e.g., the version that shipped with Red Hat Linux 7.2) and applications
    such as Quake3 and Radiant, that use dlopen(). See Chapter 7 for more
    details.

Interaction with pthreads

    Single-threaded applications that use dlopen() to load NVIDIA's libGL
    library, and then use dlopen() to load any other library that is linked
    against libpthread will crash in libGL. This does not happen in NVIDIA's
    new ELF TLS OpenGL libraries (see Chapter 5 for a description of the ELF
    TLS OpenGL libraries). Possible workarounds for this problem are:
    
      1. Load the library that is linked with libpthread before loading libGL.
    
      2. Link the application with libpthread.
    
    
The X86-64 platform (AMD64/EM64T) and early Linux 2.6 kernels

    Early Linux 2.6 x86_64 kernels have an accounting problem in their
    implementation of the change_page_attr kernel interface. These kernels
    include a check that triggers a BUG() when this situation is encountered
    (triggering a BUG() results in the current application being killed by the
    kernel; this application would be your OpenGL application or potentially
    the X server). The accounting issue has been resolved in the 2.6.11
    kernel.

    We have added checks to recognize that the NVIDIA kernel module is being
    compiled for the x86-64 platform on a kernel between Linux 2.6.0 and Linux
    2.6.11. In this case, we will disable usage of the change_page_attr kernel
    interface. This will avoid the accounting issue but leaves the system in
    danger of cache aliasing (see entry below on Cache Aliasing for more
    information about cache aliasing). Note that this change_page_attr
    accounting issue and BUG() can be triggered by other kernel subsystems
    that rely on this interface.

    If you are using a Linux 2.6 x86_64 kernel, it is recommended that you
    upgrade to Linux 2.6.11 or to a later kernel.

    Also take note of common dma issues on 64-bit platforms in Chapter 10.

Cache Aliasing

    Cache aliasing occurs when multiple mappings to a physical page of memory
    have conflicting caching states, such as cached and uncached. Due to these
    conflicting states, data in that physical page may become corrupted when
    the processor's cache is flushed. If that page is being used for DMA by a
    driver such as NVIDIA's graphics driver, this can lead to hardware
    stability problems and system lockups.

    NVIDIA has encountered bugs with some Linux kernel versions that lead to
    cache aliasing. Although some systems will run perfectly fine when cache
    aliasing occurs, other systems will experience severe stability problems,
    including random lockups. Users experiencing stability problems due to
    cache aliasing will benefit from updating to a kernel that does not cause
    cache aliasing to occur.

64-Bit BARs (Base Address Registers)

    NVIDIA GPUs advertise a 64-bit BAR capability (a Base Address Register
    stores the location of a PCI I/O region, such as registers or a frame
    buffer). This means that the GPU's PCI I/O regions (registers and frame
    buffer) can be placed above the 32-bit address space (the first 4
    gigabytes of memory).

    The decision of where the BAR is placed is made by the system BIOS at boot
    time. If the BIOS supports 64-bit BARs, then the NVIDIA PCI I/O regions
    may be placed above the 32-bit address space. If the BIOS does not support
    this feature, then our PCI I/O regions will be placed within the 32-bit
    address space as they have always been.

    Unfortunately, some Linux kernels (such as 2.6.11.x) do not understand or
    support 64-bit BARs. If the BIOS does place any NVIDIA PCI I/O regions
    above the 32-bit address space, such kernels will reject the BAR and the
    NVIDIA driver will not work.

    The only known workaround is to upgrade to a newer kernel.

Kernel virtual address space exhaustion on the X86 platform

    On X86 systems and AMD64/EM64T systems using X86 kernels, only 4GB of
    virtual address space are available, which the Linux kernel typically
    partitions such that user processes are allocated 3GB, the kernel itself
    1GB. Part of the kernel's share is used to create a direct mapping of
    system memory (RAM). Depending on how much system memory is installed, the
    kernel virtual address space remaining for other uses varies in size and
    may be as small as 128MB, if 1GB of system memory (or more) are installed.
    The kernel typically reserves a minimum of 128MB by default.

    The kernel virtual address space still available after the creation of the
    direct system memory mapping is used by both the kernel and by drivers to
    map I/O resources, and for some memory allocations. Depending on the
    number of consumers and their respective requirements, the Linux kernel's
    virtual address space may be exhausted. Typically when this happens, the
    kernel prints an error message that looks like
    
    allocation failed: out of vmalloc space - use vmalloc=<size> to increase
    size.
    
    or
    
    vmap allocation for size 16781312 failed: use vmalloc=<size> to increase
    size.
    
    
    The NVIDIA kernel module requires portions of the kernel's virtual address
    space for each GPU and for certain memory allocations. If no more than
    128MB are available to the kernel and device drivers at boot time, the
    NVIDIA kernel module may be unable to initialize all GPUs, or fail memory
    allocations. This is not usually a problem with only 1 or 2 GPUs, however
    depending on the number of other drivers and their usage patterns, it can
    be; it is likely to be a problem with 3 or more GPUs.

    Possible solutions for this problem include:
    
       o If your system is equipped with an X86-64 (AMD64/EM64T) processor, it
         is recommended that you switch to a 64-bit Linux kernel/distribution.
         Due to the significantly larger address space provided by the X86-64
         processors' addressing capabilities, X86-64 kernels will not run out
         of kernel virtual address space in the foreseeable future.
    
       o If a 64-bit kernel cannot be used, the 'vmalloc' kernel parameter can
         be used on recent kernels to increase the size of the kernel virtual
         address space reserved by the Linux kernel (the default is usually
         128MB). Incrementally raising this to find the best balance between
         the size of the kernel virtual address space made available and the
         size of the direct system memory mapping is recommended. You can
         achieve this by passing 'vmalloc=192M', 'vmalloc=256MB', ..., to the
         kernel and checking if the above error message continues to be
         printed.
    
         Note that some versions of the GRUB boot loader have problems
         calculating the memory layout and loading the initrd if the 'vmalloc'
         kernel parameter is used. The 'uppermem' GRUB command can be used to
         force GRUB to load the initrd into a lower region of system memory to
         work around this problem. This will not adversely affect system
         performance once the kernel has been loaded. The suggested syntax
         (assuming GRUB version 1) is:
         
         title     Kernel Title
         uppermem  524288
         kernel    (hdX,Y)/boot/vmlinuz...
         
         
       o In some cases, disabling frame buffer drivers such as vesafb can
         help, as such drivers may attempt to map all or a large part of the
         installed graphics cards' video memory into the kernel's virtual
         address space, which rapidly consumes this resource. You can disable
         the vesafb frame buffer driver by passing these parameters to the
         kernel: 'video=vesa:off vga=normal'.
    
       o Some Linux kernels can be configured with alternate address space
         layouts (e.g. 2.8GB:1.2GB, 2GB:2GB, etc.). This option can be used to
         avoid exhaustion of the kernel virtual address space without reducing
         the size of the direct system memory mapping. Some Linux distributors
         also provide kernels that use separate 4GB address spaces for user
         processes and the kernel. Such Linux kernels provide sufficient
         kernel virtual address space on typical systems.
    
    
Valgrind

    The NVIDIA OpenGL implementation makes use of self modifying code. To
    force Valgrind to retranslate this code after a modification you must run
    using the Valgrind command line option:
    
    --smc-check=all
    
    Without this option Valgrind may execute incorrect code causing incorrect
    behavior and reports of the form:
    
    ==30313== Invalid write of size 4
    
    
MMConfig-based PCI Configuration Space Accesses

    2.6 kernels have added support for Memory-Mapped PCI Configuration Space
    accesses. Unfortunately, there are many problems with this mechanism, and
    the latest kernel updates are more careful about enabling this support.

    The NVIDIA driver may be unable to reliably read/write the PCI
    Configuration Space of NVIDIA devices when the kernel is using the
    MMCONFIG method to access PCI Configuration Space, specifically when using
    multiple GPUs and multiple CPUs on 32-bit kernels.

    This access method can be identified by the presence of the string "PCI:
    Using MMCONFIG" in the 'dmesg' output on your system. This access method
    can be disabled via the "pci=nommconf" kernel parameter.

HDMI screen blanks unless audio is played

    The ALSA audio driver in some Linux kernels contains a bug affecting some
    systems with integrated graphics that causes the display to go blank on
    some HDMI TVs whenever audio is not being played. This bug occurs when the
    ALSA audio driver configures the HDMI hardware to send an HDMI audio info
    frame that contains an invalid checksum. Some TVs blank the video when
    they receive such invalid audio packets.

    To ensure proper display, please make sure your Linux kernel contains
    commit 1f348522844bb1f6e7b10d50b9e8aa89a2511b09. This fix is in Linux
    2.6.39-rc3 and later, and may be be back-ported to some older kernels.

Driver fails to initialize when MSI interrupts are enabled

    The Linux NVIDIA driver uses Message Signaled Interrupts (MSI) by default.
    This provides compatibility and scalability benefits, mainly due to the
    avoidance of IRQ sharing.

    Some systems have been seen to have problems supporting MSI, while working
    fine with virtual wire interrupts. These problems manifest as an inability
    to start X with the NVIDIA driver, or CUDA initialization failures. The
    NVIDIA driver will then report an error indicating that the NVIDIA kernel
    module does not appear to be receiving interrupts generated by the GPU.

    Problems have also been seen with suspend/resume while MSI is enabled. All
    known problems have been fixed, but if you observe problems with
    suspend/resume that you did not see with previous drivers, disabling MSI
    may help you.

    NVIDIA is working on a long-term solution to improve the driver's out of
    the box compatibility with system configurations that do not fully support
    MSI.

    MSI interrupts can be disabled via the NVIDIA kernel module parameter
    "NVreg_EnableMSI=0". This can be set on the command line when loading the
    module, or more appropriately via your distribution's kernel module
    configuration files (such as those under /etc/modprobe.d/).

Console restore behavior

    The Linux NVIDIA driver uses the nvidia-modeset module for console restore
    whenever it can. Currently, the improved console restore mechanism is used
    on systems that boot with the UEFI Graphics Output Protocol driver, and on
    systems that use supported VESA linear graphical modes. Note that VGA
    text, color index, planar, banked, and some linear modes cannot be
    supported, and will use the older console restore method instead.

    When the new console restore mechanism is in use, it will display the
    console on as many displays as it can. Note that to save power, it may not
    display the console on all connected displays.

Vulkan and device enumeration

    It is currently not possible to enumerate multiple devices if one of them
    will be used to present to an X11 swapchain. It is still possible to
    enumerate multiple devices even if one of them is driving an X screen
    given that they will be used for Vulkan offscreen rendering or presenting
    to a display swapchain. For that, make sure that the application cannot
    open a display connection to an X server by, for example, unsetting the
    DISPLAY environment variable.

Notebooks

    If you are using a notebook see the "Known Notebook Issues" in Chapter 16.

Texture seams in Quake 3 engine

    Many games based on the Quake 3 engine set their textures to use the
    "GL_CLAMP" clamping mode when they should be using "GL_CLAMP_TO_EDGE".
    This was an oversight made by the developers because some legacy NVIDIA
    GPUs treat the two modes as equivalent. The result is seams at the edges
    of textures in these games. To mitigate this, older versions of the NVIDIA
    display driver remap "GL_CLAMP" to "GL_CLAMP_TO_EDGE" internally to
    emulate the behavior of the older GPUs, but this workaround has been
    disabled by default. To re-enable it, uncheck the "Use Conformant Texture
    Clamping" checkbox in nvidia-settings before starting any affected
    applications.

FSAA

    When FSAA is enabled (the __GL_FSAA_MODE environment variable is set to a
    value that enables FSAA and a multisample visual is chosen), the rendering
    may be corrupted when resizing the window.

libGL DSO finalizer and pthreads

    When a multithreaded OpenGL application exits, it is possible for libGL's
    DSO finalizer (also known as the destructor, or "_fini") to be called
    while other threads are executing OpenGL code. The finalizer needs to free
    resources allocated by libGL. This can cause problems for threads that are
    still using these resources. Setting the environment variable
    "__GL_NO_DSO_FINALIZER" to "1" will work around this problem by forcing
    libGL's finalizer to leave its resources in place. These resources will
    still be reclaimed by the operating system when the process exits. Note
    that the finalizer is also executed as part of dlclose(3), so if you have
    an application that dlopens(3) and dlcloses(3) libGL repeatedly,
    "__GL_NO_DSO_FINALIZER" will cause libGL to leak resources until the
    process exits. Using this option can improve stability in some
    multithreaded applications, including Java3D applications.

Thread cancellation

    Canceling a thread (see pthread_cancel(3)) while it is executing in the
    OpenGL driver causes undefined behavior. For applications that wish to use
    thread cancellation, it is recommended that threads disable cancellation
    using pthread_setcancelstate(3) while executing OpenGL or GLX commands.

This section describes problems that will not be fixed. Usually, the source of
the problem is beyond the control of NVIDIA. Following is the list of
problems:

Problems that Will Not Be Fixed

NV-CONTROL versions 1.8 and 1.9

    Version 1.8 of the NV-CONTROL X Extension introduced target types for
    setting and querying attributes as well as receiving event notification on
    targets. Targets are objects like X Screens, GPUs and Quadro Sync devices.
    Previously, all attributes were described relative to an X Screen. These
    new bits of information (target type and target id) were packed in a
    non-compatible way in the protocol stream such that addressing X Screen 1
    or higher would generate an X protocol error when mixing NV-CONTROL client
    and server versions.

    This packing problem has been fixed in the NV-CONTROL 1.10 protocol,
    making it possible for the older (1.7 and prior) clients to communicate
    with NV-CONTROL 1.10 servers. Furthermore, the NV-CONTROL 1.10 client
    library has been updated to accommodate the target protocol packing bug
    when communicating with a 1.8 or 1.9 NV-CONTROL server. This means that
    the NV-CONTROL 1.10 client library should be able to communicate with any
    version of the NV-CONTROL server.

    NVIDIA recommends that NV-CONTROL client applications relink with version
    1.10 or later of the NV-CONTROL client library (libXNVCtrl.a, in the
    nvidia-settings-384.59.tar.bz2 tarball). The version of the client
    library can be determined by checking the NV_CONTROL_MAJOR and
    NV_CONTROL_MINOR definitions in the accompanying nv_control.h.

    The only web released NVIDIA Linux driver that is affected by this problem
    (i.e., the only driver to use either version 1.8 or 1.9 of the NV-CONTROL
    X extension) is 1.0-8756.

CPU throttling reducing memory bandwidth on IGP systems

    For some models of CPU, the CPU throttling technology may affect not only
    CPU core frequency, but also memory frequency/bandwidth. On systems using
    integrated graphics, any reduction in memory bandwidth will affect the GPU
    as well as the CPU. This can negatively affect applications that use
    significant memory bandwidth, such as video decoding using VDPAU, or
    certain OpenGL operations. This may cause such applications to run with
    lower performance than desired.

    To work around this problem, NVIDIA recommends configuring your CPU
    throttling implementation to avoid reducing memory bandwidth. This may be
    as simple as setting a certain minimum frequency for the CPU.

    Depending on your operating system and/or distribution, this may be as
    simple as writing to a configuration file in the /sys or /proc
    filesystems, or other system configuration file. Please read, or search
    the Internet for, documentation regarding CPU throttling on your operating
    system.

VDPAU initialization failures on supported GPUs

    If VDPAU gives the VDP_STATUS_NO_IMPLEMENTATION error message on a GPU
    which was labeled or specified as supporting PureVideo or PureVideo HD,
    one possible reason is a hardware defect. After ruling out any other
    software problems, NVIDIA recommends returning the GPU to the manufacturer
    for a replacement.

Some applications, such as Quake 3, crash after querying the OpenGL extension
string

    Some applications have bugs that are triggered when the extension string
    is longer than a certain size. As more features are added to the driver,
    the length of this string increases and can trigger these sorts of bugs.

    You can limit the extensions listed in the OpenGL extension string to the
    ones that appeared in a particular version of the driver by setting the
    "__GL_ExtensionStringVersion" environment variable to a particular version
    number. For example,
    
    __GL_ExtensionStringVersion=17700 quake3
    
    will run Quake 3 with the extension string that appeared in the 177.*
    driver series. Limiting the size of the extension string can work around
    this sort of application bug.

XVideo and the Composite X extension

    XVideo will not work correctly when Composite is enabled unless using
    X.Org 7.1 or later. See Chapter 22.

GLX visuals in Xinerama

    X servers prior to version 1.5.0 have a limitation in the number of
    visuals that can be available when Xinerama is enabled. Specifically,
    visuals with ID values over 255 will cause the server to corrupt memory,
    leading to incorrect behavior or crashes. In some configurations where
    many GLX features are enabled at once, the number of GLX visuals will
    exceed this limit. To avoid a crash, the NVIDIA X driver will discard
    visuals above the limit. To see which visuals are being discarded, run the
    X server with the -logverbose 6 option and then check the X server log
    file.

    Please see "Q. How do I interpret X server version numbers?" in Chapter 7
    when determining whether your X server is new enough to contain this fix.

Some X servers have trouble with multiple GPUs

    Some versions of the X.Org X server starting with 1.5.0 have a bug that
    causes X to fail with an error similar to the following when there is more
    than one GPU in the computer:

    
    
    (!!) More than one possible primary device found
    (II) Primary Device is:
    (EE) No devices detected.
    
    Fatal server error:
    no screens found
    
    
    This bug was fixed in the X.Org X Server 1.7 release.

    You can work around this problem by specifying the bus ID of the device
    you wish to use. For more details, please search the xorg.conf manual page
    for "BusID". You can configure the X server with an X screen on each
    NVIDIA GPU by running:

    
    
    nvidia-xconfig --enable-all-gpus
    
    
    Please see http://bugs.freedesktop.org/show_bug.cgi?id=18321 for more
    details on this X server problem. In addition, please see "Q. How do I
    interpret X server version numbers?" in Chapter 7 when determining whether
    your X server is new enough to contain this fix.

gnome-shell doesn't update until a window is moved

    Versions of libcogl prior to 1.10.x have a bug which causes
    glBlitFramebuffer() calls used to update the window to be clipped by a 0x0
    scissor (see https://bugzilla.gnome.org/show_bug.cgi?id=690451 for more
    details). To work around this bug, the scissor test can be disabled by
    setting the "__GL_ConformantBlitFramebufferScissor" environment variable
    to 0. Note this version of the NVIDIA driver comes with an application
    profile which automatically disables this test if libcogl is detected in
    the process.

Some X servers ignore the RandR transform filter during a modeset request

    The RandR layer of the X server attempts to ignore redundant
    RRSetCrtcConfig requests. If the only property changed by an
    RRSetCrtcConfig request is the transform filter, some X servers will
    ignore the request as redundant. This can be worked around by also
    changing other properties, such as the mode, transformation matrix, etc.


______________________________________________________________________________

Chapter 10. Allocating DMA Buffers on 64-bit Platforms
______________________________________________________________________________

NVIDIA GPUs have limits on how much physical memory they can address. This
directly impacts DMA buffers, as a DMA buffer allocated in physical memory
that is unaddressable by the NVIDIA GPU cannot be used (or may be truncated,
resulting in bad memory accesses). See Chapter 34 for details on the
addressing limitations of specific GPUs.

Newer kernels provide a simple way to allocate memory that is guaranteed to
reside within the 32 bit physical address space. Linux 2.6.15 provides this
functionality with the __GFP_DMA32 interface. Kernels earlier than this
version provide a software I/O TLB on Intel's EM64T and IOMMU support on AMD's
AMD64 platform.

Unfortunately, some problems exist with both interfaces. Early implementations
of the Linux SWIOTLB set aside a very small amount of memory for its memory
pool (only 4 MB). Also, when this memory pool is exhausted, some SWIOTLB
implementations forcibly panic the kernel. This is also true for some
implementations of the IOMMU interface.

The NVIDIA Linux driver does not support the SWIOTLB. NVIDIA recommends that
users of Intel's EM64T platform upgrade to Linux 2.6.11 or a more recent Linux
kernel.

On AMD's AMD64 platform, the size of the IOMMU can be configured in the system
BIOS or, if no IOMMU BIOS option is available, using the 'iommu=memaper'
kernel parameter. This kernel parameter expects an order and instructs the
Linux kernel to create an IOMMU of size 32 MB^order overlapping physical
memory. If the system's default IOMMU is smaller than 64 MB, the Linux kernel
automatically replaces it with a 64 MB IOMMU.

To reduce the risk of stability problems as a result of IOMMU space exhaustion
on the X86-64 platform, the NVIDIA Linux driver internally limits its use of
these interfaces. By default, the driver will not use more than 60 MB of IOMMU
space, leaving at least 4 MB for the rest of the system (assuming a 64 MB
IOMMU).

This limit can be adjusted with the 'NVreg_RemapLimit' NVIDIA kernel module
option. Specifically, if the IOMMU is larger than 64 MB, the limit can be
adjusted to take advantage of the additional space. The 'NVreg_RemapLimit'
option expects the size argument in bytes.

NVIDIA recommends leaving 4 MB available for the rest of the system when
changing the limit. For example, if the internal limit is to be relaxed to
account for a 128 MB IOMMU, the recommended remap limit is 124 MB. This remap
limit can be specified by passing 'NVreg_RemapLimit=0x7c00000' to the NVIDIA
kernel module.

Also see the 'The X86-64 platform (AMD64/EM64T) and early Linux 2.6 kernels'
section in Chapter 9.

______________________________________________________________________________

Chapter 11. Specifying OpenGL Environment Variable Settings
______________________________________________________________________________


11A. FULL SCENE ANTIALIASING

Antialiasing is a technique used to smooth the edges of objects in a scene to
reduce the jagged "stairstep" effect that sometimes appears. By setting the
appropriate environment variable, you can enable full-scene antialiasing in
any OpenGL application on these GPUs.

Several antialiasing methods are available and you can select between them by
setting the __GL_FSAA_MODE environment variable appropriately. Note that
increasing the number of samples taken during FSAA rendering may decrease
performance.

To see the available values for __GL_FSAA_MODE along with their descriptions,
run:

    nvidia-settings --query=fsaa --verbose

The __GL_FSAA_MODE environment variable uses the same integer values that are
used to configure FSAA through nvidia-settings and the NV-CONTROL X extension.
In other words, these two commands are equivalent:

    export __GL_FSAA_MODE=5

    nvidia-settings --assign FSAA=5

Note that there are three FSAA related configuration attributes (FSAA,
FSAAAppControlled and FSAAAppEnhanced) which together determine how a GL
application will behave. If FSAAAppControlled is 1, the FSAA specified through
nvidia-settings will be ignored, in favor of what the application requests
through FBConfig selection. If FSAAAppControlled is 0 but FSAAAppEnhanced is
1, then the FSAA value specified through nvidia-settings will only be applied
if the application selected a multisample FBConfig.

Therefore, to be completely correct, the nvidia-settings command line to
unconditionally assign FSAA should be:

    nvidia-settings --assign FSAA=5 --assign FSAAAppControlled=0 --assign
FSAAAppEnhanced=0


The driver may not be able to support a particular FSAA mode for a given
application due to video or system memory limitations. In that case, the
driver will silently fall back to a less demanding FSAA mode.


11B. FAST APPROXIMATE ANTIALIASING (FXAA)

Fast approximate antialiasing is an antialiasing mode supported by the NVIDIA
graphics driver that offers advantages over traditional multisampling and
supersampling methods. This mode is incompatible with UBB, triple buffering,
and other antialiasing methods. To enable this mode, run:

 nvidia-settings --assign FXAA=1

nvidia-settings will automatically disable incompatible features when this
command is run. Users may wish to disable use of FXAA for individual
applications when FXAA is globally enabled. This can be done by setting the
environment variable __GL_ALLOW_FXAA_USAGE to 0. __GL_ALLOW_FXAA_USAGE has no
effect when FXAA is globally disabled.


11C. ANISOTROPIC TEXTURE FILTERING

Automatic anisotropic texture filtering can be enabled by setting the
environment variable __GL_LOG_MAX_ANISO. The possible values are:

    __GL_LOG_MAX_ANISO                    Filtering Type
    ----------------------------------    ----------------------------------
    0                                     No anisotropic filtering
    1                                     2x anisotropic filtering
    2                                     4x anisotropic filtering
    3                                     8x anisotropic filtering
    4                                     16x anisotropic filtering



11D. VBLANK SYNCING

The __GL_SYNC_TO_VBLANK (boolean) environment variable can be used to control
whether swaps are synchronized to a display device's vertical refresh.

   o Setting __GL_SYNC_TO_VBLANK=0 allows glXSwapBuffers to swap without
     waiting for vblank.

   o Setting __GL_SYNC_TO_VBLANK=1 forces glXSwapBuffers to synchronize with
     the vertical blanking period. This is the default behavior.


When sync to vblank is enabled with TwinView, OpenGL can only sync to one of
the display devices; this may cause tearing corruption on the display device
to which OpenGL is not syncing. You can use the environment variable
__GL_SYNC_DISPLAY_DEVICE to specify to which display device OpenGL should
sync. You should set this environment variable to the name of a display
device; for example "CRT-1". Look for the line "Connected display device(s):"
in your X log file for a list of the display devices present and their names.
You may also find it useful to review Chapter 12 "Configuring Twinview" and
the section on Ensuring Identical Mode Timings in Chapter 18.

If a display device is being provided by a synchronized RandR 1.4 Output Sink,
it will not be listed under "Connected display device(s):", but can still be
used with __GL_SYNC_DISPLAY_DEVICE. The names of these display devices can be
found using the "xrandr" command line tool. See Synchronized RandR 1.4 Outputs
for information on synchronized RandR 1.4 Output Sinks.


11E. CONTROLLING THE SORTING OF OPENGL FBCONFIGS

The NVIDIA GLX implementation sorts FBConfigs returned by glXChooseFBConfig()
as described in the GLX specification. To disable this behavior set
__GL_SORT_FBCONFIGS to 0 (zero), then FBConfigs will be returned in the order
they were received from the X server. To examine the order in which FBConfigs
are returned by the X server run:

nvidia-settings --glxinfo

This option may be be useful to work around problems in which applications
pick an unexpected FBConfig.


11F. OPENGL YIELD BEHAVIOR

There are several cases where the NVIDIA OpenGL driver needs to wait for
external state to change before continuing. To avoid consuming too much CPU
time in these cases, the driver will sometimes yield so the kernel can
schedule other processes to run while the driver waits. For example, when
waiting for free space in a command buffer, if the free space has not become
available after a certain number of iterations, the driver will yield before
it continues to loop.

By default, the driver calls sched_yield() to do this. However, this can cause
the calling process to be scheduled out for a relatively long period of time
if there are other, same-priority processes competing for time on the CPU. One
example of this is when an OpenGL-based composite manager is moving and
repainting a window and the X server is trying to update the window as it
moves, which are both CPU-intensive operations.

You can use the __GL_YIELD environment variable to work around these
scheduling problems. This variable allows the user to specify what the driver
should do when it wants to yield. The possible values are:

    __GL_YIELD         Behavior
    ---------------    ------------------------------------------------------
    <unset>            By default, OpenGL will call sched_yield() to yield.
    "NOTHING"          OpenGL will never yield.
    "USLEEP"           OpenGL will call usleep(0) to yield.



11G. CONTROLLING WHICH OPENGL FBCONFIGS ARE AVAILABLE

The NVIDIA GLX implementation will hide FBConfigs that are associated with a
32-bit ARGB visual when the XLIB_SKIP_ARGB_VISUALS environment variable is
defined. This matches the behavior of libX11, which will hide those visuals
from XGetVisualInfo and XMatchVisualInfo. This environment variable is useful
when applications are confused by the presence of these FBConfigs.


11H. USING UNOFFICIAL GLX PROTOCOL

By default, the NVIDIA GLX implementation will not expose GLX protocol for GL
commands if the protocol is not considered complete. Protocol could be
considered incomplete for a number of reasons. The implementation could still
be under development and contain known bugs, or the protocol specification
itself could be under development or going through review. If users would like
to test the client-side portion of such protocol when using indirect
rendering, they can set the __GL_ALLOW_UNOFFICIAL_PROTOCOL environment
variable to a non-zero value before starting their GLX application. When an
NVIDIA GLX server is used, the related X Config option
"AllowUnofficialGLXProtocol" will need to be set as well to enable support in
the server.


11I. OVERRIDING DRIVER DETECTION OF SELINUX POLICY BOOLEANS

On Linux, the NVIDIA GLX implementation will attempt to detect whether SELinux
is enabled and modify its behavior to respect SELinux policy. By default, the
driver adheres to SELinux policy boolean settings at the beginning of a client
process's execution; due to shared library limitations, these settings remain
fixed throughout the lifetime of the driver instance. Additionally, the driver
will adhere to policy boolean settings regardless of whether SELinux is
running in permissive mode or enforcing mode. The __GL_SELINUX_BOOLEANS
environment variable allows the user to override driver detection of specified
SELinux booleans so the driver acts as if these booleans were set or unset.
This allows the user, for example, to run the driver under a more restrictive
policy than specified by SELinux, or to work around problems when running the
driver under SELinux while operating in permissive mode.

__GL_SELINUX_BOOLEANS should be set to a comma-separated list of key/value
pairs:

 __GL_SELINUX_BOOLEANS="key1=val1,key2=val2,key3=val3,..."

Valid keys are any SELinux booleans specified by "getsebool -a", and valid
values are 1, true, yes, or on to enable the boolean, and 0, false, no, or off
to disable it. There should be no whitespace between any key, value, or
delimiter. If this environment variable is set, the driver assumes that
SELinux is enabled on the system. Currently, the driver only uses the
"allow_execmem" and "deny_execmem" booleans to determine whether it can apply
optimizations that use writable, executable memory. Users can explicitly
request that these optimizations be turned off by using the
__GL_WRITE_TEXT_SECTION environment variable (see "Disabling executable memory
    optimizations" below). By default, if the driver cannot detect the value
of one or both of these booleans, it assumes the most permissive setting (i.e.
executable memory is allowed).


11J. LIMITING HEAP ALLOCATIONS IN THE OPENGL DRIVER

The NVIDIA OpenGL implementation normally does not enforce limits on dynamic
system memory allocations (i.e., memory allocated by the driver from the C
library via the malloc(3) memory allocation package). The
__GL_HEAP_ALLOC_LIMIT environment variable enables the user to specify a
per-process heap allocation limit for as long as libGL is loaded in the
application.

__GL_HEAP_ALLOC_LIMIT is specified in the form BYTES SUFFIX, where BYTES is a
nonnegative integer and SUFFIX is an optional multiplicative suffix: kB =
1000, k = 1024, MB = 1000*1000, M = 1024*1024, GB = 1000*1000*1000, and G =
1024*1024*1024. SUFFIX is not case-sensitive. For example, to specify a heap
allocation limit of 20 megabytes:

__GL_HEAP_ALLOC_LIMIT="20 MB"

If SUFFIX is not specified, the limit is assumed to be given in bytes. The
minimum heap allocation limit is 12 MB. If a lower limit is specified, the
limit is clamped to the minimum.

The GNU C library provides several hooks that may be used by applications to
modify the behavior of malloc(3), realloc(3), and free(3). In addition, an
application or library may specify allocation symbols that the driver will use
in place of those exported by libc. Heap allocation tracking is incompatible
with these features, and the driver will disable the heap allocation limit if
it detects that they are in use.

WARNING: Enforcing a limit on heap allocations may cause unintended behavior
and lead to application crashes, data corruption, and system instability.
ENABLE AT YOUR OWN RISK.


11K. OPENGL SHADER DISK CACHE

The NVIDIA OpenGL driver utilizes a shader disk cache. This optimization
benefits some applications, by reusing shader binaries instead of compiling
them repeatedly. The related environment variables __GL_SHADER_DISK_CACHE and
__GL_SHADER_DISK_CACHE_PATH, as well as the GLShaderDiskCache X configuration
option, allow fine-grained configuration of the shader cache behavior. The
shader disk cache:


  1. is always disabled for indirect rendering

  2. is always disabled for setuid and setgid binaries

  3. by default, is disabled for direct rendering when the OpenGL application
     is run as the root user

  4. by default, is enabled for direct rendering when the OpenGL application
     is run as a non-root user


The GLShaderDiskCache X configuration option forcibly enables or disables the
shader disk cache, for direct rendering as a non-root user.

The following environment variables configure shader disk cache behavior, and
override the GLShaderDiskCache configuration option:

    Environment Variable                  Description
    ----------------------------------    ----------------------------------
    __GL_SHADER_DISK_CACHE (boolean)      Enables or disables the shader
                                          cache for direct rendering.
    __GL_SHADER_DISK_CACHE_PATH           Enables configuration of where
    (string)                              shader caches are stored on disk.


If __GL_SHADER_DISK_CACHE_PATH is unset, caches will be stored in
$XDG_CACHE_HOME/.nv/GLCache if XDG_CACHE_HOME is set, or in $HOME/.nv/GLCache
if HOME is set. If none of the environment variables
__GL_SHADER_DISK_CACHE_PATH, XDG_CACHE_HOME, or HOME is set, the shader cache
will be disabled. Caches are persistent across runs of an application. Cached
shader binaries are specific to each driver version; changing driver versions
will cause binaries to be recompiled.


11L. THREADED OPTIMIZATIONS

The NVIDIA OpenGL driver supports offloading its CPU computation to a worker
thread. These optimizations typically benefit CPU-intensive applications, but
may cause a decrease of performance in applications that heavily rely on
synchronous OpenGL calls such as glGet*. They are enabled by default on Linux
(under certain conditions), but will self-disable if they are not increasing
performance.

Setting the __GL_THREADED_OPTIMIZATIONS environment variable to "1" before
loading the NVIDIA OpenGL driver library will force (if the requirements
covered below are met) these optimizations to be enabled for the lifetime of
the application, with no self-disable possible. This is how the driver has
historically behaved since threaded optimizations (disabled by default) were
introduced. It is not advised to force these optimizations enabled. Relying on
the automated mechanism is preferable. Setting the variable to "0" will force
these optimizations to be disabled. Not setting the variable at all will
attempt to enable the optimizations, but with the self-disabling mechanism
activated. This mechanism is, among the Unix platforms supported by the NVIDIA
driver, only functional on Linux. Where it is not functional, the
optimizations are disabled by default.

Please note that these optimizations will only work if the target application
dynamically links against pthreads. If this isn't the case, the dynamic loader
can be instructed to do so at runtime by setting the LD_PRELOAD environment
variable to include the pthreads library.

Additionally, these optimizations require Xlib to function in thread-safe
mode. The NVIDIA OpenGL driver cannot reliably enable Xlib thread-safe mode
itself, therefore the application needs to call XInitThreads() before making
any other Xlib call. Otherwise, the threaded optimizations in the NVIDIA
driver will not be enabled.


11M. CONFORMANT GLBLITFRAMEBUFFER() SCISSOR TEST BEHAVIOR

This option enables the glBlitFramebuffer() scissor test, which must be
enabled for glBlitFramebuffer() to behave in a conformant manner. Setting the
__GL_ConformantBlitFramebufferScissor environment variable to 0 disables the
glBlitFramebuffer() scissor test, and setting it to 1 enables it. By default,
the glBlitFramebuffer() scissor test is enabled.

Some applications have bugs which cause them to not display properly with a
conformant glBlitFramebuffer(). See Chapter 9 for more details.


11N. G-SYNC

When a G-SYNC-capable monitor is attached, this option controls whether
G-SYNC, also called "variable refresh rate", can be used. Setting the
__GL_GSYNC_ALLOWED environment variable to 0 disables G-SYNC. Setting it to 1
allows G-SYNC to be used when possible.

When G-SYNC is active and __GL_SYNC_TO_VBLANK is disabled, applications
rendering faster than the maximum refresh rate will tear. This eliminates
tearing for frame rates below the monitor's maximum refresh rate while
minimizing latency for frame rates above it. When __GL_SYNC_TO_VBLANK is
enabled, the frame rate is limited to the monitor's maximum refresh rate to
eliminate tearing completely.

G-SYNC cannot be used when workstation stereo or workstation overlays are
enabled, or when there is more than one X screen. In addition, G-SYNC cannot
be used when an SLI mode other than Mosaic is enabled.


11O. DISABLING EXECUTABLE MEMORY OPTIMIZATIONS

By default, the NVIDIA driver will attempt to use optimizations which rely on
being able to write to executable memory. This may cause problems in certain
system configurations (e.g., on SELinux when the "allow_execmem" boolean is
disabled or "deny_execmem" boolean is enabled, and on grsecurity kernels
configured with CONFIG_PAX_MPROTECT). When possible, the driver will attempt
to detect when it is running on an unsupported configuration and disable these
optimizations automatically. If the __GL_WRITE_TEXT_SECTION environment
variable is set to 0, the driver will unconditionally disable these
optimizations.


11P. IGNORING GLSL (OPENGL SHADING LANGUAGE) EXTENSION CHECKS

Some applications may use GLSL shaders that reference global variables defined
only in an OpenGL extension without including a corresponding #extension
directive in their source code. Additionally, some applications may use GLSL
shaders version 150 or greater that reference global variables defined in a
compatibility profile, without specifying that a compatibility profile should
be used in their #version directive. Setting the __GL_IGNORE_GLSL_EXT_REQS
environment variable to 1 will cause the driver to ignore this class of
errors, which may allow these shaders to successfully compile.

______________________________________________________________________________

Chapter 12. Configuring Multiple Display Devices on One X Screen
______________________________________________________________________________

Multiple display devices (digital flat panels, CRTs, and TVs) can display the
contents of a single X screen in any arbitrary configuration. Configuring
multiple display devices on a single X screen has several distinct advantages
over other techniques (such as Xinerama):


   o A single X screen is used. The NVIDIA driver conceals all information
     about multiple display devices from the X server; as far as X is
     concerned, there is only one screen.

   o Both display devices share one frame buffer. Thus, all the functionality
     present on a single display (e.g., accelerated OpenGL) is available with
     multiple display devices.

   o No additional overhead is needed to emulate having a single desktop.


If you are interested in using each display device as a separate X screen, see
Chapter 14.


12A. RELEVANT X CONFIGURATION OPTIONS

When the NVIDIA X driver starts, by default it will enable as many display
devices as are connected and as the GPU supports driving simultaneously. Most
NVIDIA GPUs based on the Kepler architecture, or newer, support driving up to
four display devices simultaneously. Most NVIDIA GPUs older than Kepler
support driving up to two display devices simultaneously.

If multiple X screens are configured on the GPU, the NVIDIA X driver will
attempt to reserve display devices and GPU resources for those other X screens
(honoring the "UseDisplayDevice" and "MetaModes" X configuration options of
each X screen) and then allocate all remaining resources to the first X screen
configured on the GPU.

There are several X configuration options that influence how multiple display
devices are used by an X screen:

    Option "MetaModes"                "<list of MetaModes>"

    Option "HorizSync"                "<hsync range(s)>"
    Option "VertRefresh"              "<vrefresh range(s)>"

    Option "MetaModeOrientation"      "<relationship of head 1 to head 0>"
    Option "ConnectedMonitor"         "<list of connected display devices>"

See detailed descriptions of each option below.


12B. DETAILED DESCRIPTION OF OPTIONS


HorizSync
VertRefresh

    With these options, you can specify a semicolon-separated list of
    frequency ranges, each optionally prepended with a display device name. In
    addition, if SLI Mosaic mode is enabled, a GPU specifier can be used. For
    example:
    
        Option "HorizSync"   "CRT-0: 50-110; DFP-0: 40-70"
        Option "VertRefresh" "CRT-0: 60-120; GPU-0.DFP-0: 60"
    
    See Appendix C on Display Device Names for more information.

    These options are normally not needed: by default, the NVIDIA X driver
    retrieves the valid frequency ranges from the display device's EDID (see
    the UseEdidFreqs option). The "HorizSync" and "VertRefresh" options
    override any frequency ranges retrieved from the EDID.

MetaModes

    MetaModes are "containers" that store information about what mode should
    be used on each display device.

    Multiple MetaModes list the combinations of modes and the sequence in
    which they should be used. In MetaMode syntax, modes within a MetaMode are
    comma separated, and multiple MetaModes are separated by semicolons. For
    example:
    
        "<mode name 0>, <mode name 1>; <mode name 2>, <mode name 3>"
    
    Where <mode name 0> is the name of the mode to be used on display device 0
    concurrently with <mode name 1> used on display device 1. A mode switch
    will then cause <mode name 2> to be used on display device 0 and <mode
    name 3> to be used on display device 1. Here is an example MetaMode:
    
        Option "MetaModes" "1280x1024,1280x1024; 1024x768,1024x768"
    
    If you want a display device to not be active for a certain MetaMode, you
    can use the mode name "NULL", or simply omit the mode name entirely:
    
        "1600x1200, NULL; NULL, 1024x768"
    
    or
    
        "1600x1200; , 1024x768"
    
    Optionally, mode names can be followed by offset information to control
    the positioning of the display devices within the virtual screen space;
    e.g.,
    
        "1600x1200 +0+0, 1024x768 +1600+0; ..."
    
    Offset descriptions follow the conventions used in the X "-geometry"
    command line option; i.e., both positive and negative offsets are valid,
    though negative offsets are only allowed when a virtual screen size is
    explicitly given in the X config file.

    When no offsets are given for a MetaMode, the offsets will be computed
    following the value of the MetaModeOrientation option (see below). Note
    that if offsets are given for any one of the modes in a single MetaMode,
    then offsets will be expected for all modes within that single MetaMode;
    in such a case offsets will be assumed to be +0+0 when not given.

    When not explicitly given, the virtual screen size will be computed as the
    bounding box of all MetaMode bounding boxes. MetaModes with a bounding box
    larger than an explicitly given virtual screen size will be discarded.

    A MetaMode string can be further modified with a "Panning Domain"
    specification; e.g.,
    
        "1024x768 @1600x1200, 800x600 @1600x1200"
    
    A panning domain is the area in which a display device's viewport will be
    panned to follow the mouse. Panning actually happens on two levels with
    MetaModes: first, an individual display device's viewport will be panned
    within its panning domain, as long as the viewport is contained by the
    bounding box of the MetaMode. Once the mouse leaves the bounding box of
    the MetaMode, the entire MetaMode (i.e., all display devices) will be
    panned to follow the mouse within the virtual screen, unless the
    "PanAllDisplays" X configuration option is disabled. Note that individual
    display devices' panning domains default to being clamped to the position
    of the display devices' viewports, thus the default behavior is just that
    viewports remain "locked" together and only perform the second type of
    panning.

    The most beneficial use of panning domains is probably to eliminate dead
    areas -- regions of the virtual screen that are inaccessible due to
    display devices with different resolutions. For example:
    
        "1600x1200, 1024x768"
    
    produces an inaccessible region below the 1024x768 display. Specifying a
    panning domain for the second display device:
    
        "1600x1200, 1024x768 @1024x1200"
    
    provides access to that dead area by allowing you to pan the 1024x768
    viewport up and down in the 1024x1200 panning domain.

    Offsets can be used in conjunction with panning domains to position the
    panning domains in the virtual screen space (note that the offset
    describes the panning domain, and only affects the viewport in that the
    viewport must be contained within the panning domain). For example, the
    following describes two modes, each with a panning domain width of 1900
    pixels, and the second display is positioned below the first:
    
        "1600x1200 @1900x1200 +0+0, 1024x768 @1900x768 +0+1200"
    
    Because it is often unclear which mode within a MetaMode will be used on
    each display device, mode descriptions within a MetaMode can be prepended
    with a display device name. For example:
    
        "CRT-0: 1600x1200,  DFP-0: 1024x768"
    
    If no MetaMode string is specified, then the X driver uses the modes
    listed in the relevant "Display" subsection, attempting to place matching
    modes on each display device.

    Each mode of the MetaMode may also have extra attributes associated with
    it, specified as a comma-separated list of token=value pairs inside curly
    brackets. The value for each token can optionally be enclosed in
    parentheses, to prevent commas within the value from being interpreted as
    token=value pair separators. Currently, the only token that requires a
    parentheses-enclosed value is "Transform".

    The possible tokens within the curly bracket list are:


   o "Stereo": possible values are "PassiveLeft" or "PassiveRight". When used
     in conjunction with stereo mode "4", this allows each display to be
     configured independently to show any stereo eye. For example:
     
         "CRT-0: 1600x1200 +0+0 { Stereo = PassiveLeft }, CRT-1: 1600x1200
     +1600+0 { Stereo=PassiveRight }"
     
     If the X screen is not configured for stereo mode "4", these options are
     ignored. See the Stereo X configuration option for more details about
     stereo configurations.

   o "Rotation": this rotates the content of an individual display device.
     Possible values are "0" (with synonyms "no", "off" and "normal"), "90"
     (with synonyms "left" and "CCW"), "180" (with synonyms "invert" and
     "inverted") and "270" (with synonyms "right" and "CW"). For example:
     
         "DFP-0: nvidia-auto-select { Rotation=left }, DFP-1:
     nvidia-auto-select { Rotation=right }"
     
     Independent rotation configurability of each display device is also
     possible through RandR. See Chapter 15 for details.

   o "Reflection": this reflects the content of an individual display device
     about either the X axis, the Y axis, or both the X and Y axes. Possible
     values are "X", "Y" and "XY". For example:
     
         "DFP-0: nvidia-auto-select { Reflection=X }, DFP-1:
     nvidia-auto-select"
     
     Independent reflection configurability of each display device is also
     possible through RandR. See Chapter 15 for details.

   o "Transform": this is a 3x3 matrix of floating point values that defines a
     transformation from the ViewPortOut for a display device to a region
     within the X screen. This is equivalent to the transformation matrix
     specified through the RandR 1.3 RRSetCrtcTransform request. As in RandR,
     the transform is applied before any specified rotation and reflection
     values to compute the complete transform.

     The 3x3 matrix is represented in the MetaMode syntax as a comma-separated
     list of nine floating point values, stored in row-major order. This is
     the same as the value passed to the xrandr(1) '--transform' command line
     option.

     Note that the transform value must be enclosed in parentheses, so that
     the commas separating the nine floating point values are interpreted
     correctly.

     For example:
     
         "DFP-0: nvidia-auto-select { Transform=(43.864288330078125,
     21.333328247070312, -16384, 0, 43.864288330078125, 0, 0,
     0.0321197509765625, 19.190628051757812) }"
     
     
   o "PixelShiftMode": This allows a display to be configured in pixel shift
     mode, in which a display overlays multiple downscaled images to simulate
     a higher effective resolution. This is used in certain JVC e-shift
     projectors. All pixel shift modes require a Quadro Kepler or later GPU.
     Possible values are "4kTopLeft", "4kBottomRight", and "8k".

     In 4K pixel shift mode, two cloned displays are configured in pixel shift
     mode, and either display is configured to display either the top left or
     bottom right pixels of every pixel quad. Note that the mode timings used
     by each display are one quarter of the resolution read from the X screen
     and one quarter of the effective resolution displayed (e.g., "1920x1080"
     rather than "3840x2160").

     For example, here is the configuration of a 4K pixel shift mode, with an
     effective desktop resolution of 3840x2160:
     
         "DFP-0: 1920x1080 +0+0 { PixelShiftMode = 4kTopLeft, ViewPortIn =
     3840x2160 }, DFP-1: 1920x1080 +0+0 { PixelShiftMode = 4kBottomRight,
     ViewPortIn = 3840x2160 }"
     
     
     In 8K pixel shift mode, the image is downscaled from the ViewPortIn
     resolution to the mode timing resolution, to produce two different
     images: one for the top left pixel of every pixel quad and one for the
     bottom right of every pixel quad. The display alternates between the two
     images each vblank. This requires a Quadro graphics card with a 3-pin DIN
     stereo connector.

     For example, here is the configuration for an 8K pixel shift mode, with
     an effective desktop resolution and refresh rate of 8192x4800 @30Hz,
     split across 4 1024x2400@60Hz displays. Note that the panning offsets of
     each display are in X screen (ViewPortIn) coordinates:
     
         "DFP-0: 1024x2400 +0+0 { PixelShiftMode=8k, ViewPortIn = 2048x4800 },
     DFP-1: 1024x2400 +2048+0 { PixelShiftMode=8k, ViewPortIn = 2048x4800 },
     DFP-2: 1024x2400 +4096+0 { PixelShiftMode=8k, ViewPortIn = 2048x4800 },
     DFP-4: 1024x2400 +6144+0 { PixelShiftMode=8k, ViewPortIn = 2048x4800 }"
     
     
     In both examples above, the ViewPortIn is provided here for illustrative
     purposes only. When PixelShiftMode is used, the ViewPortIn and
     ViewPortOut are always inferred from the mode timings: the ViewPortOut
     will match the mode timing resolution, which is half the intended
     resolution. The ViewPortIn will be twice the ViewPortOut, in order to
     achieve the pixel shift effect.

   o "ViewPortOut": this specifies the region within the mode sent to the
     display device that will display pixels from the X screen. The region of
     the mode outside the ViewPortOut will contain black. The format is "WIDTH
     x HEIGHT +X +Y".

     This is useful, for example, for configuring overscan compensation. E.g.,
     if the mode sent to the display device is 1920x1080, to configure a 10
     pixel border on all four sides:
     
         "DFP-0: 1920x1080 { ViewPortOut=1900x1060+10+10 }"
     
     Or, to only display an image in the lower right quarter of the 1920x1080
     mode:
     
         "DFP-0: 1920x1080 { ViewPortOut=960x540+960+540 }"
     
     
     When not specified, the ViewPortOut defaults to the size of the mode.

   o "ViewPortIn": this defines the size of the region of the X screen which
     will be displayed within the ViewPortOut. The format is "WIDTH x HEIGHT".

     ViewPortIn is useful for configuring scaling between the X screen and the
     display device. For example, to display an 800x600 region from the X
     screen on a 1920x1200 mode:
     
         "DFP-0: 1920x1200 { ViewPortIn=800x600 }"
     
     Or, to display a 2560x1600 region from the X screen on a 1920x1200 mode:
     
         "DFP-0: 1920x1200 { ViewPortIn=2560x1600 }"
     
     Or, in conjunction with ViewPortOut, to scale an 800x600 region of the X
     screen within a 1920x1200 mode while preserving the aspect ratio:
     
         "DFP-0: 1920x1200 { ViewPortIn=800x600, ViewPortOut=1600x1200+160+0
     }"
     
     
     Scaling from ViewPortIn to ViewPortOut is also expressible through the
     "Transform" attribute. In fact, ViewPortIn is just a shortcut for
     populating the transformation matrix. If both ViewPortIn and Transform
     are specified in the MetaMode for a display device, ViewPortIn is
     ignored.

     ViewPortIn is also ignored if PixelShiftMode is enabled, as
     PixelShiftMode implies a transformation of double width and height.

   o "PanningTrackingArea": this defines the region of the MetaMode inside
     which cursor movement will influence panning of the display device. The
     format is "WIDTH x HEIGHT + X + Y", to describe the size and offset of
     the region within the X screen. E.g.,
     
         "DFP-0: 1920x1200 +0+0 { PanningTrackingArea = 1920x1200 +0+0 }"
     
     
     If not specified in the MetaMode, this will default to the entire X
     screen. If the "PanAllDisplays" X configuration option is explicitly set
     to False, then PanningTrackingArea will default to the panning domain of
     the display device.

     This is equivalent to the panning tracking_area region in the
     RRSetPanning RandR 1.3 protocol request.

   o "PanningBorder": this defines the distances from the edges of the
     ViewPortIn that will activate panning if the pointer hits them. If the
     borders are 0, the display device will pan when the pointer hits the edge
     of the ViewPortIn (the default). If the borders are positive, the display
     device will pan when the pointer gets close to the edge of the
     ViewPortIn. If the borders are negative, the display device will pan when
     the pointer is beyond the edge of the ViewPortIn.

     The format is "LeftBorder/TopBorder/RightBorder/BottomBorder". E.g.,
     
         "DFP-0: 1920x1200 +0+0 { PanningBorder = 10/10/10/10 }"
     
     
     This is equivalent to the panning border in the RRSetPanning RandR 1.3
     protocol request.

   o "ForceCompositionPipeline": possible values are "On" or "Off". The NVIDIA
     X driver can use a composition pipeline to apply X screen transformations
     and rotations. "ForceCompositionPipeline" can be used to force the use of
     this pipeline, even when no transformations or rotations are applied to
     the screen.

   o "ForceFullCompositionPipeline": possible values are "On" or "Off". This
     option implicitly enables "ForceCompositionPipeline" and additionally
     makes use of the composition pipeline to apply ViewPortOut scaling.

   o "WarpMesh", "BlendTexture", "OffsetTexture": these string attributes
     control the operation of Warp and Blend, an advanced transformation
     feature available on select NVIDIA Quadro GPUs. Warp and Blend can adjust
     a display's geometry (warp) with a greater level of control than a simple
     matrix transformation: for example, to facilitate projecting an image
     onto a non-planar surface, and its intensity (blend) per pixel: for
     example, to seamlessly combine images from multiple overlapping
     projectors into a single large image. Each of the "WarpMesh",
     "BlendTexture", and "OffsetTexture" MetaMode tokens can be set to the
     name of a pixmap which has already been bound to a name via the
     XNVCtrlBindWarpPixmapName() NV_CONTROL call. See the
     'nv-control-warpblend' sample application distributed with the
     'nvidia-settings' source code for a more detailed description of the
     functionality of each of these pixmaps, how to lay data out into the
     pixmaps, and an example implementation of an X application that loads and
     binds pixmaps so that they are ready to use in a MetaMode.

     If an HDMI 2.0 4K@60Hz mode is in use and the GPU or display is incapable
     of driving this mode in the RGB 4:4:4 color space, then the color space
     will be overridden to YUV 4:2:0 and Warp and Blend will be disabled.

     Warp and Blend is not supported on depth 8 X screens, and is not yet
     supported with stereo or the GLX_NV_swap_group OpenGL extension.

   o "BlendOrder": Controls the order of warping and blending when using Warp
     and Blend. By default, warping is performed first, followed by blending;
     setting the "BlendOrder" MetaMode token to "BlendAfterWarp" will reverse
     the default order.

   o "ResamplingMethod": Controls the filtering method used to smooth the
     display image when scaling screen transformations (such as a WarpMesh or
     scaling ViewPortOut) are in use. Possible values are "Bilinear"
     (default), "BicubicTriangular", "BicubicBellShaped", "BicubicBspline",
     "BicubicAdaptiveTriangular", "BicubicAdaptiveBellShaped",
     "BicubicAdaptiveBspline", and "Nearest".

     Bicubic resampling is only available on NVIDIA Quadro GPUs, and is
     unavailable when a mode requiring a YUV 4:2:0 color space is in use.
     Bicubic resampling is not supported with stereo or the GLX_NV_swap_group
     OpenGL extension.


    Note that the current MetaMode can also be configured through the
    NV-CONTROL X extension and the nvidia-settings utility. For example:
    
        nvidia-settings --assign CurrentMetaMode="DFP-0: 1920x1200 {
    ViewPortIn=800x600, ViewPortOut=1600x1200+160+0 }"
    
    
MetaModeOrientation

    This option controls the positioning of the display devices within the
    virtual X screen, when offsets are not explicitly given in the MetaModes.
    The possible values are:
    
        "RightOf"  (the default)
        "LeftOf"
        "Above"
        "Below"
        "SamePositionAs"
    
    When "SamePositionAs" is specified, all display devices will be assigned
    an offset of 0,0. For backwards compatibility, "Clone" is a synonym for
    "SamePositionAs".

    Because it is often unclear which display device relates to which,
    MetaModeOrientation can be confusing. You can further clarify the
    MetaModeOrientation with display device names to indicate which display
    device is positioned relative to which display device. For example:
    
        "CRT-0 LeftOf DFP-0"
    
    
ConnectedMonitor

    With this option you can override what the NVIDIA kernel module detects is
    connected to your graphics card. This may be useful, for example, if any
    of your display devices do not support detection using Display Data
    Channel (DDC) protocols. Valid values are a comma-separated list of
    display device names; for example:
    
        "CRT-0, CRT-1"
        "CRT"
        "CRT-1, DFP-0"
    
    WARNING: this option overrides what display devices are detected by the
    NVIDIA kernel module, and is very seldom needed. You really only need this
    if a display device is not detected, either because it does not provide
    DDC information, or because it is on the other side of a KVM
    (Keyboard-Video-Mouse) switch. In most other cases, it is best not to
    specify this option.


Just as in all X config entries, spaces are ignored and all entries are case
insensitive.


FREQUENTLY ASKED TWINVIEW QUESTIONS

Q. Nothing gets displayed on my second monitor; what is wrong?

A. Monitors that do not support monitor detection using Display Data Channel
   (DDC) protocols (this includes most older monitors) are not detectable by
   your NVIDIA card. You need to explicitly tell the NVIDIA X driver what you
   have connected using the "ConnectedMonitor" option; e.g.,
   
       Option "ConnectedMonitor" "CRT, CRT"
   
   

Q. Will window managers be able to appropriately place windows (e.g., avoiding
   placing windows across both display devices, or in inaccessible regions of
   the virtual desktop)?

   Yes. Window managers can query the layout of display devices through either
   RandR 1.2 or Xinerama.

   The NVIDIA X driver provides a Xinerama extension that X clients (such as
   window managers) can use to discover the current layout of display devices.
   Note that the Xinerama protocol provides no way to notify clients when a
   configuration change occurs, so if you modeswitch to a different MetaMode,
   your window manager may still think you have the previous configuration.
   Using RandR 1.2, or the Xinerama extension in conjunction with the
   XF86VidMode extension to get modeswitch events, window managers should be
   able to determine the display device configuration at any given time.

   Unfortunately, the data provided by XineramaQueryScreens() appears to
   confuse some window managers; to work around such broken window managers,
   you can disable communication of the display device layout with the
   nvidiaXineramaInfo X configuration option.

   The order that display devices are reported in via the NVIDIA Xinerama
   information can be configured with the nvidiaXineramaInfoOrder X
   configuration option.

   Be aware that the NVIDIA driver cannot provide the Xinerama extension if
   the X server's own Xinerama extension is being used. Explicitly specifying
   Xinerama in the X config file or on the X server commandline will prohibit
   NVIDIA's Xinerama extension from installing, so make sure that the X
   server's log file does not contain:
   
       (++) Xinerama: enabled
   
   if you want the NVIDIA driver to be able to provide the Xinerama extension
   while in TwinView.

   Another solution is to use panning domains to eliminate inaccessible
   regions of the virtual screen (see the MetaMode description above).

   A third solution is to use two separate X screens, rather than use
   TwinView. See Chapter 14.


Q. How are virtual screen dimensions determined in TwinView?

A. After all requested modes have been validated, and the offsets for each
   MetaMode's viewports have been computed, the NVIDIA driver computes the
   bounding box of the panning domains for each MetaMode. The maximum bounding
   box width and height is then found.

   Note that one side effect of this is that the virtual width and virtual
   height may come from different MetaModes. Given the following MetaMode
   string:
   
       "1600x1200,NULL; 1024x768+0+0, 1024x768+0+768"
   
   the resulting virtual screen size will be 1600 x 1536.


Q. Can I play full screen games across both display devices?

A. Yes. While the details of configuration will vary from game to game, the
   basic idea is that a MetaMode presents X with a mode whose resolution is
   the bounding box of the viewports for that MetaMode. For example, the
   following:
   
       Option "MetaModes" "1024x768,1024x768; 800x600,800x600"
       Option "MetaModeOrientation" "RightOf"
   
   produce two modes: one whose resolution is 2048x768, and another whose
   resolution is 1600x600. Games such as Quake 3 Arena use the VidMode
   extension to discover the resolutions of the modes currently available. To
   configure Quake 3 Arena to use the above MetaMode string, add the following
   to your q3config.cfg file:
   
       seta r_customaspect "1"
       seta r_customheight "600"
       seta r_customwidth  "1600"
       seta r_fullscreen   "1"
       seta r_mode         "-1"
   
   Note that, given the above configuration, there is no mode with a
   resolution of 800x600 (remember that the MetaMode "800x600, 800x600" has a
   resolution of 1600x600"), so if you change Quake 3 Arena to use a
   resolution of 800x600, it will display in the lower left corner of your
   screen, with the rest of the screen grayed out. To have single head modes
   available as well, an appropriate MetaMode string might be something like:
   
       "800x600,800x600; 1024x768,NULL; 800x600,NULL; 640x480,NULL"
   
   More precise configuration information for specific games is beyond the
   scope of this document, but the above examples coupled with numerous online
   sources should be enough to point you in the right direction.


______________________________________________________________________________

Chapter 13. Configuring GLX in Xinerama
______________________________________________________________________________

The NVIDIA Linux Driver supports GLX when Xinerama is enabled on similar GPUs.
The Xinerama extension takes multiple physical X screens (possibly spanning
multiple GPUs), and binds them into one logical X screen. This allows windows
to be dragged between GPUs and to span across multiple GPUs. The NVIDIA driver
supports hardware accelerated OpenGL rendering across all NVIDIA GPUs when
Xinerama is enabled.

To configure Xinerama

  1. Configure multiple X screens (refer to the XF86Config(5x) or
     xorg.conf(5x) man pages for details).

  2. Enable Xinerama by adding the line
     
         Option "Xinerama" "True"
     
     to the "ServerFlags" section of your X config file.


Requirements:

   o Using identical GPUs is recommended. Some combinations of non-identical,
     but similar, GPUs are supported. If a GPU is incompatible with the rest
     of a Xinerama desktop then no OpenGL rendering will appear on the screens
     driven by that GPU. Rendering will still appear normally on screens
     connected to other supported GPUs. In this situation the X log file will
     include a message of the form:



(WW) NVIDIA(2): The GPU driving screen 2 is incompatible with the rest of
(WW) NVIDIA(2):      the GPUs composing the desktop.  OpenGL rendering will
(WW) NVIDIA(2):      be disabled on screen 2.



   o NVIDIA's GLX implementation only supports Xinerama when physical X screen
     0 is driven by the NVIDIA X driver. This is because the X.Org X server
     bases the visuals of the logical Xinerama X screen on the visuals of
     physical X screen 0.

     When physical X screen 0 is not being driven by the NVIDIA X driver and
     Xinerama is enabled, then GLX will be disabled. If physical X screens
     other than screen 0 are not being driven by the NVIDIA X driver, OpenGL
     rendering will be disabled on them.

   o Only the intersection of capabilities across all GPUs will be advertised.

     The maximum OpenGL viewport size is 16384x16384 pixels. If an OpenGL
     window is larger than the maximum viewport, regions beyond the viewport
     will be blank.

   o X configuration options that affect GLX operation (e.g.: stereo,
     overlays) should be set consistently across all X screens in the X
     server.


Known Issues:

   o Versions of XFree86 prior to 4.5 and versions of X.Org prior to 6.8.0
     lack the required interfaces to properly implement overlays with the
     Xinerama extension. On earlier server versions mixing overlays and
     Xinerama will result in rendering corruption. If you are using the
     Xinerama extension with overlays, it is recommended that you upgrade to
     XFree86 4.5, X.Org 6.8.0, or newer.


______________________________________________________________________________

Chapter 14. Configuring Multiple X Screens on One Card
______________________________________________________________________________

GPUs that support TwinView (Chapter 12) can also be configured to treat each
connected display device as a separate X screen.

While there are several disadvantages to this approach as compared to TwinView
(e.g.: windows cannot be dragged between X screens, hardware accelerated
OpenGL cannot span the two X screens), it does offer one advantage over
TwinView: If each display device is a separate X screen, then properties that
may vary between X screens may vary between displays (e.g.: depth, root window
size, etc).

To configure two separate X screens to share one graphics card, here is what
you will need to do:

First, create two separate Device sections, each listing the BusID of the
graphics card to be shared and listing the driver as "nvidia", and assign each
a separate screen:

    Section "Device"
        Identifier  "nvidia0"
        Driver      "nvidia"
        # Edit the BusID with the location of your graphics card
        BusID       "PCI:2:0:0"
        Screen      0
    EndSection

    Section "Device"
        Identifier  "nvidia1"
        Driver      "nvidia"
        # Edit the BusID with the location of your graphics card
        BusId       "PCI:2:0:0"
        Screen      1
    EndSection

Then, create two Screen sections, each using one of the Device sections:

    Section "Screen"
        Identifier  "Screen0"
        Device      "nvidia0"
        Monitor     "Monitor0"
        DefaultDepth 24
        Subsection "Display"
            Depth       24
            Modes       "1600x1200" "1024x768" "800x600" "640x480" 
        EndSubsection
    EndSection

    Section "Screen"
        Identifier  "Screen1"
        Device      "nvidia1"
        Monitor     "Monitor1"
        DefaultDepth 24
        Subsection "Display"
            Depth       24
            Modes       "1600x1200" "1024x768" "800x600" "640x480" 
        EndSubsection
    EndSection

(Note: You'll also need to create a second Monitor section) Finally, update
the ServerLayout section to use and position both Screen sections:

    Section "ServerLayout"
        ...
        Screen         0 "Screen0" 
        Screen         1 "Screen1" leftOf "Screen0"
        ...
    EndSection

For further details, refer to the XF86Config(5x) or xorg.conf(5x) man pages.

______________________________________________________________________________

Chapter 15. Support for the X Resize and Rotate Extension
______________________________________________________________________________

This NVIDIA driver release contains support for the X Resize and Rotate
(RandR) Extension versions 1.1, 1.2, and 1.3. The version of the RandR
extension advertised to X clients is controlled by the X server: the RandR
extension and protocol are provided by the X server, which routes protocol
requests to the NVIDIA X driver. Run `xrandr --version` to check the version
of RandR provided by the X server.


15A. RANDR SUPPORT

Specific supported features include:

   o Modes can be set per-screen, and the X screen can be resized through the
     RRSetScreenConfig request (e.g., with xrandr(1)'s '--size' and '--rate'
     command line options).

   o The X screen can be resized with the RandR 1.2 RRSetScreenSize request
     (e.g., with xrandr(1)'s '--fb' command line option).

   o The state of the display hardware can be queried with the RandR 1.2 and
     1.3 RRGetScreenResources, RRGetScreenResourcesCurrent, RRGetOutputInfo,
     and RRGetCrtcInfo requests (e.g., with xrandr(1)'s '--query' command line
     option).

   o Modes can be set with RandR CRTC granularity with the RandR 1.2
     RRSetCrtcConfig request. E.g., `xrandr --output DVI-I-2 --mode
     1920x1200`.

   o Rotation can be set with RandR CRTC granularity with the RandR 1.2
     RRSetCrtcConfig request. E.g., `xrandr --output DVI-I-2 --mode 1920x1200
     --rotation left`.

   o Per-CRTC transformations can be manipulated with the RandR 1.3
     RRSetCrtcTransform and RRGetCrtcTransform requests. E.g., `xrandr
     --output DVI-I-3 --mode 1920x1200 --transform 43.864288330078125,21.33332
     8247070312,-16384,0,43.864288330078125,0,0,0.0321197509765625,19.19062805
     1757812`.

   o The RandR 1.0/1.1 requests RRGetScreenInfo and RRSetScreenConfig
     manipulate MetaModes. The MetaModes that the X driver uses (either
     user-requested or implicitly generated) are reported through the
     RRGetScreenInfo request (e.g., `xrandr --query --q1`) and chosen through
     the RRSetScreenConfig request (e.g., `xrandr --size 1920x1200
     --orientation left`).


The configurability exposed through RandR is also available through the
MetaMode syntax, independent of X server version. See Chapter 12 for more
details. As an example, these two commands are equivalent:


  xrandr --output DVI-I-2 --mode 1280x1024 --pos 0x0 --rotate left \
    --output DVI-I-3 --mode 1920x1200 --pos 0x0

  nvidia-settings --assign CurrentMetaMode="DVI-I-2: 1280x1024 +0+0 \
    { Rotation=left }, DVI-I-3: 1920x1200 +0+0"



15B. RANDR 1.1 ROTATION BEHAVIOR

On X servers that support RandR 1.2 or later, when an RandR 1.1 rotation
request is received (e.g., `xrandr --orientation left`), the NVIDIA X driver
will apply that request to an entire MetaMode. E.g., if you configure multiple
monitors, either through a MetaMode or through RandR 1.2:


  xrandr --output DVI-I-2 --mode 1280x1024 --pos 0x0 \
    --output DVI-I-3 --mode 1920x1200 --pos 1280x0

  nvidia-settings --assign CurrentMetaMode="DVI-I-2: 1280x1024 +0+0, \
    DVI-I-3: 1920x1200 +1280+0"

Requesting RandR 1.1 rotation through `xrandr --orientation left`, will rotate
the entire MetaMode, producing the equivalent of either:


  xrandr --output DVI-I-2 --mode 1280x1024 --pos 176x0 --rotate left \
    --output DVI-I-3 --mode 1920x1200 --rotate left --pos 0x1280

  nvidia-settings --assign CurrentMetaMode="DVI-I-2: 1280x1024 +176+0, \
    { Rotation=left }, DVI-I-3: 1920x1200 +0+1280 { Rotation=left }"


On X servers that do not support RandR 1.2 or later, the NVIDIA X driver does
not advertise RandR rotation support. On such X servers, it is recommended to
configure rotation through MetaModes, instead.


15C. OUTPUT PROPERTIES

The NVIDIA Linux driver supports a number of output device properties.


OFFICIAL PROPERTIES

Properties that do not start with an underscore are officially documented in
the file "randrproto.txt" in X.Org's randrproto package. See that file for a
full description of these properties.


   o "ConnectorNumber"

     This property groups RandR outputs by their physical connectors. For
     example, DVI-I ports have both an analog and a digital output, which is
     represented in RandR by two different output objects. One DVI-I port may
     be represented by RandR outputs "DVI-I-0" with "SignalFormat"  "TMDS"
     (transition-minimized differential signaling, a digital signal format)
     and "DVI-I-1" with "SignalFormat"  "VGA", representing the analog part.
     In this case, both RandR outputs would have the same value of
     "ConnectorNumber".

   o "ConnectorType"

     This property lists the physical type of the connector. For example, in
     the DVI-I example above, both "DVI-I-0" and "DVI-I-1" would have a
     "ConnectorType" of "DVI-I".

   o "EDID"

     This property contains the raw bytes of the display's extended display
     identification data. This data is intended for applications to use to
     glean information about the monitor connected.

   o "SignalFormat"

     This property describes the type of signaling used to send image data to
     the display device. For example, an analog device connected to a DVI-I
     port might use VGA as its signaling format.

   o "Border"

     This property is a list of integers specifying adjustments for the edges
     of the displayed image. How this property is applied depends on the
     number of elements in the list:
     
        o 0 = No border is applied.
     
        o 1 = A border of Border[0] is applied to all four sides of the image.
     
        o 2 = A border of Border[0] is applied to the left and right sides of
          the image, and a border of Border[1] is applied to the top and
          bottom.
     
        o 4 = The border dimensions are as follows: Border[0]: left,
          Border[1]: top, Border[2]: right, Border[3]: bottom
     
     This property is functionally equivalent to the ViewPortOut MetaMode
     token.

   o "BorderDimensions"

     This property lists how many Border adjustment parameters can actually be
     used. The NVIDIA implementation supports independently configuring all
     four Border values.

   o "GUID"

     DisplayPort 1.2 specifies that all devices must have a globally-unique
     identifier, referred to as a GUID. When a GUID is available, the "GUID"
     property contains its raw bytes.

   o "CscMatrix"

     This property controls the color-space conversion matrix applied to the
     pixels being displayed. The matrix is 3 rows and 4 columns, stored in
     row-major order. Each entry is a 32-bit fixed-point number with 3 integer
     bits and 16 fractional bits. Each entry in the X colormap is treated as a
     4-component column vector C = [ R, G, B, 1 ]. The resulting components of
     the color vector [ R', G', B' ] = CscMatrix * C are used as indices into
     the gamma ramp.

     For example, using xrandr version 1.5.0 or higher, you can exchange the
     red channel with the green channel using this command:
     
     
       xrandr --output DP-6 --set CscMatrix \
         0,0x10000,0,0,0x10000,0,0,0,0,0,0x10000,0
     
     
     To return to the default identity matrix, use
     
     
       xrandr --output DP-6 --set CscMatrix \
         0x10000,0,0,0,0,0x10000,0,0,0,0,0x10000,0
     
     
     


UNOFFICIAL PROPERTIES

Properties whose names begin with an underscore are not specified by X.Org.
They may be removed or modified in future driver releases. The NVIDIA Linux
driver supports the following unofficial properties:


   o "_ConnectorLocation"

     This property describes the physical location of the connector. On add-in
     graphics boards, connector location 0 should generally be the position
     closest to the motherboard, with increasing location numbers indicating
     connectors progressively farther away.

     
     
         Type                                INTEGER
         Format                              32
         # Items                             1
         Flags                               Immutable, Static
         Range                               0-
     
     


15D. DISPLAYPORT 1.2

When display devices are connected via DisplayPort 1.2 branch devices,
additional RandR outputs will be created, one for each connected display
device. These dynamic outputs will remain as long as the display device is
connected or used in a MetaMode, even if they are not named in the current
MetaMode. They will be deleted automatically when the display is disconnected
and no MetaModes use them.

See Appendix C for a description of how the names of these outputs are
generated.

If you are developing applications that use the RandR extension, please be
aware that outputs can be created and destroyed dynamically. You should be
sure to use the XRRSelectInput function to watch for events that indicate when
this happens.


15E. MONITOR CONFIGURATION OPTIONS

This NVIDIA Linux driver honors the "Enable", "Ignore", "Primary", and
"Rotate" options in the Monitor section of the X configuration file. These
options will apply to a monitor if the Identifier of the Monitor section
matches one of the display device's names (see Appendix C for a description of
how a display's names are generated). For example, a Monitor section with

  Identifier "DFP"

will apply to all digitally-connected displays, while a Monitor section with

  Identifier "DPY-EDID-ee6cecc0-fa46-0c33-94e0-274313f9e7eb"

will apply only to a display device with a specific EDID-based identification
hash. You can also specify the name of the Monitor section to use in the
Screen section:

  Option "Monitor-<dpyname>" "<Monitor name>"


See the xorg.conf(5) man page for a description of these options.


15F. KNOWN ISSUES


   o Rotation and Transformations (configured either through RandR or
     MetaModes) are not yet supported with stereo or the GLX_NV_swap_group
     OpenGL extension.

   o Rotation and Transformations (configured either through RandR or
     MetaModes) are not supported on depth 8 X screens.

   o Some of the RandR 1.2 X configuration options provided by the XFree86 DDX
     implementation and documented in xorg.conf(5) are not yet supported.

   o Transformations (configured either through RandR or MetaModes) are not
     yet correctly clipped.


______________________________________________________________________________

Chapter 16. Configuring a Notebook
______________________________________________________________________________


16A. INSTALLATION AND CONFIGURATION

Installation and configuration of the NVIDIA Linux Driver Set on a notebook is
the same as for any desktop environment, with a few additions, as described
below.


16B. POWER MANAGEMENT

All notebook NVIDIA GPUs support power management, both S3 (also known as
"Standby" or "Suspend to RAM") and S4 (also known as "Hibernate", "Suspend to
Disk" or "SWSUSP"). Power management is system-specific and is dependent upon
all the components in the system; some systems may be more problematic than
other systems.

Most recent notebook NVIDIA GPUs also support PowerMizer, which monitors
application work load to adjust system parameters to deliver the optimal
balance of performance and battery life. However, PowerMizer is only enabled
by default on some notebooks. Please see the known issues below for more
details.


16C. HOTKEY SWITCHING OF DISPLAY DEVICES

Most laptops generate keyboard events when the display change hotkey is
pressed. On some laptops, these are simply normal keyboard keys. On others,
they generate ACPI events that may be translated into keyboard events by other
system components.

The NVIDIA driver does not handle ACPI display change hotkeys itself. Instead,
it is expected for desktop environments to listen for these key-press events
and respond by reconfiguring the display devices as necessary.


16D. DOCKING EVENTS

All notebook NVIDIA GPUs support docking, however support may be limited by
the OS or system. There are three types of notebook docking (hot, warm, and
cold), which refer to the state of the system when the docking event occurs.
hot refers to a powered on system with a live desktop, warm refers to a system
that has entered a suspended power management state, and cold refers to a
system that has been powered off. Only warm and cold docking are supported by
the NVIDIA driver.


16E. KNOWN NOTEBOOK ISSUES

There are a few known issues associated with notebooks:

   o In many cases, suspending and/or resuming will fail. As mentioned above,
     this functionality is very system-specific. There are still many cases
     that are problematic. Here are some tips that may help:
     
        o In some cases, hibernation can have bad interactions with the PCI
          Express bus clocks, which can lead to system hangs when entering
          hibernation. This issue is still being investigated, but a known
          workaround is to leave an OpenGL application running when
          hibernating.
     
        o On notebooks with relatively little system memory, repetitive
          hibernation attempts may fail due to insufficient free memory. This
          problem can be avoided by running `echo 0 > /sys/power/image_size`,
          which reduces the image size to be stored during hibernation.
     
        o Some distributions use a tool called vbetool to save and restore VGA
          adapter state. This tool is incompatible with NVIDIA GPUs' Video
          BIOSes and is likely to lead to problems restoring the GPU and its
          state. Disabling calls to this tool in your distribution's init
          scripts may improve power management reliability.
     
     
   o On some notebooks, PowerMizer is not enabled by default. This issue is
     being investigated, and there is no known workaround.


______________________________________________________________________________

Chapter 17. Using the NVIDIA Driver with Optimus Laptops
______________________________________________________________________________

Some laptops with NVIDIA GPUs make use of Optimus technology to allow
switching between an integrated GPU and a discrete NVIDIA GPU. The NVIDIA
Linux driver can be used on these systems, though functionality may be
limited.


17A. INSTALLING THE NVIDIA DRIVER ON AN OPTIMUS LAPTOP

The driver may be installed normally on Optimus systems, but the NVIDIA X
driver and the NVIDIA OpenGL driver may not be able to display to the laptop's
internal display panel unless a means to connect the panel to the NVIDIA GPU
(for example, a hardware multiplexer, or "mux", often controllable by a BIOS
setting) is available. On systems without a mux, the NVIDIA GPU can still be
useful for offscreen rendering, running CUDA applications, and other uses that
don't require driving a display.

On muxless Optimus laptops, or on laptops where a mux is present, but not set
to drive the internal display from the NVIDIA GPU, the internal display is
driven by the integrated GPU. On these systems, it's important that the X
server not be configured to use the NVIDIA X driver after the driver is
installed. Instead, the correct driver for the integrated GPU should be used.
Often, this can be determined automatically by the X server, and no explicit
configuration is required, especially on newer X server versions. If your X
server autoselects the NVIDIA X driver after installation, you may need to
explicitly select the driver for your integrated GPU.

As an alternative to using only the integrated graphics device, support for
the display output source functionality provided by the X Resize and Rotate
extension version 1.4 is available. This functionality allows for graphics to
be rendered on the NVIDIA GPU and displayed on the integrated graphics device.
For information on how to use this functionality, see Chapter 32.

An additional caveat is that existing OpenGL libraries may be overwritten by
the install process. If you want to prevent this from happening, e.g., if you
intend to use OpenGL on the integrated GPU, you may prevent the installer from
installing the OpenGL and GLX libraries by passing the option
--no-opengl-files to the '.run' file, or directly to nvidia-installer, e.g.:

# NVIDIA-Linux-x86_64-384.59.run --no-opengl-files


See Chapter 4 for details on the driver install process.


17B. LOADING THE KERNEL MODULE AND CREATING THE DEVICE FILES WITHOUT X

In order for programs that use the NVIDIA driver to work correctly (e.g.: X,
OpenGL, and CUDA applications), the kernel module must be loaded, and the
device files '/dev/nvidiactl' and '/dev/nvidia[0-9]+' must exist with read and
write permissions for any users of such applications. If the setuid root
nvidia-modprobe(1) utility is installed (the default when the driver is
installed from .run file), this should be handled automatically. Otherwise,
the kernel module will need to be loaded, and the device files created,
through your Linux distribution's mechanisms.

See "Q. How and when are the NVIDIA device files created?" in Chapter 7 for
more information.

Note that on some Optimus notebooks the driver may fail to initialize the GPU
due to system-specific ACPI interaction problems: see "Q. Why does the VBIOS
fail to load on my Optimus system?" in Chapter 8 for more information.

______________________________________________________________________________

Chapter 18. Programming Modes
______________________________________________________________________________

The NVIDIA Accelerated Linux Graphics Driver supports all standard VGA and
VESA modes, as well as most user-written custom mode lines; double-scan and
interlaced modes are supported on all GPUs supported by the NVIDIA driver.

To request one or more standard modes for use in X, you can simply add a
"Modes" line such as:

    Modes "1600x1200" "1024x768" "640x480"

in the appropriate Display subsection of your X config file (see the
XF86Config(5x) or xorg.conf(5x) man pages for details). Or, the
nvidia-xconfig(1) utility can be used to request additional modes; for
example:

    nvidia-xconfig --mode 1600x1200

See the nvidia-xconfig(1) man page for details.


18A. DEPTH, BITS PER PIXEL, AND PITCH

While not directly a concern when programming modes, the bits used per pixel
is an issue when considering the maximum programmable resolution; for this
reason, it is worthwhile to address the confusion surrounding the terms
"depth" and "bits per pixel". Depth is how many bits of data are stored per
pixel. Supported depths are 8, 15, 16, 24, and 30. Most video hardware,
however, stores pixel data in sizes of 8, 16, or 32 bits; this is the amount
of memory allocated per pixel. When you specify your depth, X selects the bits
per pixel (bpp) size in which to store the data. Below is a table of what bpp
is used for each possible depth:

    Depth                                 BPP
    ----------------------------------    ----------------------------------
    8                                     8
    15                                    16
    16                                    16
    24                                    32
    30                                    32

Lastly, the "pitch" is how many bytes in the linear frame buffer there are
between one pixel's data, and the data of the pixel immediately below. You can
think of this as the horizontal resolution multiplied by the bytes per pixel
(bits per pixel divided by 8). In practice, the pitch may be more than this
product due to alignment constraints.


18B. MAXIMUM RESOLUTIONS

The NVIDIA Accelerated Linux Graphics Driver and NVIDIA GPU-based graphics
cards support resolutions up to 16384x16384 pixels for Fermi and newer GPUs,
and up to 32767x32767 pixels for Pascal and newer GPUs, though the maximum
resolution your system can support is also limited by the amount of video
memory (see Useful Formulas for details) and the maximum supported resolution
of your display device (monitor/flat panel/television). Also note that while
use of a video overlay does not limit the maximum resolution or refresh rate,
video memory bandwidth used by a programmed mode does affect the overlay
quality.

Using 4K resolutions over HDMI requires a high single-link pixel clock that is
only available on Kepler or later GPUs.

Using HDMI 2.0 4K@60Hz modes in the RGB 4:4:4 color space requires a high
single-link pixel clock that is only available on GM20x or later GPUs. If the
GPU or display is incapable of driving this mode in the RGB 4:4:4 color space,
the color space will be overridden to YUV 4:2:0. YUV 4:2:0 mode is not
supported on depth 8 X screens, and is not currently supported with stereo or
the GLX_NV_swap_group OpenGL extension.


18C. USEFUL FORMULAS

The maximum resolution is a function both of the amount of video memory and
the bits per pixel you elect to use:

HR * VR * (bpp/8) = Video Memory Used

In other words, the amount of video memory used is equal to the horizontal
resolution (HR) multiplied by the vertical resolution (VR) multiplied by the
bytes per pixel (bits per pixel divided by eight). Technically, the video
memory used is actually the pitch times the vertical resolution, and the pitch
may be slightly greater than (HR * (bpp/8)) to accommodate the hardware
requirement that the pitch be a multiple of some value.

Note that this is just memory usage for the frame buffer; video memory is also
used by other things, such as OpenGL and pixmap caching.

Another important relationship is that between the resolution, the pixel clock
(also known as the dot clock) and the vertical refresh rate:

RR = PCLK / (HFL * VFL)

In other words, the refresh rate (RR) is equal to the pixel clock (PCLK)
divided by the total number of pixels: the horizontal frame length (HFL)
multiplied by the vertical frame length (VFL) (note that these are the frame
lengths, and not just the visible resolutions). As described in the XFree86
Video Timings HOWTO, the above formula can be rewritten as:

PCLK = RR * HFL * VFL

Given a maximum pixel clock, you can adjust the RR, HFL and VFL as desired, as
long as the product of the three is consistent. The pixel clock is reported in
the log file. Your X log should contain a line like this:

    (--) NVIDIA(0): ViewSonic VPD150 (DFP-1): 165 MHz maximum pixel clock

which indicates the maximum pixel clock for that display device.


18D. HOW MODES ARE VALIDATED

In traditional XFree86/X.Org mode validation, the X server takes as a starting
point the X server's internal list of VESA standard modes, plus any modes
specified with special ModeLines in the X configuration file's Monitor
section. These modes are validated against criteria such as the valid
HorizSync/VertRefresh frequency ranges for the user's monitor (as specified in
the Monitor section of the X configuration file), as well as the maximum pixel
clock of the GPU.

Once the X server has determined the set of valid modes, it takes the list of
user requested modes (i.e., the set of modes named in the "Modes" line in the
Display subsection of the Screen section of X configuration file), and finds
the "best" validated mode with the requested name.

The NVIDIA X driver uses a variation on the above approach to perform mode
validation. During X server initialization, the NVIDIA X driver builds a pool
of valid modes for each display device. It gathers all possible modes from
several sources:

   o The display device's EDID

   o The X server's built-in list

   o Any user-specified ModeLines in the X configuration file

   o The VESA standard modes

For every possible mode, the mode is run through mode validation. The core of
mode validation is still performed similarly to traditional XFree86/X.Org mode
validation: the mode timings are checked against things such as the valid
HorizSync and VertRefresh ranges and the maximum pixelclock. Note that each
individual stage of mode validation can be independently controlled through
the "ModeValidation" X configuration option.

Note that when validating interlaced mode timings, VertRefresh specifies the
field rate, rather than the frame rate. For example, the following modeline
has a vertical refresh rate of 87 Hz:


 # 1024x768i @ 87Hz (industry standard)
 ModeLine "1024x768"  44.9  1024 1032 1208 1264  768 768 776 817 +hsync +vsync
Interlace


Invalid modes are discarded; valid modes are inserted into the mode pool. See
MODE VALIDATION REPORTING for how to get more details on mode validation
results for each considered mode.

Valid modes are given a unique name that is guaranteed to be unique across the
whole mode pool for this display device. This mode name is constructed
approximately like this:

    <width>x<height>_<refreshrate>

(e.g., "1600x1200_85")

The name may also be prepended with another number to ensure the mode is
unique; e.g., "1600x1200_85_0".

As validated modes are inserted into the mode pool, duplicate modes are
removed, and the mode pool is sorted, such that the "best" modes are at the
beginning of the mode pool. The sorting is based roughly on:

   o Resolution

   o Source (EDID-provided modes are prioritized higher than VESA-provided
     modes, which are prioritized higher than modes that were in the X
     server's built-in list)

   o Refresh rate

Once modes from all mode sources are validated and the mode pool is
constructed, all modes with the same resolution are compared; the best mode
with that resolution is added to the mode pool a second time, using just the
resolution as its unique modename (e.g., "1600x1200"). In this way, when you
request a mode using the traditional names (e.g., "1600x1200"), you still get
what you got before (the 'best' 1600x1200 mode); the added benefit is that all
modes in the mode pool can be addressed by a unique name.

When verbose logging is enabled (see "Q. How can I increase the amount of data
printed in the X log file?" in Chapter 7), the mode pool for each display
device is printed to the X log file.

After the mode pool is built for all display devices, the requested modes (as
specified in the X configuration file), are looked up from the mode pool. Each
requested mode that can be matched against a mode in the mode pool is then
advertised to the X server and is available to the user through the X server's
mode switching hotkeys (ctrl-alt-plus/minus) and the XRandR and XF86VidMode X
extensions.

Additionally, all modes in the mode pool of the primary display device are
implicitly made available to the X server. See the IncludeImplicitMetaModes X
configuration option for details.


18E. THE NVIDIA-AUTO-SELECT MODE

You can request a special mode by name in the X config file, named
"nvidia-auto-select". When the X driver builds the mode pool for a display
device, it selects one of the modes as the "nvidia-auto-select" mode; a new
entry is made in the mode pool, and "nvidia-auto-select" is used as the unique
name for the mode.

The "nvidia-auto-select" mode is intended to be a reasonable mode for the
display device in question. For example, the "nvidia-auto-select" mode is
normally the native resolution for flat panels, as reported by the flat
panel's EDID, or one of the detailed timings from the EDID. The
"nvidia-auto-select" mode is guaranteed to always be present, and to always be
defined as something considered valid by the X driver for this display device.

Note that the "nvidia-auto-select" mode is not necessarily the largest
possible resolution, nor is it necessarily the mode with the highest refresh
rate. Rather, the "nvidia-auto-select" mode is selected such that it is a
reasonable default. The selection process is roughly:


   o If the EDID for the display device reported a preferred mode timing, and
     that mode timing is considered a valid mode, then that mode is used as
     the "nvidia-auto-select" mode. You can check if the EDID reported a
     preferred timing by starting X with logverbosity greater than or equal to
     5 (see "Q. How can I increase the amount of data printed in the X log
     file?" in Chapter 7), and looking at the EDID printout; if the EDID
     contains a line:
     
         Prefer first detailed timing : Yes
     
     Then the first mode listed under the "Detailed Timings" in the EDID will
     be used.

   o If the EDID did not provide a preferred timing, the best detailed timing
     from the EDID is used as the "nvidia-auto-select" mode.

   o If the EDID did not provide any detailed timings (or there was no EDID at
     all), the best valid mode not larger than 1024x768 is used as the
     "nvidia-auto-select" mode. The 1024x768 limit is imposed here to restrict
     use of modes that may have been validated, but may be too large to be
     considered a reasonable default, such as 2048x1536.

   o If all else fails, the X driver will use a built-in 800 x 600 60Hz mode
     as the "nvidia-auto-select" mode.


If no modes are requested in the X configuration file, or none of the
requested modes can be found in the mode pool, then the X driver falls back to
the "nvidia-auto-select" mode, so that X can always start. Appropriate warning
messages will be printed to the X log file in these fallback scenarios.

You can add the "nvidia-auto-select" mode to your X configuration file by
running the command

    nvidia-xconfig --mode nvidia-auto-select

and restarting your X server.

The X driver can generally do a much better job of selecting the
"nvidia-auto-select" mode if the display device's EDID is available. This is
one reason why it is recommended to only use the "UseEDID" X configuration
option sparingly. Note that, rather than globally disable all uses of the EDID
with the "UseEDID" option, you can individually disable each particular use of
the EDID using the "UseEDIDFreqs", "UseEDIDDpi", and/or the "NoEDIDModes"
argument in the "ModeValidation" X configuration option.


18F. MODE VALIDATION REPORTING

When log verbosity is set to 6 or higher (see "Q. How can I increase the
amount of data printed in the X log file?" in Chapter 7), the X log will
record every mode that is considered for each display device's mode pool, and
report whether the mode passed or failed. For modes that were considered
invalid, the log will report why the mode was considered invalid.


18G. ENSURING IDENTICAL MODE TIMINGS

Some functionality, such as Active Stereo with TwinView, requires control over
exactly which mode timings are used. For explicit control over which mode
timings are used on each display device, you can specify the ModeLine you want
to use (using one of the ModeLine generators available), and using a unique
name. For example, if you wanted to use 1024x768 at 120 Hz on each monitor in
TwinView with active stereo, you might add something like this to the monitor
section of your X configuration file:

    # 1024x768 @ 120.00 Hz (GTF) hsync: 98.76 kHz; pclk: 139.05 MHz
    Modeline "1024x768_120"  139.05  1024 1104 1216 1408  768 769 772 823
-HSync +Vsync

Then, in the Screen section of your X config file, specify a MetaMode like
this:

    Option "MetaModes" "1024x768_120, 1024x768_120"



18H. ADDITIONAL INFORMATION

An XFree86 ModeLine generator, conforming to the GTF Standard is available at
http://gtf.sourceforge.net/. Additional generators can be found by searching
for "modeline" on freshmeat.net.

______________________________________________________________________________

Chapter 19. Configuring Flipping and UBB
______________________________________________________________________________

The NVIDIA Accelerated Linux Graphics Driver supports Unified Back Buffer
(UBB) and OpenGL Flipping. These features can provide performance gains in
certain situations.

   o Unified Back Buffer (UBB): UBB is available only on Quadro GPUs (Quadro
     NVS GPUs excluded) and is enabled by default when there is sufficient
     video memory available. This can be disabled with the UBB X config
     option. When UBB is enabled, all windows share the same back, stencil and
     depth buffers. When there are many windows, the back, stencil and depth
     usage will never exceed the size of that used by a full screen window.
     However, even for a single small window, the back, stencil, and depth
     video memory usage is that of a full screen window. In that case video
     memory may be used less efficiently than in the non-UBB case.

   o Flipping: When OpenGL flipping is enabled, OpenGL can perform buffer
     swaps by changing which buffer is scanned out rather than copying the
     back buffer contents to the front buffer; this is generally a higher
     performance mechanism and allows tearless swapping during the vertical
     retrace (when __GL_SYNC_TO_VBLANK is set).


______________________________________________________________________________

Chapter 20. Using the Proc Filesystem Interface
______________________________________________________________________________

You can use the /proc filesystem interface to obtain run-time information
about the driver and any installed NVIDIA graphics cards.

This information is contained in several files in /proc/driver/nvidia.

/proc/driver/nvidia/version

    Lists the installed driver revision and the version of the GNU C compiler
    used to build the Linux kernel module.

/proc/driver/nvidia/warnings

    The NVIDIA graphics driver tries to detect potential problems with the
    host system's kernel and warns about them using the kernel's printk()
    mechanism, typically logged by the system to '/var/log/messages'.

    Important NVIDIA warning messages are also logged to dedicated text files
    in this /proc directory.

/proc/driver/nvidia/gpus/domain:bus:device.function/information

    Provide information about each of the installed NVIDIA graphics adapters
    (model name, IRQ, BIOS version, Bus Type). Note that the BIOS version is
    only available while X is running.


______________________________________________________________________________

Chapter 21. Configuring Power Management Support
______________________________________________________________________________

The NVIDIA Linux driver includes support for ACPI-based power management. It
supports ACPI suspend-to-RAM (S3) and suspend-to-disk (S4).

______________________________________________________________________________

Chapter 22. Using the X Composite Extension
______________________________________________________________________________

X.Org X servers, beginning with X11R6.8.0, contain experimental support for a
new X protocol extension called Composite. This extension allows windows to be
drawn into pixmaps instead of directly onto the screen. In conjunction with
the Damage and Render extensions, this allows a program called a composite
manager to blend windows together to draw the screen.

Performance will be degraded significantly if the "RenderAccel" option is
disabled in xorg.conf. See Appendix B for more details.

When the NVIDIA X driver is used with an X.Org X server X11R6.9.0 or newer and
the Composite extension is enabled, NVIDIA's OpenGL implementation interacts
properly with the Damage and Composite X extensions. This means that OpenGL
rendering is drawn into offscreen pixmaps and the X server is notified of the
Damage event when OpenGL renders to the pixmap. This allows OpenGL
applications to behave properly in a composited X desktop.

If the Composite extension is enabled on an X server older than X11R6.9.0,
then GLX will be disabled. You can force GLX on while Composite is enabled on
pre-X11R6.9.0 X servers with the "AllowGLXWithComposite" X configuration
option. However, GLX will not render correctly in this environment. Upgrading
your X server to X11R6.9.0 or newer is recommended.

You can enable the Composite X extension by running 'nvidia-xconfig
--composite'. Composite can be disabled with 'nvidia-xconfig --no-composite'.
See the nvidia-xconfig(1) man page for details.

If you are using an OpenGL-based composite manager, you may also need the
"DisableGLXRootClipping" option to obtain proper output.

The Composite extension also causes problems with other driver components:

   o In X servers prior to X.Org 7.1, Xv cannot draw into pixmaps that have
     been redirected offscreen and will draw directly onto the screen instead.
     For some programs you can work around this issue by using an alternative
     video driver. For example, "mplayer -vo x11" will work correctly, as will
     "xine -V xshm". If you must use Xv with an older server, you can also
     disable the compositing manager and re-enable it when you are finished.

     On X.Org 7.1 and higher, the driver will properly redirect video into
     offscreen pixmaps. Note that the Xv adaptors will ignore the
     sync-to-vblank option when drawing into a redirected window.

   o Workstation overlays, stereo visuals, and the unified back buffer (UBB)
     are incompatible with Composite. These features will be automatically
     disabled when Composite is detected.

   o The Composite extension is incompatible with Xinerama in X.Org X servers
     prior to version 1.10. Composite will be automatically disabled when
     Xinerama is enabled on those servers.

   o Prior to X.Org X server version 1.15, the Damage extension does not
     properly report rendering events on all physical X screens in Xinerama
     configurations. This prevents most composite mangers from rendering
     correctly.


This NVIDIA Linux driver supports OpenGL rendering to 32-bit ARGB windows on
X.Org 7.2 and higher or when the "AddARGBGLXVisuals" X config file option is
enabled. 32-bit visuals are only available on screens with depths 24 or 30. If
you are an application developer, you can use these new visuals in conjunction
with a composite manager to create translucent OpenGL applications:

    int attrib[] = {
        GLX_RENDER_TYPE, GLX_RGBA_BIT,
        GLX_DRAWABLE_TYPE, GLX_WINDOW_BIT,
        GLX_RED_SIZE, 1,
        GLX_GREEN_SIZE, 1,
        GLX_BLUE_SIZE, 1,
        GLX_ALPHA_SIZE, 1,
        GLX_DOUBLEBUFFER, True,
        GLX_DEPTH_SIZE, 1,
        None };
    GLXFBConfig *fbconfigs, fbconfig;
    int numfbconfigs, render_event_base, render_error_base;
    XVisualInfo *visinfo;
    XRenderPictFormat *pictFormat;

    /* Make sure we have the RENDER extension */
    if(!XRenderQueryExtension(dpy, &render_event_base, &render_error_base)) {
        fprintf(stderr, "No RENDER extension found\n");
        exit(EXIT_FAILURE);
    }

    /* Get the list of FBConfigs that match our criteria */
    fbconfigs = glXChooseFBConfig(dpy, scrnum, attrib, &numfbconfigs);
    if (!fbconfigs) {
        /* None matched */
        exit(EXIT_FAILURE);
    }

    /* Find an FBConfig with a visual that has a RENDER picture format that
     * has alpha */
    for (i = 0; i < numfbconfigs; i++) {
        visinfo = glXGetVisualFromFBConfig(dpy, fbconfigs[i]);
        if (!visinfo) continue;
        pictFormat = XRenderFindVisualFormat(dpy, visinfo->visual);
        if (!pictFormat) continue;

        if(pictFormat->direct.alphaMask > 0) {
            fbconfig = fbconfigs[i];
            break;
        }

        XFree(visinfo);
    }

    if (i == numfbconfigs) {
        /* None of the FBConfigs have alpha.  Use a normal (opaque)
         * FBConfig instead */
        fbconfig = fbconfigs[0];
        visinfo = glXGetVisualFromFBConfig(dpy, fbconfig);
        pictFormat = XRenderFindVisualFormat(dpy, visinfo->visual);
    }

    XFree(fbconfigs);


When rendering to a 32-bit window, keep in mind that the X RENDER extension,
used by most composite managers, expects "premultiplied alpha" colors. This
means that if your color has components (r,g,b) and alpha value a, then you
must render (a*r, a*g, a*b, a) into the target window.

More information about Composite can be found at
http://freedesktop.org/Software/CompositeExt

______________________________________________________________________________

Chapter 23. Using the nvidia-settings Utility
______________________________________________________________________________

A graphical configuration utility, 'nvidia-settings', is included with the
NVIDIA Linux graphics driver. After installing the driver and starting X, you
can run this configuration utility by running:

    % nvidia-settings

in a terminal window. nvidia-settings requires version 2.4 or later of the
GTK+ 2 library.

Some architectures of Linux support the GTK+ 3 library and would require
version 3.0 or later if available.

Detailed information about the configuration options available are documented
in the help window in the utility.

For more information, see the nvidia-settings man page.

The source code to nvidia-settings is released as GPL and is available here:
https://download.nvidia.com/XFree86/nvidia-settings/

______________________________________________________________________________

Chapter 24. Using the nvidia-smi Utility
______________________________________________________________________________

A monitoring and management command line utility, 'nvidia-smi', is included
with the NVIDIA Linux graphics driver. After installing the driver, you can
run this utility by running:

    % nvidia-smi

in a terminal window.

Detailed help information is available via the --help command line option and
via the nvidia-smi man page.

To include nvidia-smi information in other applications see Chapter 25

______________________________________________________________________________

Chapter 25. The NVIDIA Management Library
______________________________________________________________________________

A C-based API for monitoring and managing various states of the NVIDIA GPU
devices. NVIDIA Management Library (NVML) provides a direct access to the
queries and commands exposed via nvidia-smi. NVML is included with the NVIDIA
Linux graphics driver.

To write applications against this library see the NVML developer page:
http://developer.nvidia.com/nvidia-management-library-NVML

To include NVML functionality in scripting languages see:
http://search.cpan.org/~nvbinding/nvidia-ml-pl/lib/nvidia/ml.pm and
http://pypi.python.org/pypi/nvidia-ml-py/

______________________________________________________________________________

Chapter 26. Using the nvidia-debugdump Utility
______________________________________________________________________________

A utility for collecting internal GPU state, 'nvidia-debugdump', is included
with the NVIDIA Linux graphics driver. After installing the driver, you can
run this utility by running:

    % nvidia-debugdump

in a terminal window.

Detailed help information is available via the --help command line option, or
when no parameters are supplied.

In most cases, this utility is invoked by the 'nvidia-bug-report.sh'
(/usr/bin/nvidia-bug-report.sh) script. In rare cases, typically when directed
by an NVIDIA technical support representative, nvidia-debugdump may also be
invoked as a stand-alone diagnostics program. The "dump" output of
nvidia-debugdump is a binary blob that requires internal NVIDIA engineering
tools in order to be interpreted.

______________________________________________________________________________

Chapter 27. Using the nvidia-persistenced Utility
______________________________________________________________________________


27A. BACKGROUND

A Linux daemon utility, 'nvidia-persistenced', addresses an undesirable side
effect of the NVIDIA kernel driver behavior in certain computing environments.
Whenever the NVIDIA device resources are no longer in use, the NVIDIA kernel
driver will tear down the device state. Normally, this is the intended
behavior of the device driver, but for some applications, the latencies
incurred by repetitive device initialization can significantly impact
performance.

To avoid this behavior, 'nvidia-persistenced' provides a configuration option
called "persistence mode" that can be set by NVIDIA management software, such
as 'nvidia-smi'. When persistence mode is enabled, the daemon holds the NVIDIA
character device files open, preventing the NVIDIA kernel driver from tearing
down device state when no other process is using the device. This utility does
not actually use any device resources itself - it will simply sleep while
maintaining a reference to the NVIDIA device state.


27B. USAGE

 'nvidia-persistenced' is included with the NVIDIA Linux GPU driver. After
installing the driver, this utility may be installed to run on system startup
or manually with the command:

    # nvidia-persistenced

in a terminal window. Note that the daemon may require root privileges to
create its runtime data directory, /var/run/nvidia-persistenced/, or it may
otherwise need to be run as a user that has access to that directory.

Detailed help and usage information is available primarily via the
'nvidia-persistenced' man page, as well as the '--help' command line option.

The source code to nvidia-persistenced is released under the MIT license and
is available at: https://download.nvidia.com/XFree86/nvidia-persistenced/.


27C. TROUBLESHOOTING

If you have difficulty getting 'nvidia-persistenced' to work as expected, the
best way to gather information as to what is happening is to run the daemon
with the '--verbose' option.

 'nvidia-persistenced' detaches from its parent process very early on, and as
such only invalid command line argument errors will be printed in the terminal
window. All other output, including verbose informational messages, are sent
to the syslog interface instead. Consult your distribution's documentation for
accessing syslog output.


27D. NOTES FOR PACKAGE MAINTAINERS

The daemon utility 'nvidia-persistenced' is installed by the NVIDIA Linux GPU
driver installer, but it is not installed to run on system startup. Due to the
wide variety of init systems used by the various Linux distributions that the
NVIDIA Linux GPU driver supports, we request that package maintainers for
those distributions provide the packaging necessary to integrate well with
their platform.

NVIDIA provides sample init scripts for some common init systems in
/usr/share/doc/NVIDIA_GLX-1.0/sample/nvidia-persistenced-init.tar.bz2 to aid
in installation of the utility.

 'nvidia-persistenced' is intended to be run as a daemon from system
initialization, and is generally designed as a tool for compute-only platforms
where the NVIDIA device is not used to display a graphical user interface. As
such, depending on how your package is typically used, it may not be necessary
to install the daemon to run on system initialization.

If 'nvidia-persistenced' is packaged to run on system initialization, the
package installation, init script or system management utility that runs the
daemon should provide the following:
A non-root user to run as

    It is strongly recommended, though not required, that the daemon be run as
    a non-root user for security purposes.

    The daemon may either be started with root privileges and the '--user'
    option, or it may be run directly as the non-root user.

Runtime access to /var/run/nvidia-persistenced/

    The daemon must be able to create its socket and PID file in this
    directory.

    If the daemon is run as root, it will create this directory itself and
    remove it when it shuts down cleanly.

    If the daemon is run as a non-root user, this directory must already
    exist, and the daemon will not attempt to remove it when it shuts down
    cleanly.

    If the daemon is started as root, but provided a non-root user to run as
    via the '--user' option, the daemon will create this directory itself,
    'chown' it to the provided user, and 'setuid' to the provided user to drop
    root privileges. The daemon may be unable to remove this directory when it
    shuts down cleanly, depending on the privileges of the provided user.


______________________________________________________________________________

Chapter 28. Configuring SLI and Multi-GPU FrameRendering
______________________________________________________________________________

The NVIDIA Linux driver contains support for NVIDIA SLI FrameRendering and
NVIDIA Multi-GPU FrameRendering. Both of these technologies allow an OpenGL
application to take advantage of multiple GPUs to improve visual performance.

The distinction between SLI and Multi-GPU is straightforward. SLI is used to
leverage the processing power of GPUs across two or more graphics cards, while
Multi-GPU is used to leverage the processing power of two GPUs colocated on
the same graphics card. If you want to link together separate graphics cards,
you should use the "SLI" X config option. Likewise, if you want to link
together GPUs on the same graphics card, you should use the "MultiGPU" X
config option. If you have two cards, each with two GPUs, and you wish to link
them all together, you should use the "SLI" option.


28A. RENDERING MODES

In Linux, with two GPUs SLI and Multi-GPU can both operate in one of three
modes: Alternate Frame Rendering (AFR), Split Frame Rendering (SFR), and
Antialiasing (AA). When AFR mode is active, one GPU draws the next frame while
the other one works on the frame after that. In SFR mode, each frame is split
horizontally into two pieces, with one GPU rendering each piece. The split
line is adjusted to balance the load between the two GPUs. AA mode splits
antialiasing work between the two GPUs. Both GPUs work on the same scene and
the result is blended together to produce the final frame. This mode is useful
for applications that spend most of their time processing with the CPU and
cannot benefit from AFR.

With four GPUs, the same options are applicable. AFR mode cycles through all
four GPUs, each GPU rendering a frame in turn. SFR mode splits the frame
horizontally into four pieces. AA mode splits the work between the four GPUs,
allowing antialiasing up to 64x. With four GPUs SLI can also operate in an
additional mode, Alternate Frame Rendering of Antialiasing. (AFR of AA). With
AFR of AA, pairs of GPUs render alternate frames, each GPU in a pair doing
half of the antialiasing work. Note that these scenarios apply whether you
have four separate cards or you have two cards, each with two GPUs.

With some GPU configurations, there is in addition a special SLI Mosaic Mode
to extend a single X screen transparently across all of the available display
outputs on each GPU. See below for the exact set of configurations which can
be used with SLI Mosaic Mode.


28B. ENABLING MULTI-GPU

Multi-GPU is enabled by setting the "MultiGPU" option in the X configuration
file; see Appendix B for details about the "MultiGPU" option.

The nvidia-xconfig utility can be used to set the "MultiGPU" option, rather
than modifying the X configuration file by hand. For example:

    % nvidia-xconfig --multigpu=on



28C. ENABLING SLI

SLI is enabled by setting the "SLI" option in the X configuration file; see
Appendix B for details about the SLI option.

The nvidia-xconfig utility can be used to set the SLI option, rather than
modifying the X configuration file by hand. For example:

    % nvidia-xconfig --sli=on



28D. ENABLING SLI MOSAIC MODE

The simplest way to configure SLI Mosaic Mode using a grid of monitors is to
use 'nvidia-settings' (see Chapter 23). The steps to perform this
configuration are as follows:



  1. Connect each of the monitors you would like to use to any connector from
     any GPU used for SLI Mosaic Mode. If you are going to use fewer monitors
     than there are connectors, connect one monitor to each GPU before adding
     a second monitor to any GPUs.

  2. Install the NVIDIA display driver set.

  3. Configure an X screen to use the "nvidia" driver on at least one of the
     GPUs (see Chapter 6 for more information).

  4. Start X.

  5. Run 'nvidia-settings'. You should see a tab in the left pane of
     nvidia-settings labeled "SLI Mosaic Mode Settings". Note that you may
     need to expand the entry for the X screen you configured earlier.

  6. Check the "Use SLI Mosaic Mode" check box.

  7. Select the monitor grid configuration you'd like to use from the "display
     configuration" dropdown.

  8. Choose the resolution and refresh rate at which you would like to drive
     each individual monitor.

  9. Set any overlap you would like between the displays.

  10. Click the "Save to X Configuration File" button. NOTE: If you don't have
     permissions to write to your system's X configuration file, you will be
     prompted to choose a location to save the file. After doing so, you MUST
     copy the X configuration file into a location the X server will consider
     upon startup (usually '/etc/X11/xorg.conf' for X.Org servers or
     '/etc/X11/XF86Config' for XFree86 servers).

  11. Exit nvidia-settings and restart your X server.


Alternatively, nvidia-xconfig can be used to configure SLI Mosaic Mode via a
command like 'nvidia-xconfig --sli=Mosaic --metamodes=METAMODES' where the
METAMODES string specifies the desired grid configuration. For example:

    nvidia-xconfig --sli=Mosaic --metamodes="GPU-0.DFP-0: 1920x1024+0+0,
GPU-0.DFP-1: 1920x1024+1920+0, GPU-1.DFP-0: 1920x1024+0+1024, GPU-1.DFP-1:
1920x1024+1920+1024"

will configure four DFPs in a 2x2 configuration, each running at 1920x1024,
with the two DFPs on GPU-0 driving the top two monitors of the 2x2
configuration, and the two DFPs on GPU-1 driving the bottom two monitors of
the 2x2 configuration.

See the MetaModes X configuration description in details in Chapter 12. See
Appendix C for further details on GPU and Display Device Names.


28E. HARDWARE REQUIREMENTS

SLI functionality requires:

   o Identical PCI Express graphics cards

   o A supported motherboard (with the exception of Quadro Plex)

   o In most cases, a video bridge connecting the two graphics cards

   o SLI Mosaic Mode requires NVIDIA Quadro GPUs.

For the latest information on supported SLI and Multi-GPU configurations,
including SLI- and Multi-GPU capable GPUs and SLI-capable motherboards, see
http://www.geforce.com/hardware/technology/sli.


28F. OTHER NOTES AND REQUIREMENTS

The following other requirements apply to SLI and Multi-GPU:

   o Mobile GPUs are NOT supported

   o GPUs with ECC enabled may not be used in an SLI configuration

   o SLI on Quadro-based graphics cards always requires a video bridge

   o TwinView is also not supported with SLI or Multi-GPU. Only one display
     can be used when SLI or Multi-GPU is enabled, with the exception of
     Mosaic.

   o If X is configured to use multiple screens and screen 0 has SLI or
     Multi-GPU enabled, the other screens configured to use the nvidia driver
     will be disabled. Note that if SLI or Multi-GPU is enabled, the GPUs used
     by that configuration will be unavailable for single GPU rendering.



FREQUENTLY ASKED SLI AND MULTI-GPU QUESTIONS

Q. Why is glxgears slower when SLI or Multi-GPU is enabled?

A. When SLI or Multi-GPU is enabled, the NVIDIA driver must coordinate the
   operations of all GPUs when each new frame is swapped (made visible). For
   most applications, this GPU synchronization overhead is negligible.
   However, because glxgears renders so many frames per second, the GPU
   synchronization overhead consumes a significant portion of the total time,
   and the framerate is reduced.


Q. Why is Doom 3 slower when SLI or Multi-GPU is enabled?

A. The NVIDIA Accelerated Linux Graphics Driver does not automatically detect
   the optimal SLI or Multi-GPU settings for games such as Doom 3 and Quake 4.
   To work around this issue, the environment variable __GL_DOOM3 can be set
   to tell OpenGL that Doom 3's optimal settings should be used. In Bash, this
   can be done in the same command that launches Doom 3 so the environment
   variable does not remain set for other OpenGL applications started in the
   same session:
   
       % __GL_DOOM3=1 doom3
   
   Doom 3's startup script can also be modified to set this environment
   variable:
   
       #!/bin/sh
       # Needed to make symlinks/shortcuts work.
       # the binaries must run with correct working directory
       cd "/usr/local/games/doom3/"
       export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.
       export __GL_DOOM3=1
       exec ./doom.x86 "$@"
   
   This environment variable is temporary and will be removed in the future.


Q. Why does SLI or MultiGPU fail to initialize?

A. There are several reasons why SLI or MultiGPU may fail to initialize. Most
   of these should be clear from the warning message in the X log file; e.g.:
   
      o "Unsupported bus type"
   
      o "The video link was not detected"
   
      o "GPUs do not match"
   
      o "Unsupported GPU video BIOS"
   
      o "Insufficient PCIe link width"
   
   The warning message "'Unsupported PCI topology'" is likely due to problems
   with your Linux kernel. The NVIDIA driver must have access to the PCI
   Bridge (often called the Root Bridge) that each NVIDIA GPU is connected to
   in order to configure SLI or MultiGPU correctly. There are many kernels
   that do not properly recognize this bridge and, as a result, do not allow
   the NVIDIA driver to access this bridge. See the below "How can I determine
   if my kernel correctly detects my PCI Bridge?" FAQ for details.

   Below are some specific troubleshooting steps to help deal with SLI and
   MultiGPU initialization failures.
   
      o Make sure that ACPI is enabled in your kernel. NVIDIA's experience
        has been that ACPI is needed for the kernel to correctly recognize
        the Root Bridge. Note that in some cases, the kernel's version of
        ACPI may still have problems and require an update to a newer kernel.
   
      o Run 'lspci' to check that multiple NVIDIA GPUs can be identified by
        the operating system; e.g:
        
            % /sbin/lspci | grep -i nvidia
        
        If 'lspci' does not report all the GPUs that are in your system, then
        this is a problem with your Linux kernel, and it is recommended that
        you use a different kernel.
   
        Please note: the 'lspci' utility may be installed in a location other
        than '/sbin' on your system. If the above command fails with the
        error: "'/sbin/lspci: No such file or directory'", please try:
        
            % lspci | grep -i nvidia
        
        , instead. You may also need to install your distribution's
        "pciutils" package.
   
      o Make sure you have the most recent SBIOS available for your
        motherboard.
   
      o The PCI Express slots on the motherboard must provide a minimum link
        width. Please make sure that the PCI Express slot(s) on your
        motherboard meet the following requirements and that you have
        connected the graphics board to the correct PCI Express slot(s):
        
           o A dual-GPU board needs a minimum of 8 lanes (i.e. x8 or x16)
        
           o A pair of single-GPU boards requires one of the following
             supported link width combinations:
             
                o x16 + x16
             
                o x16 + x8
             
                o x16 + x4
             
                o x8 + x8
             
             
        
   

Q. How can I determine if my kernel correctly detects my PCI Bridge?

A. As discussed above, the NVIDIA driver must have access to the PCI Bridge
   that each NVIDIA GPU is connected to in order to configure SLI or MultiGPU
   correctly. The following steps will identify whether the kernel correctly
   recognizes the PCI Bridge:
   
      o Identify both NVIDIA GPUs:
        
            % /sbin/lspci | grep -i vga
        
            0a:00.0 VGA compatible controller: nVidia Corporation [...]
            81:00.0 VGA compatible controller: nVidia Corporation [...]
        
        
      o Verify that each GPU is connected to a bus connected to the Root
        Bridge (note that the GPUs in the above example are on buses 0a and
        81):
        
            % /sbin/lspci -t
        
        good:
        
            -+-[0000:80]-+-00.0
             |           +-01.0
             |           \-0e.0-[0000:81]----00.0
            ...
             \-[0000:00]-+-00.0
                         +-01.0
                         +-01.1
                         +-0e.0-[0000:0a]----00.0
        
        bad:
        
            -+-[0000:81]---00.0
            ...
             \-[0000:00]-+-00.0
                         +-01.0
                         +-01.1
                         +-0e.0-[0000:0a]----00.0
        
        Note that in the first example, bus 81 is connected to Root Bridge
        80, but that in the second example there is no Root Bridge 80 and bus
        81 is incorrectly connected at the base of the device tree. In the
        bad case, the only solution is to upgrade your kernel to one that
        properly detects your PCI bus layout.
   
   

______________________________________________________________________________

Chapter 29. Configuring Frame Lock and Genlock
______________________________________________________________________________

NOTE: Frame Lock and Genlock features are supported only on specific hardware,
as noted below.

Visual computing applications that involve multiple displays, or even multiple
windows within a display, can require special signal processing and
application controls in order to function properly. For example, in order to
produce quality video recording of animated graphics, the graphics display
must be synchronized with the video camera. As another example, applications
presented on multiple displays must be synchronized in order to complete the
illusion of a larger, virtual canvas.

This synchronization is enabled through the Frame Lock and Genlock
capabilities of the NVIDIA driver. This section describes the setup and use of
Frame Lock and Genlock.


29A. DEFINITION OF TERMS

GENLOCK: Genlock refers to the process of synchronizing the pixel scanning of
one or more displays to an external synchronization source. Genlock requires
the external signal to be either TTL or composite, such as used for NTSC, PAL,
or HDTV. It should be noted that Genlock is guaranteed only to be
frame-synchronized, and not necessarily pixel-synchronized.

FRAME LOCK: Frame Lock involves the use of hardware to synchronize the frames
on each display in a connected system. When graphics and video are displayed
across multiple monitors, Frame Locked systems help maintain image continuity
to create a virtual canvas. Frame Lock is especially critical for stereo
viewing, where the left and right fields must be in sync across all displays.

In short, to enable Genlock means to sync to an external signal. To enable
Frame Lock means to sync 2 or more display devices to a signal generated
internally by the hardware, and to use both means to sync 2 or more display
devices to an external signal.

SWAP SYNC: Swap sync refers to the synchronization of buffer swaps of multiple
application windows. By means of swap sync, applications running on multiple
systems can synchronize the application buffer swaps between all the systems.
In order to work across multiple systems, swap sync requires that the systems
are Frame Locked.

QUADRO SYNC DEVICE: A Quadro Sync Device refers to a device capable of Frame
Lock/Genlock. See "Supported Hardware" below.


29B. SUPPORTED HARDWARE

Frame Lock and Genlock are supported for the following hardware:

   o Quadro G-Sync II, used in conjunction with a Quadro 5000 or Quadro 6000

   o Quadro Sync, used in conjunction with a Quadro K5000 or Quadro K6000

   o Quadro Plex 7000



29C. HARDWARE SETUP

Before you begin, you should check that your hardware has been properly
installed. The following steps must be performed while the system is off.

  1. On a Quadro Sync card with four Sync connectors, connect a ribbon cable
     to any of the four connectors, if none are already connected.

     On a Quadro G-Sync II card with two Sync connectors, locate the Sync
     connector labeled "primary". If the associated ribbon cable is not
     already joined to this connector, do so now. If you plan to use Frame
     Lock or Genlock in conjunction with SLI FrameRendering or Multi-GPU
     FrameRendering (see Chapter 28) or other multi-GPU configurations, you
     should connect the Sync connector labeled "secondary" to the second GPU.
     A section at the end of this appendix describes restrictions on such
     setups.

  2. Install the Quadro Sync card in any available slot. Note that the slot
     itself is only used for physical mounting, so even a known "bad" slot is
     acceptable. The slot must be close enough to the graphics card that the
     ribbon cable can reach.

  3. On a Quadro Sync card with four Sync connectors, external power is
     required. Connect a 6-pin PCIe power cable or a SATA power cable to the
     card. No external power is required for Quadro G-Sync II cards with two
     Frame Lock connectors.

  4. Connect the other end of the ribbon cable to the Quadro Sync connector on
     the graphics card.

     On supported Quadro Kepler cards, the Quadro Sync connector is identical
     in appearance to the SLI connector. The ribbon cable from the Quadro Sync
     card should be connected to the connector labeled "SDI | SYNC". If the
     ribbon cable is connected to the SLI connector, the GPU will not be able
     to synchronize with the Quadro Sync card.

You may now boot the system and begin the software setup of Genlock and/or
Frame Lock. These instructions assume that you have already successfully
installed the NVIDIA Accelerated Linux Driver Set. If you have not done so,
see Chapter 4.


29D. CONFIGURATION WITH NVIDIA-SETTINGS GUI

Frame Lock and Genlock are configured through the nvidia-settings utility. See
the 'nvidia-settings(1)' man page, and the nvidia-settings online help (click
the "Help" button in the lower right corner of the interface for per-page help
information).

From the nvidia-settings Frame Lock panel, you may control the addition of
Quadro Sync (and display) devices to the Frame Lock/Genlock group, monitor the
status of that group, and enable/disable Frame Lock and Genlock.

After the system has booted and X Windows has been started, run
nvidia-settings as

    % nvidia-settings

You may wish to start this utility before continuing, as we refer to it
frequently in the subsequent discussion.

The setup of Genlock and Frame Lock are described separately. We then describe
the use of Genlock and Frame Lock together.


29E. GENLOCK SETUP

After the system has been booted, connect the external signal to the house
sync connector (the BNC connector) on either the graphics card or the Quadro
Sync card. There is a status LED next to the connector. A solid red or unlit
LED indicates that the hardware cannot detect the timing signal. A green LED
indicates that the hardware is detecting a timing signal. An occasional red
flash is okay. On a Quadro Sync card with four Sync connectors, a blinking
green LED indicates that the server is locked to the house sync. The Quadro
Sync device (graphics card or Quadro Sync card) will need to be configured
correctly for the signal to be detected.

In the Frame Lock panel of the nvidia-settings interface, add the X Server
that contains the display and Quadro Sync devices that you would like to sync
to this external source by clicking the "Add Devices..." button. An X Server
is typically specified in the format "system:m", e.g.:

    mycomputer.domain.com:0

or

    localhost:0

After adding an X Server, rows will appear in the "Quadro Sync Devices"
section on the Frame Lock panel that displays relevant status information
about the Quadro Sync devices, GPUs attached to those Quadro Sync devices and
the display devices driven by those GPUs. In particular, the Quadro Sync rows
will display the server name and Quadro Sync device number along with
"Receiving" LED, "Rate", "House" LED, "Port 0"/"Port 1" Images, and "Delay"
information. The GPU rows will display the GPU product name information along
with the GPU ID for the server. The Display Device rows will show the display
device name and device type along with server/client check boxes, refresh
rate, "Timing" LED and "Stereo" LED.

Once the Quadro Sync and display devices have been added to the Frame
Lock/Genlock group, a Server display device will need to be selected. This is
done by selecting the "Server" check box of the desired display device.

If you are using a Quadro Sync card, you must also click the "Use House Sync
if Present" check box. To enable synchronization of this Quadro Sync device to
the external source, click the "Enable Frame Lock" button. The display
device(s) may take a moment to stabilize. If it does not stabilize, you may
have selected a synchronization signal that the system cannot support. You
should disable synchronization by clicking the "Disable Frame Lock" button and
check the external sync signal.

Modifications to Genlock settings (e.g., "Use House Sync if Present", "Add
Devices...") must be done while synchronization is disabled.


29F. FRAME LOCK SETUP

Frame Lock is supported across an arbitrary number of Quadro Sync systems,
although mixing different generations of Quadro Sync products in the same
Frame Lock group is not supported. Additionally, each system to be included in
the Frame Lock group must be configured with identical mode timings. See
Chapter 18 for information on mode timings.

Connect the systems through their RJ45 ports using standard CAT5 patch cables.
These ports are located on the Frame Lock card. DO NOT CONNECT A FRAME LOCK
PORT TO AN ETHERNET CARD OR HUB. DOING SO MAY PERMANENTLY DAMAGE THE HARDWARE.
The connections should be made in a daisy-chain fashion: each card has two
RJ45 ports, call them 1 and 2. Connect port 1 of system A to port 2 of system
B, connect port 1 of system B to port 2 of system C, etc. Note that you will
always have two empty ports in your Frame Lock group.

The ports self-configure as inputs or outputs once Frame Lock is enabled. Each
port has a yellow and a green LED that reflect this state. A flashing yellow
LED indicates an output and a flashing green LED indicates an input. On a
Quadro G-Sync II card with two Sync connectors, a solid green LED indicates
that the port has not yet been configured; on a Quadro Sync card with four
Sync connectors, a solid green LED indicates that the port has been configured
as an input, but no sync pulse is detected, and a solid yellow LED means the
card is configured as an output, but no sync is being transmitted.

In the Frame Lock panel of the nvidia-settings interface, add the X server
that contains the display devices that you would like to include in the Frame
Lock group by clicking the "Add Devices..." button (see the description for
adding display devices in the previous section on GENLOCK SETUP. Like the
Genlock status indicators, the "Port 0" and "Port 1" columns in the table on
the Frame Lock panel contain indicators whose states mirror the states of the
physical LEDs on the RJ45 ports. Thus, you may monitor the status of these
ports from the software interface.

Any X Server can be added to the Frame Lock group, provided that

  1. The system supporting the X Server is configured to support Frame Lock
     and is connected via RJ45 cable to the other systems in the Frame Lock
     group.

  2. The system driving nvidia-settings can communicate with the X server that
     is to be included for Frame Lock. This means that either the server must
     be listening over TCP and the system's firewall is permissive enough to
     allow remote X11 display connections, or that you've configured an
     alternative mechanism such as ssh(1) forwarding between the machines.

     For the case of listening over TCP, verify that the "-nolisten tcp"
     commandline option was not used when starting the X server. You can find
     the X server commandline with a command such as
     
         % ps ax | grep X
     
     If "-nolisten tcp" is on the X server commandline, consult your Linux
     distribution documentation for details on how to properly remove this
     option. For example, distributions configured to use the GDM login
     manager may need to set "DisallowTCP=false" in the GDM configuration file
     (e.g., /etc/gdm/custom.conf, /etc/X11/gdm/gdm.conf, or /etc/gdb/gdb.conf;
     the exact configuration file name and path varies by the distribution).
     Or, distributions configured to use the KDM login manager may have the
     line
     
         ServerArgsLocal=-nolisten tcp
     
     in their kdm file (e.g., /etc/kde3/kdm/kdmrc). This line can be commented
     out by prepending with "#". Starting with version 1.17, the X.org X
     server no longer allows listening over TCP by default when built with its
     default build configuration options. On newer X servers that were not
     built with --enable-listen-tcp at build configuration time, in addition
     to ensuring that "-nolisten tcp" is not set on the X server commandline,
     you will also need to ensure that "-listen tcp" is explicitly set.

  3. The system driving nvidia-settings can locate and has display privileges
     on the X server that is to be included for Frame Lock.

     A system can gain display privileges on a remote system by executing
     
         % xhost +
     
     on the remote system. See the xhost(1) man page for details.

Typically, Frame Lock is controlled through one of the systems that will be
included in the Frame Lock group. While this is not a requirement, note that
nvidia-settings will only display the Frame Lock panel when running on an X
server that supports Frame Lock.

To enable synchronization on these display devices, click the "Enable Frame
Lock" button. The screens may take a moment to stabilize. If they do not
stabilize, you may have selected mode timings that one or more of the systems
cannot support. In this case you should disable synchronization by clicking
the "Disable Frame Lock" button and refer to Chapter 18 for information on
mode timings.

Modifications to Frame Lock settings (e.g. "Add/Remove Devices...") must be
done while synchronization is disabled.

nvidia-settings will not automatically enable Frame Lock via the
nvidia-settings.rc file. To enable Frame Lock when starting the X server, a
line such as the following can be added to the '~/.xinitrc' file:

    # nvidia-settings -a [gpu:0]/FrameLockEnable=1



29G. FRAME LOCK + GENLOCK

The use of Frame Lock and Genlock together is a simple extension of the above
instructions for using them separately. You should first follow the
instructions for Frame Lock Setup, and then to one of the systems that will be
included in the Frame Lock group, attach an external sync source. In order to
sync the Frame Lock group to this single external source, you must select a
display device driven by the GPU connected to the Quadro Sync card (On Quadro
G-Sync II cards, this display device must be connected to the primary
connector) that is connected to the external source to be the signal server
for the group. This is done by selecting the check box labeled "Server" of the
tree on the Frame Lock panel in nvidia-settings. If you are using a Quadro
Sync based Frame Lock group, you must also select the "Use House Sync if
Present" check box. Enable synchronization by clicking the "Enable Frame Lock"
button. As with other Frame Lock/Genlock controls, you must select the signal
server while synchronization is disabled.


29H. GPU STATUS LEDS ON THE QUADRO SYNC CARD

In addition to the graphical indicators in the control panel described in the
Genlock Setup section above, the Quadro Sync card for Quadro Kepler GPUs has
two status LEDs for each of the four ports:

A sync status LED indicates the sync status for each port. An unlit LED
indicates that no GPU is connected to the port; a steady amber LED indicates
that a GPU is connected, but not synced to any sync source; and a steady green
LED indicates that a GPU is connected and in sync with an internal or external
sync source. A flashing LED indicates that a connected GPU is in the process
of locking to a sync source; flashing green indicates that the sync source's
timings are within a reasonable range, and flashing amber indicates that the
timings are out of range, and the GPU may be unable to lock to the sync
source.

A stereo status LED indicates the stereo sync status for each port. The LED
will be lit steady amber when the card first powers on. An unlit LED indicates
that stereo is not active, or that no GPU is connected; a blinking green LED
indicates that stereo is active, but not locked to the stereo master; and a
steady green LED indicates that stereo is active and locked to the stereo
master.


29I. CONFIGURATION WITH NVIDIA-SETTINGS COMMAND LINE

Frame Lock may also be configured through the nvidia-settings command line.
This method of configuring Frame Lock may be useful in a scripted environment
to automate the setup process. (Note that the examples listed below depend on
the actual hardware configuration and as such may not work as-is.)

To properly configure Frame Lock, the following steps should be completed:

  1. Make sure Frame Lock Sync is disabled on all GPUs.

  2. Make sure all display devices that are to be Frame Locked have the same
     refresh rate.

  3. Configure which (display/GPU) device should be the master.

  4. Configure house sync (if applicable).

  5. Configure the slave display devices.

  6. Enable Frame Lock sync on the master GPU.

  7. Enable Frame Lock sync on the slave GPUs.

  8. Toggle the test signal on the master GPU (for testing the hardware
     connectivity.)


For a full list of the nvidia-settings Frame Lock attributes, please see the
'nvidia-settings(1)' man page. Examples:

  1. 1 System, 1 Frame Lock board, 1 GPU, and 1 display device syncing to the
     house signal:
     
       # - Make sure Frame Lock sync is disabled
       nvidia-settings -a [gpu:0]/FrameLockEnable=0
       nvidia-settings -q [gpu:0]/FrameLockEnable
     
       # - Enable use of house sync signal
       nvidia-settings -a [framelock:0]/FrameLockUseHouseSync=1
     
       # - Configure the house sync signal video mode
       nvidia-settings -a [framelock:0]/FrameLockVideoMode=0
     
       # - Query the enabled displays on the gpu(s)
       nvidia-settings -V all -q gpus
     
       # - Check the refresh rate is as desired
       nvidia-settings -q [dpy:DVI-I-0]/RefreshRate
     
       # - Query the valid Frame Lock configurations for the display device
       nvidia-settings -q [dpy:DVI-I-0]/FrameLockDisplayConfig
     
       # - Set DVI-I-0 as a slave (this display will be synchronized to the
       #   input signal)
       #
       # NOTE: FrameLockDisplayConfig takes one of three values:
       #       0 (disabled), 1 (client), 2 (server).
       nvidia-settings -a [dpy:DVI-I-0]/FrameLockDisplayConfig=0
     
       # - Enable Frame Lock
       nvidia-settings -a [gpu:0]/FrameLockEnable=1
     
       # - Toggle the test signal
       nvidia-settings -a [gpu:0]/FrameLockTestSignal=1
       nvidia-settings -a [gpu:0]/FrameLockTestSignal=0
     
     
  2. 2 Systems, each with 2 GPUs, 1 Frame Lock board and 1 display device per
     GPU syncing from the first system's first display device:
     
       # - Make sure Frame Lock sync is disabled on all gpus
       nvidia-settings -a myserver:0[gpu]/FrameLockEnable=0
       nvidia-settings -a myslave1:0[gpu]/FrameLockEnable=0
     
       # - Disable the house sync signal on the master device
       nvidia-settings -a myserver:0[framelock:0]/FrameLockUseHouseSync=0
     
       # - Query the enabled displays on the GPUs
       nvidia-settings -c myserver:0 -q gpus
       nvidia-settings -c myslave1:0 -q gpus
     
       # - Check the refresh rate is the same for all displays
       nvidia-settings -q myserver:0[dpy]/RefreshRate
       nvidia-settings -q myslave1:0[dpy]/RefreshRate
     
       # - Query the valid Frame Lock configurations for the display devices
       nvidia-settings -q myserver:0[dpy]/FrameLockDisplayConfig
       nvidia-settings -q myslave1:0[dpy]/FrameLockDisplayConfig
     
       # - Set the server display device
       nvidia-settings -a myserver:0[dpy:DVI-I-0]/FrameLockDisplayConfig=2
     
       # - Set the slave display devices
       nvidia-settings -a myserver:0[dpy:DVI-I-1]/FrameLockDisplayConfig=1
       nvidia-settings -a myslave1:0[dpy]/FrameLockDisplayConfig=1
     
       # - Enable Frame Lock on server
       nvidia-settings -a myserver:0[gpu:0]/FrameLockEnable=1
     
       # - Enable Frame Lock on slave devices
       nvidia-settings -a myserver:0[gpu:1]/FrameLockEnable=1
       nvidia-settings -a myslave1:0[gpu]/FrameLockEnable=1
     
       # - Toggle the test signal (on the master GPU)
       nvidia-settings -a myserver:0[gpu:0]/FrameLockTestSignal=1
       nvidia-settings -a myserver:0[gpu:0]/FrameLockTestSignal=0
     
     
  3. 1 System, 4 GPUs, 2 Frame Lock boards and 2 display devices per GPU
     syncing from the first GPU's display device:
     
       # - Make sure Frame Lock sync is disabled
       nvidia-settings -a [gpu]/FrameLockEnable=0
     
       # - Disable the house sync signal on the master device
       nvidia-settings -a [framelock:0]/FrameLockUseHouseSync=0
     
       # - Query the enabled displays on the GPUs
       nvidia-settings -V all -q gpus
     
       # - Check the refresh rate is the same for all displays
       nvidia-settings -q [dpy]/RefreshRate
     
       # - Query the valid Frame Lock configurations for the display devices
       nvidia-settings -q [dpy]/FrameLockDisplayConfig
       
       # - Set the master display device
       nvidia-settings -a [gpu:0.dpy:DVI-I-0]/FrameLockDisplayConfig=2
     
       # - Set the slave display devices
       nvidia-settings -a [gpu:0.dpy:DVI-I-1]/FrameLockDisplayConfig=1
       nvidia-settings -a [gpu:1.dpy]/FrameLockDisplayConfig=1
       nvidia-settings -a [gpu:2.dpy]/FrameLockDisplayConfig=1
       nvidia-settings -a [gpu:3.dpy]/FrameLockDisplayConfig=1
     
       # - Enable Frame Lock on master GPU
       nvidia-settings -a [gpu:0]/FrameLockEnable=1
     
       # - Enable Frame Lock on slave devices
       nvidia-settings -a [gpu:1]/FrameLockEnable=1
       nvidia-settings -a [gpu:2]/FrameLockEnable=1
       nvidia-settings -a [gpu:3]/FrameLockEnable=1
     
       # - Toggle the test signal
       nvidia-settings -a [gpu:0]/FrameLockTestSignal=1
       nvidia-settings -a [gpu:0]/FrameLockTestSignal=0
     
     


29J. LEVERAGING FRAME LOCK/GENLOCK IN OPENGL

With the GLX_NV_swap_group extension, OpenGL applications can be implemented
to join a group of applications within a system for local swap sync, and bind
the group to a barrier for swap sync across a Frame Lock group. A universal
frame counter is also provided to promote synchronization across applications.


29K. FRAME LOCK RESTRICTIONS:

The following restrictions must be met for enabling Frame Lock:

  1. All display devices set as client in a Frame Lock group must have the
     same mode timings as the server (master) display device. If a House Sync
     signal is used (instead of internal timings), all client display devices
     must be set to have the same refresh rate as the incoming house sync
     signal.

  2. All X Screens (driving the selected client/server display devices) must
     have the same stereo setting. See the Stereo X configuration option for
     instructions on how to set the stereo X option.

  3. The Frame Lock server (master) display device must be on a GPU on the
     primary connector connected to a Quadro G-Sync II device. This
     restriction does not apply to Quadro Sync devices with four Sync
     connectors.

  4. If connecting a single GPU to a Quadro G-Sync II device, the primary
     connector must be used. On a Quadro Sync device with four Sync
     connectors, any connector may be used.

  5. In configurations with more than one display device per GPU, we recommend
     enabling Frame Lock on all display devices on those GPUs.

  6. Virtual terminal switching or mode switching will disable Frame Lock on
     the display device. Note that the glXQueryFrameCountNV entry point
     (provided by the GLX_NV_swap_group extension) will only provide
     incrementing numbers while Frame Lock is enabled. Therefore, applications
     that use glXQueryFrameCountNV to control animation will appear to stop
     animating while Frame Lock is disabled.



29L. SUPPORTED FRAME LOCK CONFIGURATIONS:

The following configurations are currently supported:

  1. Basic Frame Lock: Single GPU, Single X Screen, Single Display Device with
     or without OpenGL applications that make use of Quad-Buffered Stereo
     and/or the GLX_NV_swap_group extension.

  2. Frame Lock + TwinView: Single GPU, Single X Screen, Multiple Display
     Devices with or without OpenGL applications that make use of
     Quad-Buffered Stereo and/or the GLX_NV_swap_group extension.

  3. Frame Lock + Xinerama: 1 or more GPU(s), Multiple X Screens, Multiple
     Display Devices with or without OpenGL applications that make use of
     Quad-Buffered Stereo and/or the GLX_NV_swap_group extension.

  4. Frame Lock + TwinView + Xinerama: 1 or more GPU(s), Multiple X Screens,
     Multiple Display Devices with or without OpenGL applications that make
     use of Quad-Buffered Stereo and/or the GLX_NV_swap_group extension.

  5. Frame Lock + SLI SFR, AFR, or AA: 2 GPUs, Single X Screen, Single Display
     Device with either OpenGL applications that make use of Quad-Buffered
     Stereo or the GLX_NV_swap_group extension. Note that for Frame Lock + SLI
     Frame Rendering applications that make use of both Quad-Buffered Stereo
     and the GLX_NV_swap_group extension are not supported. Note that only
     2-GPU SLI configurations are currently supported.

  6. Frame Lock + Multi-GPU SFR, AFR, or AA: 2 GPUs, Single X Screen, Single
     Display Device with either OpenGL applications that make use of
     Quad-Buffered Stereo or the GLX_NV_swap_group extension. Note that for
     Frame Lock + Multi-GPU Frame Rendering applications that make use of both
     Quad-Buffered Stereo and the GLX_NV_swap_group extension are not
     supported.


______________________________________________________________________________

Chapter 30. Configuring SDI Video Output
______________________________________________________________________________

Broadcast, film, and video post production and digital cinema applications can
require Serial Digital (SDI) or High Definition Serial Digital (HD-SDI) video
output. SDI/HD-SDI is a digital video interface used for the transmission of
uncompressed video signals as well as packetized data. SDI is standardized in
ITU-R BT.656 and SMPTE 259M while HD-SDI is standardized in SMPTE 292M. SMPTE
372M extends HD-SDI to define a dual-link configuration that uses a pair of
SMPTE 292M links to provide a 2.970 Gbit/second interface. SMPTE 424M extends
the interface further to define a single 2.97 Gbit/second serial data link.

SDI and HD-SDI video output is provided through the use of the NVIDIA driver
along with an NVIDIA SDI output daughter board. In addition to single- and
dual-link SDI/HD-SDI digital video output, Frame Lock and Genlock
synchronization are provided in order to synchronize the outgoing video with
an external source signal (see Chapter 29 for details on these technologies).
This section describes the setup and use of the SDI video output.


30A. HARDWARE SETUP

Before you begin, you should check that your hardware has been properly
installed. The following steps must be performed when the system is off:

  1. Insert the NVIDIA SDI Output card into any available expansion slot
     within six inches of the NVIDIA Quadro graphics card. Secure the card's
     bracket using the method provided by the chassis manufacturer (usually a
     thumb screw or an integrated latch).

  2. Connect one end of the 14-pin ribbon cable to the Quadro Sync connector
     on the NVIDIA Quadro graphics card, and the other end to the NVIDIA SDI
     output card.

  3. Connect the DVI-loopback connector by connecting one end of the DVI cable
     to the DVI connector on the NVIDIA SDI output card and the other end to
     the "north" DVI connector on the NVIDIA Quadro graphics card. The "north"
     DVI connector on the NVIDIA Quadro graphics card is the DVI connector
     that is the farthest from the graphics card PCIe connection to the
     motherboard. The SDI output card will NOT function properly if this cable
     is connected to the "south" DVI connector.

Once the above installation is complete, you may boot the system and configure
the SDI video output using nvidia-settings. These instructions assume that you
have already successfully installed the NVIDIA Linux Accelerated Graphics
Driver. If you have not done so, see Chapter 4 for details.


30B. CLONE MODE CONFIGURATION WITH  'nvidia-settings'

SDI video output is configured through the nvidia-settings utility. See the
'nvidia-settings(1)' man page, and the nvidia-settings online help (click the
"Help" button in the lower right corner of the interface for per-page help
information).

After the system has booted and X Windows has been started, run
nvidia-settings as

    % nvidia-settings

When the NVIDIA X Server Settings page appears, follow the steps below to
configure the SDI video output.

  1. Click on the "Graphics to Video Out" tree item on the side menu. This
     will open the "Graphics to Video Out" page.

  2. Go to the "Synchronization Options" subpage and choose a synchronization
     method. From the "Sync Options" drop down click the list arrow to the
     right and then click the method that you want to use to synchronize the
     SDI output.
     
         Sync Method      Description
         -------------    --------------------------------------------------
         Free Running     The SDI output will be synchronized with the
                          timing chosen from the SDI signal format list.
         Genlock          SDI output will be synchronized with the external
                          sync signal.
         Frame Lock       The SDI output will be synchronized with the
                          timing chosen from the SDI signal format list. In
                          this case, the list of available timings is
                          limited to those timings that can be synchronized
                          with the detected external sync signal.
     
     
     Note that you must first choose the correct Sync Format before an
     incoming sync signal will be detected.

  3. From the top Graphics to Video Out page, choose the output video format
     that will control the video resolution, field rate, and SMPTE signaling
     standard for the outgoing video stream. From the "Clone Mode" drop down
     box, click the "Video Format" arrow and then click the signal format that
     you would like to use. Note that only those resolutions that are smaller
     or equal to the desktop resolution will be available. Also, this list is
     pruned according to the sync option selected. If Genlock synchronization
     is chosen, the output video format is automatically set to match the
     incoming video sync format and this drop down list will be grayed out
     preventing you from choosing another format. If Frame Lock
     synchronization has been selected, then only those modes that are
     compatible with the detected sync signal will be available.

  4. Choose the output data format from the "Output Data Format" drop down
     list.

  5. Click the "Enable SDI Output" button to enable video output using the
     settings above. The status of the SDI output can be verified by examining
     the LED indicators in the "Graphics to SDI property" page banner.

  6. To subsequently stop SDI output, simply click on the button that now says
     "Disable SDI Output".

  7. In order to change any of the SDI output parameters such as the Output
     Video Format, Output Data Format as well as the Synchronization Delay, it
     is necessary to first disable the SDI output.



30C. CONFIGURATION FOR TWINVIEW OR AS A SEPARATE X SCREEN

SDI video output can be configured through the nvidia-settings X Server
Display Configuration page, for use in TwinView or as a separate X screen. The
SDI video output can be configured as if it were a digital flat panel,
choosing the resolution, refresh rate, and position within the desktop.

Similarly, the SDI video output can be configured for use in TwinView or as a
separate X screen through the X configuration file. The supported SDI video
output modes can be requested by name anywhere a mode name can be used in the
X configuration file (either in the "Modes" line, or in the "MetaModes"
option). E.g.,


 Option "MetaModes" "CRT-0:nvidia-auto-select, DFP-1:1280x720_60.00_smpte296"
    

The mode names are reported in the nvidia-settings Display Configuration page
when in advanced mode.

As well, the initial output data format, sync mode and sync source can be set
via the Appendix B, Appendix B, and Appendix B. See Appendix B for
instructions on how to set these X options.

Note that SDI "Clone Mode" as configured through the Graphics to Video Out
page in nvidia-settings is mutually exclusive with using the SDI video output
in TwinView or as a separate X screen.

______________________________________________________________________________

Chapter 31. Configuring Depth 30 Displays
______________________________________________________________________________

This driver release supports X screens with screen depths of 30 bits per pixel
(10 bits per color component). This provides about 1 billion possible colors,
allowing for higher color precision and smoother gradients.

When displaying a depth 30 image, the color data may be dithered to lower bit
depths, depending on the capabilities of the display device and how it is
connected to the GPU. Some devices connected via analog VGA or DisplayPort can
display the full 10 bit range of colors. Devices connected via DVI or HDMI, as
well as laptop internal panels connected via LVDS, will be dithered to 8 or 6
bits per pixel.

To work reliably, depth 30 requires X.Org 7.3 or higher and pixman 0.11.6 or
higher.

In addition to the above software requirements, many X applications and
toolkits do not understand depth 30 visuals as of this writing. Some programs
may work correctly, some may work but display incorrect colors, and some may
simply fail to run. In particular, many OpenGL applications request 8 bits of
alpha when searching for FBConfigs. Since depth 30 visuals have only 2 bits of
alpha, no suitable FBConfigs will be found and such applications will fail to
start.

______________________________________________________________________________

Chapter 32. Offloading Graphics Display with RandR 1.4
______________________________________________________________________________

Version 1.4 of the X Resize, Rotate, and Reflect Extension (RandR 1.4 for
short) adds a way for drivers to work together so that one graphics device can
display images rendered by another. This can be used on Optimus-based laptops
to display a desktop rendered by an NVIDIA GPU on a screen connected to
another graphics device, such as an Intel integrated graphics device or a
USB-to-VGA adapter.


32A. SYSTEM REQUIREMENTS


   o X.Org X server version 1.13 or higher.

   o A Linux kernel, version 3.13 or higher, with CONFIG_DRM enabled.

   o Version 1.4.0 of the xrandr command-line utility.



32B. USING THE NVIDIA DRIVER AS A RANDR 1.4 OUTPUT SOURCE PROVIDER

To use the NVIDIA driver as an RandR 1.4 output source provider, the X server
needs to be configured to use the NVIDIA driver for its primary screen and to
use the "modesetting" driver for the other graphics device. This can be
achieved by placing the following in "/etc/X11/xorg.conf":

Section "ServerLayout"
    Identifier "layout"
    Screen 0 "nvidia"
    Inactive "intel"
EndSection

Section "Device"
    Identifier "nvidia"
    Driver "nvidia"
    BusID "<BusID for NVIDIA device here>"
EndSection

Section "Screen"
    Identifier "nvidia"
    Device "nvidia"
    Option "AllowEmptyInitialConfiguration"
EndSection

Section "Device"
    Identifier "intel"
    Driver "modesetting"
EndSection

Section "Screen"
    Identifier "intel"
    Device "intel"
EndSection

See "Q. What is the format of a PCI Bus ID?" in Chapter 7 for information on
determining the appropriate BusID string for your graphics card.

The X server does not automatically enable displays attached to the non-NVIDIA
graphics device in this configuration. To do that, use the "xrandr" command
line tool:

$ xrandr --setprovideroutputsource modesetting NVIDIA-0
$ xrandr --auto

This pair of commands can be added to your X session startup scripts, for
example by putting them in "$HOME/.xinitrc" before running "startx".

Use the

$ xrandr --listproviders

command to query the capabilities of the graphics devices. If the system
requirements are met and the X server is configured correctly, there should be
a provider named "NVIDIA-0" with the "Source Output" capability and one named
"modesetting" with the "Sink Output" capability. If either provider is missing
or doesn't have the expected capability, check your system configuration.


32C. SYNCHRONIZED RANDR 1.4 OUTPUTS

When running against X.Org X server with video driver ABI 23 or higher,
synchronization is supported with compatible drivers. At the time of writing,
synchronization is compatible with the "modesetting" driver with Intel devices
on Linux version 4.5 or newer. If all requirements are met, synchronization
will be used automatically.

X.Org X server version 1.19 or newer is required to support synchronization.
Without synchronization, displays are prone to "tearing". See Caveats for
details.

If synchronization is being used but is not desired, it can be disabled with:


$ xrandr --output <output> --set "PRIME Synchronization" 0


and re-enabled with:


$ xrandr --output <output> --set "PRIME Synchronization" 1



See Vblank syncing for information on how OpenGL applications can synchronize
with sink-provided outputs.


32D. CAVEATS


   o Support for PRIME Synchronization relies on DRM KMS support. See Chapter
     33 for more information.

   o Some Intel i915 DRM driver versions, such as that included with Linux
     4.5, have a bug where drmModeMoveCursor() and drmModePageFlip() interfere
     with each other, resulting in only one occurring per frame. If choppy
     performance is observed in configurations using PRIME Synchronization and
     i915, it is suggested to add "Option "SWCursor"" to Intel's device
     section in xorg.conf. The bug appears to be fixed as of Linux 4.6.

   o When running against X.Org X server version 1.18.x or lower, there is no
     synchronization between the images rendered by the NVIDIA GPU and the
     output device. This means that the output device can start reading the
     next frame of video while it is still being updated, producing a
     graphical artifact known as "tearing". Tearing is expected due to
     limitations in the design of the X.Org X server prior to video driver ABI
     23.

   o The NVIDIA driver currently only supports the "Source Output" capability.
     It does not support render offload and cannot be used as an output sink.

   o Some versions of the "modesetting" driver try to load a sub-module called
     "glamor", which conflicts with the NVIDIA GLX implementation. Please
     ensure that the 'libglamoregl.so' X module is not installed.

   o NVIDIA's implementation of PRIME requires support for DRM render nodes, a
     feature first merged in Linux 3.12. However, the feature was not enabled
     by default until Linux 3.17. To enable it on earlier supported kernels,
     specify the "drm.rnodes=1" kernel boot parameter.


______________________________________________________________________________

Chapter 33. Direct Rendering Manager Kernel Modesetting (DRM KMS)
______________________________________________________________________________

The NVIDIA GPU driver package provides a kernel module, nvidia-drm.ko, which
registers a DRM driver with the DRM subsystem of the Linux kernel. The
capabilities advertised by this DRM driver depend on the Linux kernel version
and configuration:


   o PRIME: This is needed to support graphics display offload in RandR 1.4.
     Linux kernel version 3.13 or higher is required, with CONFIG_DRM enabled.

   o Atomic Modeset: This is used for display of non-X11 based desktop
     environments, such as Wayland and Mir. Linux kernel version 4.1 or higher
     is required, with CONFIG_DRM and CONFIG_DRM_KMS_HELPER enabled.


NVIDIA's DRM KMS support is still considered experimental. It is disabled by
default, but can be enabled on suitable kernels with the 'modeset' kernel
module parameter. E.g.,

modprobe -r nvidia-drm ; modprobe nvidia-drm modeset=1


Applications can present through NVIDIA's DRM KMS implementation using any of
the following:


   o The DRM KMS "dumb buffer" mechanism to create and map CPU-accessible
     buffers: DRM_IOCTL_MODE_CREATE_DUMB, DRM_IOCTL_MODE_MAP_DUMB, and
     DRM_IOCTL_MODE_DESTROY_DUMB.

   o Using the EGL_EXT_device_drm, EGL_EXT_output_drm, and
     EGL_EXT_stream_consumer_egloutput EGL extensions to associate EGLStream
     producers with specific DRM KMS planes.



33A. KNOWN ISSUES


   o The NVIDIA DRM KMS implementation is currently incompatible with SLI. The
     X server will fail to initialize SLI if DRM KMS is enabled.

   o The NVIDIA DRM KMS implementation does not yet register an overlay plane:
     only primary and cursor planes are currently provided.

   o Buffer allocation and submission to DRM KMS using gbm is not currently
     supported.


______________________________________________________________________________

Chapter 34. Addressing Capabilities
______________________________________________________________________________

Many PCIe devices have limitations in what memory addresses they can access
for DMA purposes (based on the number of lines dedicated to memory
addressing). This can cause problems if the host system has memory mapped to
addresses beyond what the PCIe device can support. If a PCIe device is
allocated memory at an address beyond what the device can support, the address
may be truncated and the device will access the incorrect memory location.

Note that since certain system resources, such as ACPI tables and PCI I/O
regions, are mapped to address ranges below the 4 GB boundary, the RAM
installed in x86/x86-64 systems cannot necessarily be mapped contiguously.
Similarly, system firmware is free to map the available RAM at its or its
users' discretion. As a result, it is common for systems to have RAM mapped
outside of the address range [0, RAM_SIZE], where RAM_SIZE is the amount of
RAM installed in the system.

For example, it is common for a system with 512 GB of RAM installed to have
physical addresses up to ~513 GB. In this scenario, a GPU with an addressing
capability of 512 GB would force the driver to fall back to the 4 GB DMA zone
for this GPU.

The NVIDIA Linux driver attempts to identify the scenario where the host
system has more memory than a given GPU can address. If this scenario is
detected, the NVIDIA driver will drop back to allocations from the 4 GB DMA
zone to avoid address truncation. This means that the driver will use the
__GFP_DMA32 flag and limit itself to memory addresses below the 4 GB boundary.
This is done on a per-GPU basis, so limiting one GPU will not limit other GPUs
in the system.

The addressing capabilities of an NVIDIA GPU can be queried at runtime via the
procfs interface:



% cat /proc/driver/nvidia/gpus/domain:bus:device.function/information
...
DMA Size:        40 bits
DMA Mask:        0xffffffffff
...



The memory mapping of RAM on a given system can be seen in the BIOS-e820 table
printed out by the kernel and available via `dmesg`. Note that the 'usable'
ranges are actual RAM:



[    0.000000] BIOS-provided physical RAM map:
[    0.000000]  BIOS-e820: 0000000000000000 - 000000000009f000 (usable)
[    0.000000]  BIOS-e820: 000000000009f000 - 00000000000a0000 (reserved)
[    0.000000]  BIOS-e820: 0000000000100000 - 000000003fe5a800 (usable)
[    0.000000]  BIOS-e820: 000000003fe5a800 - 0000000040000000 (reserved)




34A. INDIVIDUAL CAPABILITIES
Listing of per-board addressing capabilities.

GEFORCE CAPABILITIES


  1. 1 Terabyte (40 bits)


   o All GeForce GPUs (minus following exceptions)


  2. 512 Gigabytes (39 bits)


   o GeForce GTX 460, 460 SE, 465, 470, 480

   o GeForce GTX 470M, 480M, 485M


  3. 128 Gigabytes (37 bits)


   o GeForce GT 420, 430, 440, 520, 530, 610, 620, 630

   o GeForce GT 415M, 420M, 425M, 435M, 520M, 525M, 540M, 550M, 555M, 610M,
     620M, 630M, 635M




QUADRO CAPABILITIES


  1. 1 Terabyte (40 bits)


   o All Quadro GPUs (minus following exceptions)


  2. 512 Gigabytes (39 bits)


   o Quadro 3000M, 4000, 4000M, 5000, 5000M, 6000


  3. 128 Gigabytes (37 bits)


   o Quadro 500M, 600, 1000M




TESLA CAPABILITIES


  1. 1 Terabyte (40 bits)


   o All Tesla GPUs (minus following exceptions)


  2. 512 Gigabytes (39 bits)


   o Tesla T20, C2050, C2070, M2070, M2070-Q




34B. SOLUTIONS

There are multiple potential ways to solve a discrepancy between your system
configuration and a GPU's addressing capabilities.


  1. Select a GPU with addressing capabilities that match your target
     configuration.

     The best way to achieve optimal system and GPU performance is to make
     sure that the capabilities of the two are in alignment. This is
     especially important with multiple GPUs in the system, as the GPUs may
     have different addressing capabilities. In this multiple GPU scenario,
     other solutions could needlessly impact the GPU that has larger
     addressing capabilities.

  2. Configure the system's IOMMU to the GPU's addressing capabilities.

     This is a solution targeted at developers and system builders. The use of
     IOMMU may be an option, depending on system configuration and IOMMU
     capabilities. Please contact NVIDIA to discuss solutions for specific
     configurations.

  3. Limit the amount of memory seen by the Operating System to match your
     GPU's addressing capabilities with kernel configuration.

     This is best used in the scenario where RAM is mapped to addresses that
     slightly exceeds a GPU's capabilities and other solutions are either not
     achievable or more intrusive. A good example is the 512 GB RAM scenario
     outlined above with a GPU capable of addressing 512 GB. The kernel
     parameter can be used to ignore the RAM mapped above 512 GB.

     This can be achieved in Linux by use of the "mem" kernel parameter. See
     the kernel-parameters.txt documentation for more details on this
     parameter.

     This solution does affect the entire system and will limit how much
     memory the OS and other devices can use. In scenarios where there is a
     large discrepancy between the system configuration and GPU capabilities,
     this is not a desirable solution.

  4. Remove RAM from the system to align with the GPU's addressing
     capabilities.

     This is the most heavy-handed, but may ultimately be the most reliable
     solution.


______________________________________________________________________________

Chapter 35. NVIDIA Contact Info and Additional Resources
______________________________________________________________________________

There is an NVIDIA Linux Driver web forum. You can access it by going to
http://devtalk.nvidia.com and following the "Linux" link in the "GPU Unix
Graphics" section. This is the preferable tool for seeking help; users can
post questions, answer other users' questions, and search the archives of
previous postings.

If all else fails, you can contact NVIDIA for support at:
linux-bugs@nvidia.com. But please, only send email to this address after you
have explored the Chapter 7 and Chapter 8 chapters of this document, and asked
for help on the devtalk.nvidia.com web forum. When emailing
linux-bugs@nvidia.com, please include the 'nvidia-bug-report.log.gz' file
generated by the 'nvidia-bug-report.sh' script (which is installed as part of
driver installation), along with a detailed description of your problem.

NVIDIA provides a technical contact for information about potential security
issues. Anyone who has identified what they believe to be a security issue
with an NVIDIA UNIX driver is encouraged to directly contact the NVIDIA UNIX
Graphics Driver security email alias, unix-security@nvidia.com, to report and
evaluate any potential issues prior to publishing a public security advisory.



Additional Resources

Linux OpenGL ABI

     http://www.opengl.org/registry/ABI/

The XFree86 Project

     http://www.xfree86.org/

XFree86 Video Timings HOWTO

     http://www.tldp.org/HOWTO/XFree86-Video-Timings-HOWTO/index.html

The X.Org Foundation

     http://www.x.org/

OpenGL

     http://www.opengl.org/


______________________________________________________________________________

Chapter 36. Acknowledgements
______________________________________________________________________________


loki_update

    'nvidia-installer' was inspired by the 'loki_update' tool:
    http://icculus.org/loki_setup/

makeself

    The self-extracting archive (also known as the '.run' file) is generated
    using 'makeself.sh': http://www.megastep.org/makeself/

    The version of makeself.sh used to create the .run is bundled within the
    .run file, and can retrieved by extracting the .run file's contents, e.g.:
    
    
    $ sh NVIDIA-Linux-x86_64-384.59.run --extract-only
    $ ls -l NVIDIA-Linux-x86_64-384.59/makeself.sh
    
    
    
LLVM

    Portions of the NVIDIA OpenCL implementation contain components licensed
    from third parties under the following terms:

    Clang & LLVM:
    Copyright (c) 2003-2008 University of Illinois at Urbana-Champaign.
    All rights reserved.

    Portions of LLVM's System library:
    Copyright (C) 2004 eXtensible Systems, Inc.

    Developed by:
    LLVM Team
    University of Illinois at Urbana-Champaign
     http://llvm.org

    Permission is hereby granted, free of charge, to any person obtaining a
    copy of this software and associated documentation files (the "Software"),
    to deal with the Software without restriction, including without
    limitation the rights to use, copy, modify, merge, publish, distribute,
    sublicense, and/or sell copies of the Software, and to permit persons to
    whom the Software is furnished to do so, subject to the following
    conditions:


   o Redistributions of source code must retain the above copyright notice,
     this list of conditions and the following disclaimers.

   o Redistributions in binary form must reproduce the above copyright notice,
     this list of conditions and the following disclaimers in the
     documentation and/or other materials provided with the distribution.

   o Neither the names of the LLVM Team, University of Illinois at
     Urbana-Champaign, nor the names of its contributors may be used to
     endorse or promote products derived from this Software without specific
     prior written permission.


    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
    THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
    OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
    ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
    OTHER DEALINGS WITH THE SOFTWARE.

xz-embedded

    The self-installing .run package is compressed using xz, and includes a
    decompressor built from the xz-embedded project, available at
    http://tukaani.org/xz/embedded.html.

jansson

    nvidia-settings uses jansson for parsing configuration files, available at
    http://www.digip.org/jansson/.

    This library carries the following copyright notice:

    Copyright (c) 2009-2012 Petri Lehtinen <petri@digip.org>

    Permission is hereby granted, free of charge, to any person obtaining a
    copy of this software and associated documentation files (the "Software"),
    to deal in the Software without restriction, including without limitation
    the rights to use, copy, modify, merge, publish, distribute, sublicense,
    and/or sell copies of the Software, and to permit persons to whom the
    Software is furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
    THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
    DEALINGS IN THE SOFTWARE.

lz4

    The NVIDIA GPU driver uses the lz4 compression algorithm as implemented by
    the lz4 library, available at https://code.google.com/p/lz4/.

    This library carries the following copyright notice:

    LZ4 - Fast LZ compression algorithm
    Copyright (C) 2011-2013, Yann Collet.
    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are
    met:


   o Redistributions of source code must retain the above copyright notice,
     this list of conditions and the following disclaimer.

   o Redistributions in binary form must reproduce the above copyright notice,
     this list of conditions and the following disclaimer in the documentation
     and/or other materials provided with the distribution.


    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
    IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
    THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    You can contact the author at :
    
       o LZ4 source repository : http://code.google.com/p/lz4/
    
       o LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c
    
    
X.Org

    This NVIDIA Linux driver contains code from the X.Org project.

    Source code from the X.Org project is available from
    http://cgit.freedesktop.org/xorg/xserver

NetBSD Compiler Intrinsics

    The NetBSD implementations of the following compiler intrinsics are used
    for better portability: __udivdi3, __umoddi3, __divdi3, __moddi3,
    __ucmpdi2, __cmpdi2, __fixunssfdi, __fixunsdfdi, __ashldi3 and __lshrdi3.

    These carry the following copyright notice:

    Copyright (c) 1992, 1993 The Regents of the University of California. All
    rights reserved.

    This software was developed by the Computer Systems Engineering group at
    Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and contributed
    to Berkeley.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are
    met:


  1. Redistributions of source code must retain the above copyright notice,
     this list of conditions and the following disclaimer.

  2. Redistributions in binary form must reproduce the above copyright notice,
     this list of conditions and the following disclaimer in the documentation
     and/or other materials provided with the distribution.

  3. All advertising materials mentioning features or use of this software
     must display the following acknowledgement: This product includes
     software developed by the University of California, Berkeley and its
     contributors.

  4. Neither the name of the University nor the names of its contributors may
     be used to endorse or promote products derived from this software without
     specific prior written permission.


    THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    SUCH DAMAGE.

JSMN

    This NVIDIA Linux driver uses a JSON parser based on 'jsmn':
    http://zserge.bitbucket.org/jsmn.html

    This library carries the following copyright notice:

    Copyright (c) 2010 Serge A. Zaitsev

    Permission is hereby granted, free of charge, to any person obtaining a
    copy of this software and associated documentation files (the "Software"),
    to deal in the Software without restriction, including without limitation
    the rights to use, copy, modify, merge, publish, distribute, sublicense,
    and/or sell copies of the Software, and to permit persons to whom the
    Software is furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
    THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
    DEALINGS IN THE SOFTWARE.

SHA-256

    Portions of the driver use the SHA-256 algorithm derived from sha2.c:
    https://github.com/ouah/sha2/blob/master/sha2.c

    This library carries the following copyright notice:

    Copyright (C) 2005, 2007 Olivier Gay <olivier.gay@a3.epfl.ch> All rights
    reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions are
    met:


  1. Redistributions of source code must retain the above copyright notice,
     this list of conditions and the following disclaimer.

  2. Redistributions in binary form must reproduce the above copyright notice,
     this list of conditions and the following disclaimer in the documentation
     and/or other materials provided with the distribution.

  3. Neither the name of the project nor the names of its contributors may be
     used to endorse or promote products derived from this software without
     specific prior written permission.


    THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
    ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    SUCH DAMAGE.

libselinux

    This NVIDIA Linux driver contains code from libselinux, which is released
    in the public domain.


______________________________________________________________________________

Appendix A. Supported NVIDIA GPU Products
______________________________________________________________________________

For the most complete and accurate listing of supported GPUs, please see the
Supported Products List, available from the NVIDIA Linux x86_64 Graphics
Driver download page. Please go to http://www.nvidia.com/object/unix.html,
follow the Archive link under the Linux x86_64 heading, follow the link for
the 384.59 driver, and then go to the Supported Products List.

For an explanation of the VDPAU features column, please refer to the section
called "VdpDecoder" of Appendix G.

Note that the list of supported GPU products provided below and on the driver
download page is provided to indicate which GPUs are supported by a particular
driver version. Some designs incorporating supported GPUs may not be
compatible with the NVIDIA Linux driver: in particular, notebook and
all-in-one desktop designs with switchable (hybrid) or Optimus graphics will
not work if means to disable the integrated graphics in hardware are not
available. Hardware designs will vary from manufacturer to manufacturer, so
please consult with a system's manufacturer to determine whether that
particular system is compatible.


A1. NVIDIA GEFORCE GPUS


    NVIDIA GPU product                    Device PCI ID*     VDPAU features
    ----------------------------------    ---------------    ---------------
    GeForce GTX 480                       06C0               C
    GeForce GTX 465                       06C4               C
    GeForce GTX 480M                      06CA               C
    GeForce GTX 470                       06CD               C
    GeForce GT 440                        0DC0               C
    GeForce GTS 450                       0DC4               C
    GeForce GTS 450                       0DC5               C
    GeForce GTS 450                       0DC6               C
    GeForce GT 555M                       0DCD               C
    GeForce GT 555M                       0DCE               C
    GeForce GTX 460M                      0DD1               C
    GeForce GT 445M                       0DD2               C
    GeForce GT 435M                       0DD3               C
    GeForce GT 550M                       0DD6               C
    GeForce GT 440                        0DE0               C
    GeForce GT 430                        0DE1               C
    GeForce GT 420                        0DE2               C
    GeForce GT 635M                       0DE3               C
    GeForce GT 520                        0DE4               C
    GeForce GT 530                        0DE5               C
    GeForce GT 610                        0DE7               C
    GeForce GT 620M                       0DE8               C
    GeForce GT 630M                       0DE9               C
    GeForce GT 620M                       0DE9 1025 0692     C
    GeForce GT 620M                       0DE9 1025 0725     C
    GeForce GT 620M                       0DE9 1025 0728     C
    GeForce GT 620M                       0DE9 1025 072B     C
    GeForce GT 620M                       0DE9 1025 072E     C
    GeForce GT 620M                       0DE9 1025 0753     C
    GeForce GT 620M                       0DE9 1025 0754     C
    GeForce GT 640M LE                    0DE9 17AA 3977     C
    GeForce GT 635M                       0DE9 1B0A 2210     C
    GeForce 610M                          0DEA               C
    GeForce 615                           0DEA 17AA 365A     C
    GeForce 615                           0DEA 17AA 365B     C
    GeForce 615                           0DEA 17AA 365E     C
    GeForce 615                           0DEA 17AA 3660     C
    GeForce 615                           0DEA 17AA 366C     C
    GeForce GT 555M                       0DEB               C
    GeForce GT 525M                       0DEC               C
    GeForce GT 520M                       0DED               C
    GeForce GT 415M                       0DEE               C
    GeForce GT 425M                       0DF0               C
    GeForce GT 420M                       0DF1               C
    GeForce GT 435M                       0DF2               C
    GeForce GT 420M                       0DF3               C
    GeForce GT 540M                       0DF4               C
    GeForce GT 630M                       0DF4 152D 0952     C
    GeForce GT 630M                       0DF4 152D 0953     C
    GeForce GT 525M                       0DF5               C
    GeForce GT 550M                       0DF6               C
    GeForce GT 520M                       0DF7               C
    GeForce GTX 460                       0E22               C
    GeForce GTX 460 SE                    0E23               C
    GeForce GTX 460                       0E24               C
    GeForce GTX 470M                      0E30               C
    GeForce GTX 485M                      0E31               C
    GeForce GT 630                        0F00               C
    GeForce GT 620                        0F01               C
    GeForce GT 730                        0F02               C
    GeForce GT 610                        0F03               C
    GeForce GT 640                        0FC0               C
    GeForce GT 640                        0FC1               C
    GeForce GT 630                        0FC2               C
    GeForce GTX 650                       0FC6               D
    GeForce GT 740                        0FC8               D
    GeForce GT 730                        0FC9               C
    GeForce GT 755M                       0FCD               D
    GeForce GT 640M LE                    0FCE               C
    GeForce GT 650M                       0FD1               D
    GeForce GT 640M                       0FD2               D
    GeForce GT 640M LE                    0FD2 1028 0595     C
    GeForce GT 640M LE                    0FD2 1028 05B2     C
    GeForce GT 640M LE                    0FD3               C
    GeForce GTX 660M                      0FD4               D
    GeForce GT 650M                       0FD5               D
    GeForce GT 640M                       0FD8               D
    GeForce GT 645M                       0FD9               D
    GeForce GT 740M                       0FDF               D
    GeForce GTX 660M                      0FE0               D
    GeForce GT 730M                       0FE1               D
    GeForce GT 745M                       0FE2               D
    GeForce GT 745M                       0FE3               D
    GeForce GT 745A                       0FE3 103C 2B16     D
    GeForce GT 745A                       0FE3 17AA 3675     D
    GeForce GT 750M                       0FE4               D
    GeForce GT 750M                       0FE9               D
    GeForce GT 755M                       0FEA               D
    GeForce 710A                          0FEC               C
    GeForce 820M                          0FED               C
    GeForce 810M                          0FEE               C
    GeForce GTX TITAN Z                   1001               D
    GeForce GTX 780                       1004               D
    GeForce GTX TITAN                     1005               D
    GeForce GTX 780                       1007               D
    GeForce GTX 780 Ti                    1008               D
    GeForce GTX 780 Ti                    100A               D
    GeForce GTX TITAN Black               100C               D
    GeForce GT 520                        1040               C
    GeForce 510                           1042               D
    GeForce 605                           1048               D
    GeForce GT 620                        1049               C
    GeForce GT 610                        104A               C
    GeForce GT 625 (OEM)                  104B               D
    GeForce GT 625                        104B 1043 844C     D
    GeForce GT 625                        104B 1043 846B     D
    GeForce GT 625                        104B 1462 B590     D
    GeForce GT 625                        104B 174B 0625     D
    GeForce GT 625                        104B 174B A625     D
    GeForce GT 705                        104C               D
    GeForce GT 520M                       1050               C
    GeForce GT 520MX                      1051               D
    GeForce GT 520M                       1052               C
    GeForce 410M                          1054               D
    GeForce 410M                          1055               D
    GeForce 610M                          1058               C
    GeForce 610                           1058 103C 2AF1     D
    GeForce 800A                          1058 17AA 3682     D
    GeForce  705A                         1058 17AA 3692     C
    GeForce 800A                          1058 17AA 3695     D
    GeForce 800A                          1058 17AA 36A8     D
    GeForce 800A                          1058 17AA 36AC     D
    GeForce 800A                          1058 17AA 36AD     D
    GeForce 800A                          1058 705A 3682     D
    GeForce 610M                          1059               C
    GeForce 610M                          105A               C
    GeForce 705M                          105B               C
    GeForce 705A                          105B 103C 2AFB     C
    GeForce 800A                          105B 17AA 30B1     D
    GeForce 705A                          105B 17AA 30F3     C
    GeForce 800A                          105B 17AA 36A1     D
    GeForce GTX 580                       1080               C
    GeForce GTX 570                       1081               C
    GeForce GTX 560 Ti                    1082               C
    GeForce GTX 560                       1084               C
    GeForce GTX 570                       1086               C
    GeForce GTX 560 Ti                    1087               C
    GeForce GTX 590                       1088               C
    GeForce GTX 580                       1089               C
    GeForce GTX 580                       108B               C
    GeForce 820M                          1140 1019 0799     C
    GeForce GT 720M                       1140 1019 999F     C
    GeForce GT 620M                       1140 1025 0600     C
    GeForce GT 620M                       1140 1025 0606     C
    GeForce GT 620M                       1140 1025 064A     C
    GeForce GT 620M                       1140 1025 064C     C
    GeForce GT 620M                       1140 1025 067A     C
    GeForce GT 620M                       1140 1025 0680     C
    GeForce 710M                          1140 1025 0686     C
    GeForce 710M                          1140 1025 0689     C
    GeForce 710M                          1140 1025 068B     C
    GeForce 710M                          1140 1025 068D     C
    GeForce 710M                          1140 1025 068E     C
    GeForce 710M                          1140 1025 0691     C
    GeForce GT 620M                       1140 1025 0692     C
    GeForce GT 620M                       1140 1025 0694     C
    GeForce GT 620M                       1140 1025 0702     C
    GeForce GT 620M                       1140 1025 0719     C
    GeForce GT 620M                       1140 1025 0725     C
    GeForce GT 620M                       1140 1025 0728     C
    GeForce GT 620M                       1140 1025 072B     C
    GeForce GT 620M                       1140 1025 072E     C
    GeForce GT 620M                       1140 1025 0732     C
    GeForce GT 720M                       1140 1025 0763     C
    GeForce 710M                          1140 1025 0773     C
    GeForce 710M                          1140 1025 0774     C
    GeForce GT 720M                       1140 1025 0776     C
    GeForce 710M                          1140 1025 077A     C
    GeForce 710M                          1140 1025 077B     C
    GeForce 710M                          1140 1025 077C     C
    GeForce 710M                          1140 1025 077D     C
    GeForce 710M                          1140 1025 077E     C
    GeForce 710M                          1140 1025 077F     C
    GeForce GT 720M                       1140 1025 0781     C
    GeForce GT 720M                       1140 1025 0798     C
    GeForce GT 720M                       1140 1025 0799     C
    GeForce GT 720M                       1140 1025 079B     C
    GeForce GT 720M                       1140 1025 079C     C
    GeForce GT 720M                       1140 1025 0807     C
    GeForce 820M                          1140 1025 0821     C
    GeForce GT 720M                       1140 1025 0823     C
    GeForce GT 720M                       1140 1025 0830     C
    GeForce GT 720M                       1140 1025 0833     C
    GeForce GT 720M                       1140 1025 0837     C
    GeForce 820M                          1140 1025 083E     C
    GeForce 710M                          1140 1025 0841     C
    GeForce 820M                          1140 1025 0853     C
    GeForce 820M                          1140 1025 0854     C
    GeForce 820M                          1140 1025 0855     C
    GeForce 820M                          1140 1025 0856     C
    GeForce 820M                          1140 1025 0857     C
    GeForce 820M                          1140 1025 0858     C
    GeForce 820M                          1140 1025 0863     C
    GeForce 820M                          1140 1025 0868     C
    GeForce 810M                          1140 1025 0869     C
    GeForce 820M                          1140 1025 0873     C
    GeForce 820M                          1140 1025 0878     C
    GeForce 820M                          1140 1025 087B     C
    GeForce 820M                          1140 1025 087F     C
    GeForce 820M                          1140 1025 0881     C
    GeForce 820M                          1140 1025 0885     C
    GeForce 820M                          1140 1025 088A     C
    GeForce 820M                          1140 1025 089B     C
    GeForce 820M                          1140 1025 0921     C
    GeForce 810M                          1140 1025 092E     C
    GeForce 820M                          1140 1025 092F     C
    GeForce 820M                          1140 1025 0932     C
    GeForce 820M                          1140 1025 093A     C
    GeForce 820M                          1140 1025 093C     C
    GeForce 820M                          1140 1025 093F     C
    GeForce 820M                          1140 1025 0941     C
    GeForce 820M                          1140 1025 0945     C
    GeForce 820M                          1140 1025 0954     C
    GeForce 820M                          1140 1025 0965     C
    GeForce GT 630M                       1140 1028 054D     C
    GeForce GT 630M                       1140 1028 054E     C
    GeForce GT 620M                       1140 1028 0554     C
    GeForce GT 620M                       1140 1028 0557     C
    GeForce GT 625M                       1140 1028 0562     C
    GeForce GT 630M                       1140 1028 0565     C
    GeForce GT 630M                       1140 1028 0568     C
    GeForce GT 630M                       1140 1028 0590     C
    GeForce GT 625M                       1140 1028 0592     C
    GeForce GT 625M                       1140 1028 0594     C
    GeForce GT 625M                       1140 1028 0595     C
    GeForce GT 625M                       1140 1028 05A2     C
    GeForce GT 625M                       1140 1028 05B1     C
    GeForce GT 625M                       1140 1028 05B3     C
    GeForce GT 630M                       1140 1028 05DA     C
    GeForce GT 720M                       1140 1028 05DE     C
    GeForce GT 720M                       1140 1028 05E0     C
    GeForce GT 630M                       1140 1028 05E8     C
    GeForce GT 720M                       1140 1028 05F4     C
    GeForce GT 720M                       1140 1028 060F     C
    GeForce GT 720M                       1140 1028 062F     C
    GeForce 820M                          1140 1028 064E     C
    GeForce 820M                          1140 1028 0652     C
    GeForce 820M                          1140 1028 0653     C
    GeForce 820M                          1140 1028 0655     C
    GeForce 820M                          1140 1028 065E     C
    GeForce 820M                          1140 1028 0662     C
    GeForce 820M                          1140 1028 068D     C
    GeForce 820M                          1140 1028 06AD     C
    GeForce 820M                          1140 1028 06AE     C
    GeForce 820M                          1140 1028 06AF     C
    GeForce 820M                          1140 1028 06B0     C
    GeForce 820M                          1140 1028 06C0     C
    GeForce 820M                          1140 1028 06C1     C
    GeForce GT 630M                       1140 103C 18EF     C
    GeForce GT 630M                       1140 103C 18F9     C
    GeForce GT 630M                       1140 103C 18FB     C
    GeForce GT 630M                       1140 103C 18FD     C
    GeForce GT 630M                       1140 103C 18FF     C
    GeForce 820M                          1140 103C 218A     C
    GeForce 820M                          1140 103C 21BB     C
    GeForce 820M                          1140 103C 21BC     C
    GeForce 820M                          1140 103C 220E     C
    GeForce 820M                          1140 103C 2210     C
    GeForce 820M                          1140 103C 2212     C
    GeForce 820M                          1140 103C 2214     C
    GeForce 820M                          1140 103C 2218     C
    GeForce 820M                          1140 103C 225B     C
    GeForce 820M                          1140 103C 225D     C
    GeForce 820M                          1140 103C 226D     C
    GeForce 820M                          1140 103C 226F     C
    GeForce 820M                          1140 103C 22D2     C
    GeForce 820M                          1140 103C 22D9     C
    GeForce 820M                          1140 103C 2335     C
    GeForce 820M                          1140 103C 2337     C
    GeForce GT 720A                       1140 103C 2AEF     C
    GeForce 710A                          1140 103C 2AF9     C
    GeForce GT 720M                       1140 1043 11FD     C
    GeForce GT 720M                       1140 1043 124D     C
    GeForce GT 720M                       1140 1043 126D     C
    GeForce GT 720M                       1140 1043 131D     C
    GeForce GT 720M                       1140 1043 13FD     C
    GeForce GT 720M                       1140 1043 14C7     C
    GeForce GT 620M                       1140 1043 1507     C
    GeForce 820M                          1140 1043 15AD     C
    GeForce 820M                          1140 1043 15ED     C
    GeForce 820M                          1140 1043 160D     C
    GeForce 820M                          1140 1043 163D     C
    GeForce 820M                          1140 1043 165D     C
    GeForce 820M                          1140 1043 166D     C
    GeForce 820M                          1140 1043 16CD     C
    GeForce 820M                          1140 1043 16DD     C
    GeForce 820M                          1140 1043 170D     C
    GeForce 820M                          1140 1043 176D     C
    GeForce 820M                          1140 1043 178D     C
    GeForce 820M                          1140 1043 179D     C
    GeForce GT 620M                       1140 1043 2132     C
    GeForce GT 720M                       1140 1043 21BA     C
    GeForce GT 720M                       1140 1043 21FA     C
    GeForce GT 720M                       1140 1043 220A     C
    GeForce GT 720M                       1140 1043 221A     C
    GeForce GT 710M                       1140 1043 223A     C
    GeForce GT 710M                       1140 1043 224A     C
    GeForce 820M                          1140 1043 227A     C
    GeForce 820M                          1140 1043 228A     C
    GeForce 820M                          1140 1043 22FA     C
    GeForce 820M                          1140 1043 232A     C
    GeForce 820M                          1140 1043 233A     C
    GeForce 820M                          1140 1043 235A     C
    GeForce 820M                          1140 1043 236A     C
    GeForce 820M                          1140 1043 238A     C
    GeForce GT 720M                       1140 1043 8595     C
    GeForce GT 720M                       1140 1043 85EA     C
    GeForce 820M                          1140 1043 85EB     C
    GeForce 820M                          1140 1043 85EC     C
    GeForce GT 720M                       1140 1043 85EE     C
    GeForce 820M                          1140 1043 85F3     C
    GeForce 820M                          1140 1043 860E     C
    GeForce 820M                          1140 1043 861A     C
    GeForce 820M                          1140 1043 861B     C
    GeForce 820M                          1140 1043 8628     C
    GeForce 820M                          1140 1043 8643     C
    GeForce 820M                          1140 1043 864C     C
    GeForce 820M                          1140 1043 8652     C
    GeForce 820M                          1140 1043 8660     C
    GeForce 820M                          1140 1043 8661     C
    GeForce GT 720M                       1140 105B 0DAC     C
    GeForce GT 720M                       1140 105B 0DAD     C
    GeForce GT 720M                       1140 105B 0EF3     C
    GeForce GT 720M                       1140 10CF 17F5     C
    GeForce 710M                          1140 1179 FA01     C
    GeForce 710M                          1140 1179 FA02     C
    GeForce 710M                          1140 1179 FA03     C
    GeForce 710M                          1140 1179 FA05     C
    GeForce 710M                          1140 1179 FA11     C
    GeForce 710M                          1140 1179 FA13     C
    GeForce 710M                          1140 1179 FA18     C
    GeForce 710M                          1140 1179 FA19     C
    GeForce 710M                          1140 1179 FA21     C
    GeForce 710M                          1140 1179 FA23     C
    GeForce 710M                          1140 1179 FA2A     C
    GeForce 710M                          1140 1179 FA32     C
    GeForce 710M                          1140 1179 FA33     C
    GeForce 710M                          1140 1179 FA36     C
    GeForce 710M                          1140 1179 FA38     C
    GeForce 710M                          1140 1179 FA42     C
    GeForce 710M                          1140 1179 FA43     C
    GeForce 710M                          1140 1179 FA45     C
    GeForce 710M                          1140 1179 FA47     C
    GeForce 710M                          1140 1179 FA49     C
    GeForce 710M                          1140 1179 FA58     C
    GeForce 710M                          1140 1179 FA59     C
    GeForce 710M                          1140 1179 FA88     C
    GeForce 710M                          1140 1179 FA89     C
    GeForce GT 620M                       1140 144D B092     C
    GeForce GT 630M                       1140 144D C0D5     C
    GeForce GT 620M                       1140 144D C0D7     C
    GeForce 820M                          1140 144D C10D     C
    GeForce GT 620M                       1140 144D C652     C
    GeForce 710M                          1140 144D C709     C
    GeForce 710M                          1140 144D C711     C
    GeForce 710M                          1140 144D C736     C
    GeForce 710M                          1140 144D C737     C
    GeForce 820M                          1140 144D C745     C
    GeForce 820M                          1140 144D C750     C
    GeForce GT 710M                       1140 1462 10B8     C
    GeForce GT 720M                       1140 1462 10E9     C
    GeForce 820M                          1140 1462 1116     C
    GeForce 720M                          1140 1462 AA33     C
    GeForce GT 720M                       1140 1462 AAA2     C
    GeForce 820M                          1140 1462 AAA3     C
    GeForce GT 720M                       1140 1462 ACB2     C
    GeForce GT 720M                       1140 1462 ACC1     C
    GeForce 720M                          1140 1462 AE61     C
    GeForce GT 720M                       1140 1462 AE65     C
    GeForce 820M                          1140 1462 AE6A     C
    GeForce GT 720M                       1140 1462 AE71     C
    GeForce 820M                          1140 14C0 0083     C
    GeForce 620M                          1140 152D 0926     C
    GeForce GT 630M                       1140 152D 0982     C
    GeForce GT 630M                       1140 152D 0983     C
    GeForce GT 820M                       1140 152D 1005     C
    GeForce 710M                          1140 152D 1012     C
    GeForce 820M                          1140 152D 1019     C
    GeForce GT 630M                       1140 152D 1030     C
    GeForce 710M                          1140 152D 1055     C
    GeForce GT 720M                       1140 152D 1067     C
    GeForce 820M                          1140 152D 1092     C
    GeForce GT 720M                       1140 17AA 2213     C
    GeForce GT 720M                       1140 17AA 2220     C
    GeForce GT 720A                       1140 17AA 309C     C
    GeForce 820A                          1140 17AA 30B4     C
    GeForce 720A                          1140 17AA 30B7     C
    GeForce 820A                          1140 17AA 30E4     C
    GeForce 820A                          1140 17AA 361B     C
    GeForce 820A                          1140 17AA 361C     C
    GeForce 820A                          1140 17AA 361D     C
    GeForce GT 620M                       1140 17AA 3656     C
    GeForce 705M                          1140 17AA 365A     C
    GeForce 800M                          1140 17AA 365E     C
    GeForce 820A                          1140 17AA 3661     C
    GeForce 800M                          1140 17AA 366C     C
    GeForce 800M                          1140 17AA 3685     C
    GeForce 800M                          1140 17AA 3686     C
    GeForce 705A                          1140 17AA 3687     C
    GeForce 820A                          1140 17AA 3696     C
    GeForce 820A                          1140 17AA 369B     C
    GeForce 820A                          1140 17AA 369C     C
    GeForce 820A                          1140 17AA 369D     C
    GeForce 820A                          1140 17AA 369E     C
    GeForce 820A                          1140 17AA 36A6     C
    GeForce 820A                          1140 17AA 36A7     C
    GeForce 820A                          1140 17AA 36A9     C
    GeForce 820A                          1140 17AA 36AF     C
    GeForce 820A                          1140 17AA 36B0     C
    GeForce 820A                          1140 17AA 36B6     C
    GeForce GT 720M                       1140 17AA 3800     C
    GeForce GT 720M                       1140 17AA 3801     C
    GeForce GT 720M                       1140 17AA 3802     C
    GeForce GT 720M                       1140 17AA 3803     C
    GeForce GT 720M                       1140 17AA 3804     C
    GeForce GT 720M                       1140 17AA 3806     C
    GeForce GT 720M                       1140 17AA 3808     C
    GeForce GT 820M                       1140 17AA 380D     C
    GeForce GT 820M                       1140 17AA 380E     C
    GeForce GT 820M                       1140 17AA 380F     C
    GeForce GT 820M                       1140 17AA 3811     C
    GeForce 820M                          1140 17AA 3812     C
    GeForce 820M                          1140 17AA 3813     C
    GeForce 820M                          1140 17AA 3816     C
    GeForce 820M                          1140 17AA 3817     C
    GeForce 820M                          1140 17AA 3818     C
    GeForce 820M                          1140 17AA 381A     C
    GeForce 820M                          1140 17AA 381C     C
    GeForce 820M                          1140 17AA 381D     C
    GeForce 610M                          1140 17AA 3901     C
    GeForce 710M                          1140 17AA 3902     C
    GeForce 710M                          1140 17AA 3903     C
    GeForce GT 625M                       1140 17AA 3904     C
    GeForce GT 720M                       1140 17AA 3905     C
    GeForce 820M                          1140 17AA 3907     C
    GeForce GT 720M                       1140 17AA 3910     C
    GeForce GT 720M                       1140 17AA 3912     C
    GeForce 820M                          1140 17AA 3913     C
    GeForce 820M                          1140 17AA 3915     C
    GeForce 610M                          1140 17AA 3983     C
    GeForce 610M                          1140 17AA 5001     C
    GeForce GT 720M                       1140 17AA 5003     C
    GeForce 705M                          1140 17AA 5005     C
    GeForce GT 620M                       1140 17AA 500D     C
    GeForce 710M                          1140 17AA 5014     C
    GeForce 710M                          1140 17AA 5017     C
    GeForce 710M                          1140 17AA 5019     C
    GeForce 710M                          1140 17AA 501A     C
    GeForce GT 720M                       1140 17AA 501F     C
    GeForce 710M                          1140 17AA 5025     C
    GeForce 710M                          1140 17AA 5027     C
    GeForce 710M                          1140 17AA 502A     C
    GeForce GT 720M                       1140 17AA 502B     C
    GeForce 710M                          1140 17AA 502D     C
    GeForce GT 720M                       1140 17AA 502E     C
    GeForce GT 720M                       1140 17AA 502F     C
    GeForce 705M                          1140 17AA 5030     C
    GeForce 705M                          1140 17AA 5031     C
    GeForce 820M                          1140 17AA 5032     C
    GeForce 820M                          1140 17AA 5033     C
    GeForce 710M                          1140 17AA 503E     C
    GeForce 820M                          1140 17AA 503F     C
    GeForce 820M                          1140 17AA 5040     C
    GeForce 710M                          1140 1854 0177     C
    GeForce 710M                          1140 1854 0180     C
    GeForce GT 720M                       1140 1854 0190     C
    GeForce GT 720M                       1140 1854 0192     C
    GeForce 820M                          1140 1854 0224     C
    GeForce 820M                          1140 1B0A 01C0     C
    GeForce GT 620M                       1140 1B0A 20DD     C
    GeForce GT 620M                       1140 1B0A 20DF     C
    GeForce 820M                          1140 1B0A 210E     C
    GeForce GT 720M                       1140 1B0A 2202     C
    GeForce 820M                          1140 1B0A 90D7     C
    GeForce 820M                          1140 1B0A 90DD     C
    GeForce 820M                          1140 1B50 5530     C
    GeForce GT 720M                       1140 1B6C 5031     C
    GeForce 820M                          1140 1BAB 0106     C
    GeForce 810M                          1140 1D05 1013     C
    GeForce GTX 680                       1180               D
    GeForce GTX 660 Ti                    1183               D
    GeForce GTX 770                       1184               D
    GeForce GTX 660                       1185               D
    GeForce GTX 760                       1185 10DE 106F     D
    GeForce GTX 760                       1187               D
    GeForce GTX 690                       1188               D
    GeForce GTX 670                       1189               D
    GeForce GTX 760 Ti OEM                1189 10DE 1074     D
    GeForce GTX 760 (192-bit)             118E               D
    GeForce GTX 760 Ti OEM                1193               D
    GeForce GTX 660                       1195               D
    GeForce GTX 880M                      1198               D
    GeForce GTX 870M                      1199               D
    GeForce GTX 760                       1199 1458 D001     D
    GeForce GTX 860M                      119A               D
    GeForce GTX 775M                      119D               D
    GeForce GTX 780M                      119E               D
    GeForce GTX 780M                      119F               D
    GeForce GTX 680M                      11A0               D
    GeForce GTX 670MX                     11A1               D
    GeForce GTX 675MX                     11A2               D
    GeForce GTX 680MX                     11A3               D
    GeForce GTX 675MX                     11A7               D
    GeForce GTX 660                       11C0               D
    GeForce GTX 650 Ti BOOST              11C2               D
    GeForce GTX 650 Ti                    11C3               D
    GeForce GTX 645                       11C4               D
    GeForce GT 740                        11C5               D
    GeForce GTX 650 Ti                    11C6               D
    GeForce GTX 650                       11C8               D
    GeForce GT 740                        11CB               D
    GeForce GTX 770M                      11E0               D
    GeForce GTX 765M                      11E1               D
    GeForce GTX 765M                      11E2               D
    GeForce GTX 760M                      11E3               D
    GeForce GTX 760A                      11E3 17AA 3683     D
    GeForce GTX 560 Ti                    1200               C
    GeForce GTX 560                       1201               C
    GeForce GTX 460 SE v2                 1203               C
    GeForce GTX 460 v2                    1205               C
    GeForce GTX 555                       1206               C
    GeForce GT 645                        1207               C
    GeForce GTX 560 SE                    1208               C
    GeForce GTX 570M                      1210               C
    GeForce GTX 580M                      1211               C
    GeForce GTX 675M                      1212               C
    GeForce GTX 670M                      1213               C
    GeForce GT 545                        1241               C
    GeForce GT 545                        1243               C
    GeForce GTX 550 Ti                    1244               C
    GeForce GTS 450                       1245               C
    GeForce GT 550M                       1246               C
    GeForce GT 555M                       1247               C
    GeForce GT 635M                       1247 1043 212A     C
    GeForce GT 635M                       1247 1043 212B     C
    GeForce GT 635M                       1247 1043 212C     C
    GeForce GT 555M                       1248               C
    GeForce GTS 450                       1249               C
    GeForce GT 640                        124B               C
    GeForce GT 555M                       124D               C
    GeForce GT 635M                       124D 1462 10CC     C
    GeForce GTX 560M                      1251               C
    GeForce GT 635                        1280               D
    GeForce GT 710                        1281               D
    GeForce GT 640                        1282               C
    GeForce GT 630                        1284               C
    GeForce GT 720                        1286               D
    GeForce GT 730                        1287               C
    GeForce GT 720                        1288               D
    GeForce GT 710                        1289               D
    GeForce GT 710                        128B               D
    GeForce GT 730M                       1290               D
    GeForce 730A                          1290 103C 2AFA     D
    GeForce GT 735M                       1291               D
    GeForce GT 740M                       1292               D
    GeForce GT 740A                       1292 17AA 3675     D
    GeForce GT 740A                       1292 17AA 367C     D
    GeForce GT 740A                       1292 17AA 3684     D
    GeForce GT 730M                       1293               D
    GeForce 710M                          1295               D
    GeForce 710A                          1295 103C 2B0D     C
    GeForce 710A                          1295 103C 2B0F     C
    GeForce 810A                          1295 103C 2B20     D
    GeForce 810A                          1295 103C 2B21     D
    GeForce 805A                          1295 17AA 367A     D
    GeForce 710A                          1295 17AA 367C     D
    GeForce 825M                          1296               D
    GeForce GT 720M                       1298               C
    GeForce 920M                          1299               D
    GeForce 920A                          1299 17AA 30BB     D
    GeForce 920A                          1299 17AA 30DA     D
    GeForce 920A                          1299 17AA 30DC     D
    GeForce 920A                          1299 17AA 30DD     D
    GeForce 920A                          1299 17AA 30DF     D
    GeForce 920A                          1299 17AA 3117     D
    GeForce 920A                          1299 17AA 361B     D
    GeForce 920A                          1299 17AA 362D     D
    GeForce 920A                          1299 17AA 362E     D
    GeForce 920A                          1299 17AA 3630     D
    GeForce 920A                          1299 17AA 3637     D
    GeForce 920A                          1299 17AA 369B     D
    GeForce 920A                          1299 17AA 36A7     D
    GeForce 920A                          1299 17AA 36AF     D
    GeForce GT 730                        1299 1B0A 01C6     C
    GeForce 910M                          129A               D
    GeForce 830M                          1340               E
    GeForce 830A                          1340 103C 2B2B     E
    GeForce 840M                          1341               E
    GeForce 840A                          1341 17AA 3697     E
    GeForce 840A                          1341 17AA 3699     E
    GeForce 840A                          1341 17AA 369C     E
    GeForce 840A                          1341 17AA 36AF     E
    GeForce 845M                          1344               E
    GeForce 930M                          1346               E
    GeForce 930A                          1346 17AA 30BA     E
    GeForce 930A                          1346 17AA 362C     E
    GeForce 930A                          1346 17AA 362F     E
    GeForce 930A                          1346 17AA 3636     E
    GeForce 940M                          1347               E
    GeForce 940A                          1347 17AA 36B9     E
    GeForce 940A                          1347 17AA 36BA     E
    GeForce 945M                          1348               E
    GeForce 945A                          1348 103C 2B5C     E
    GeForce 930M                          1349               E
    GeForce 930A                          1349 17AA 3124     E
    GeForce 930A                          1349 17AA 364B     E
    GeForce 930A                          1349 17AA 36C3     E
    GeForce 930A                          1349 17AA 36D1     E
    GeForce 930A                          1349 17AA 36D8     E
    GeForce 940MX                         134B               E
    GeForce GPU                           134B 1414 0008     E
    GeForce 940MX                         134D               E
    GeForce 930MX                         134E               E
    GeForce 920MX                         134F               E
    GeForce 940A                          137D 17AA 3699     E
    GeForce GTX 750 Ti                    1380               E
    GeForce GTX 750                       1381               E
    GeForce GTX 745                       1382               E
    GeForce 845M                          1390               E
    GeForce GTX 850M                      1391               E
    GeForce GTX 850A                      1391 17AA 3697     E
    GeForce GTX 860M                      1392               D
    GeForce GPU                           1392 1028 066A     E
    GeForce GTX 750 Ti                    1392 1043 861E     E
    GeForce GTX 750 Ti                    1392 1043 86D9     E
    GeForce 840M                          1393               E
    GeForce 845M                          1398               E
    GeForce 945M                          1399               E
    GeForce GTX 950M                      139A               E
    GeForce GTX 950A                      139A 17AA 362C     E
    GeForce GTX 950A                      139A 17AA 362F     E
    GeForce GTX 950A                      139A 17AA 363F     E
    GeForce GTX 950A                      139A 17AA 3640     E
    GeForce GTX 950A                      139A 17AA 3647     E
    GeForce GTX 950A                      139A 17AA 36B9     E
    GeForce GTX 960M                      139B               E
    GeForce GTX 750 Ti                    139B 1025 107A     E
    GeForce GTX 860M                      139B 1028 06A3     D
    GeForce GTX 960A                      139B 103C 2B4C     E
    GeForce GTX 750Ti                     139B 17AA 3649     E
    GeForce GTX 960A                      139B 17AA 36BF     E
    GeForce GTX 750 Ti                    139B 19DA C248     E
    GeForce GTX 750Ti                     139B 1AFA 8A75     E
    GeForce 940M                          139C               E
    GeForce GTX 750 Ti                    139D               E
    GeForce GTX 980                       13C0               E
    GeForce GTX 970                       13C2               E
    GeForce GTX 980M                      13D7               E
    GeForce GTX 970M                      13D8               E
    GeForce GTX 960                       13D8 1462 1198     E
    GeForce GTX 960                       13D8 1462 1199     E
    GeForce GTX 960                       13D8 19DA B282     E
    GeForce GTX 960                       13D8 19DA B284     E
    GeForce GTX 960                       13D8 19DA B286     E
    GeForce GTX 965M                      13D9               E
    GeForce GTX 980                       13DA               E
    GeForce GTX 960                       1401               F
    GeForce GTX 950                       1402               F
    GeForce GTX 960                       1406               F
    GeForce GTX 750                       1407               E
    GeForce GTX 965M                      1427               E
    GeForce GTX 950                       1427 1458 D003     F
    GeForce GTX 980M                      1617               E
    GeForce GTX 970M                      1618               E
    GeForce GTX 965M                      1619               E
    GeForce GTX 980                       161A               E
    GeForce GTX 965M                      1667               E
    GeForce 940MX                         179C               E
    GeForce GTX TITAN X                   17C2               E
    GeForce GTX 980 Ti                    17C8               E
    TITAN X (Pascal)                      1B00               H
    TITAN Xp                              1B02               H
    GeForce GTX 1080 Ti                   1B06               H
    GeForce GTX 1080                      1B80               H
    GeForce GTX 1070                      1B81               H
    GeForce GTX 1060 3GB                  1B84               H
    P104-100                              1B87               H
    GeForce GTX 1080                      1BA0               H
    GeForce GTX 1070                      1BA1               H
    GeForce GTX 1070 with Max-Q Design    1BA1 1462 11E8     H
    GeForce GTX 1070 with Max-Q Design    1BA1 1462 11E9     H
    GeForce GTX 1070 with Max-Q Design    1BA1 1558 9501     H
    GeForce GTX 1080                      1BE0               H
    GeForce GTX 1080 with Max-Q Design    1BE0 1025 1221     H
    GeForce GTX 1080 with Max-Q Design    1BE0 1028 07C0     H
    GeForce GTX 1080 with Max-Q Design    1BE0 1043 1BF0     H
    GeForce GTX 1080 with Max-Q Design    1BE0 1458 355B     H
    GeForce GTX 1070                      1BE1               H
    GeForce GTX 1070 with Max-Q Design    1BE1 1043 16F0     H
    GeForce GTX 1060 3GB                  1C02               H
    GeForce GTX 1060 6GB                  1C03               H
    P106-100                              1C07               H
    GeForce GTX 1060                      1C20               H
    GeForce GTX 1060 with Max-Q Design    1C20 17AA 39B9     H
    GeForce GTX 1050 Ti                   1C21               H
    GeForce GTX 1050                      1C22               H
    GeForce GTX 1060                      1C60               H
    GeForce GTX 1060 with Max-Q Design    1C60 103C 8390     H
    GeForce GTX 1050 Ti                   1C61               H
    GeForce GTX 1050                      1C62               H
    GeForce GTX 1050                      1C81               H
    GeForce GTX 1050 Ti                   1C82               H
    GeForce GTX 1050 Ti                   1C8C               H
    GeForce GTX 1050                      1C8D               H
    GeForce GT 1030                       1D01               H
    GeForce MX150                         1D10               H
    GeForce MX150                         1D12               H



A2. NVIDIA QUADRO GPUS


    NVIDIA GPU product                    Device PCI ID*     VDPAU features
    ----------------------------------    ---------------    ---------------
    Quadro 6000                           06D8               C
    Quadro 5000                           06D9               C
    Quadro 5000M                          06DA               C
    Quadro 6000                           06DC               C
    Quadro 4000                           06DD               C
    Quadro 2000                           0DD8               C
    Quadro 2000D                          0DD8 10DE 0914     C
    Quadro 2000M                          0DDA               C
    Quadro 600                            0DF8               C
    Quadro 500M                           0DF9               C
    Quadro 1000M                          0DFA               C
    Quadro 3000M                          0E3A               C
    Quadro 4000M                          0E3B               C
    Quadro K420                           0FF3               D
    Quadro K1100M                         0FF6               D
    Quadro K500M                          0FF8               D
    Quadro K2000D                         0FF9               D
    Quadro K600                           0FFA               D
    Quadro K2000M                         0FFB               D
    Quadro K1000M                         0FFC               D
    Quadro K2000                          0FFE               D
    Quadro 410                            0FFF               D
    Quadro K6000                          103A               D
    Quadro K5200                          103C               D
    Quadro 5010M                          109A               C
    Quadro 7000                           109B               C
    Quadro K4200                          11B4               D
    Quadro K3100M                         11B6               D
    Quadro K4100M                         11B7               D
    Quadro K5100M                         11B8               D
    Quadro K5000                          11BA               D
    Quadro K5000M                         11BC               D
    Quadro K4000M                         11BD               D
    Quadro K3000M                         11BE               D
    Quadro K4000                          11FA               D
    Quadro K2100M                         11FC               D
    Quadro K610M                          12B9               D
    Quadro K510M                          12BA               D
    Quadro K620M                          137A 17AA 2225     E
    Quadro M500M                          137A 17AA 2232     E
    Quadro M500M                          137A 17AA 505A     E
    Quadro M520                           137B               E
    Quadro M2000M                         13B0               E
    Quadro M1000M                         13B1               E
    Quadro M600M                          13B2               E
    Quadro K2200M                         13B3               E
    Quadro M620                           13B4               E
    Quadro M1200                          13B6               E
    Quadro K2200                          13BA               E
    Quadro K620                           13BB               E
    Quadro K1200                          13BC               E
    Quadro M5000                          13F0               E
    Quadro M4000                          13F1               E
    Quadro M5000M                         13F8               E
    Quadro M5000 SE                       13F8 10DE 11DD     E
    Quadro M4000M                         13F9               E
    Quadro M3000M                         13FA               E
    Quadro M3000 SE                       13FA 10DE 11C9     E
    Quadro M5500                          13FB               E
    Quadro M2000                          1430               F
    Quadro GP100                          15F0               G
    Quadro M6000                          17F0               E
    Quadro M6000 24GB                     17F1               E
    Quadro P6000                          1B30               H
    Quadro P5000                          1BB0               H
    Quadro P4000                          1BB1               H
    Quadro P5000                          1BB6               H
    Quadro P4000                          1BB7               H
    Quadro P3000                          1BB8               H
    Quadro P2000                          1C30               H
    Quadro P1000                          1CB1               H
    Quadro P600                           1CB2               H
    Quadro P400                           1CB3               H



A3. NVIDIA NVS GPUS


    NVIDIA GPU product                    Device PCI ID*     VDPAU features
    ----------------------------------    ---------------    ---------------
    NVS 5400M                             0DEF               C
    NVS 5200M                             0DFC               C
    NVS 510                               0FFD               D
    NVS 4200M                             1056               D
    NVS 4200M                             1057               D
    NVS 315                               107C               D
    NVS 310                               107D               D
    NVS 5200M                             1140 1043 10DD     C
    NVS 5200M                             1140 1043 10ED     C
    NVS 5200M                             1140 1043 2136     C
    NVS 5200M                             1140 144D C0E2     C
    NVS 5200M                             1140 144D C0E3     C
    NVS 5200M                             1140 144D C0E4     C
    NVS 5200M                             1140 17AA 2200     C
    NVS 810                               13B9               E



A4. NVIDIA TESLA GPUS


    NVIDIA GPU product                    Device PCI ID*     VDPAU features
    ----------------------------------    ---------------    ---------------
    Tesla C2050 / C2070                   06D1               C
    Tesla C2050                           06D1 10DE 0771     C
    Tesla C2070                           06D1 10DE 0772     C
    Tesla M2070                           06D2               C
    Tesla X2070                           06D2 10DE 088F     C
    Tesla T20 Processor                   06DE               C
    Tesla S2050                           06DE 10DE 0773     C
    Tesla M2050                           06DE 10DE 082F     C
    Tesla X2070                           06DE 10DE 0840     C
    Tesla M2050                           06DE 10DE 0842     C
    Tesla M2050                           06DE 10DE 0846     C
    Tesla M2050                           06DE 10DE 0866     C
    Tesla M2050                           06DE 10DE 0907     C
    Tesla M2050                           06DE 10DE 091E     C
    Tesla M2070-Q                         06DF               C
    Tesla K20Xm                           1021               D
    Tesla K20c                            1022               D
    Tesla K40m                            1023               D
    Tesla K40c                            1024               D
    Tesla K20s                            1026               D
    Tesla K40st                           1027               D
    Tesla K20m                            1028               D
    Tesla K40s                            1029               D
    Tesla K40t                            102A               D
    Tesla K80                             102D               D
    Tesla M2090                           1091               C
    Tesla X2090                           1091 10DE 088E     C
    Tesla X2090                           1091 10DE 0891     C
    Tesla X2090                           1091 10DE 0974     C
    Tesla X2090                           1091 10DE 098D     C
    Tesla M2075                           1094               C
    Tesla C2075                           1096               C
    Tesla C2050                           1096 10DE 0911     C
    Tesla K10                             118F               D
    Tesla K8                              1194               D
    Tesla M60                             13F2               E
    Tesla M6                              13F3               E
    Tesla M4                              1431               F
    Quadro M2200                          1436               F
    Tesla P100-PCIE-12GB                  15F7               G
    Tesla P100-PCIE-16GB                  15F8               G
    Tesla P100-SXM2-16GB                  15F9               G
    Tesla M40                             17FD               E
    Tesla M40 24GB                        17FD 10DE 1173     E
    Tesla P40                             1B38               H
    Tesla P4                              1BB3               H



A5. NVIDIA GRID GPUS


    NVIDIA GPU product                    Device PCI ID*     VDPAU features
    ----------------------------------    ---------------    ---------------
    GRID K520                             118A               D


Below are the legacy GPUs that are no longer supported in the unified driver.
These GPUs will continue to be maintained through the special legacy NVIDIA
GPU driver releases.

The 367.xx driver supports the following set of GPUs:


    NVIDIA GPU product                    Device PCI ID*     VDPAU features
    ----------------------------------    ---------------    ---------------
    GRID K340                             0FEF               D
    GRID K1                               0FF2               D
    GRID K2                               11BF               D


The 340.xx driver supports the following set of GPUs:


    NVIDIA GPU product                    Device PCI ID*     VDPAU features
    ----------------------------------    ---------------    ---------------
    GeForce 8800 GTX                      0191               -
    GeForce 8800 GTS                      0193               -
    GeForce 8800 Ultra                    0194               -
    Tesla C870                            0197               -
    Quadro FX 5600                        019D               -
    Quadro FX 4600                        019E               -
    GeForce 8600 GTS                      0400               A
    GeForce 8600 GT                       0401               A
    GeForce 8600 GT                       0402               A
    GeForce 8600 GS                       0403               A
    GeForce 8400 GS                       0404               A
    GeForce 9500M GS                      0405               A
    GeForce 8300 GS                       0406               -
    GeForce 8600M GT                      0407               A
    GeForce 9650M GS                      0408               A
    GeForce 8700M GT                      0409               A
    Quadro FX 370                         040A               A
    Quadro NVS 320M                       040B               A
    Quadro FX 570M                        040C               A
    Quadro FX 1600M                       040D               A
    Quadro FX 570                         040E               A
    Quadro FX 1700                        040F               A
    GeForce GT 330                        0410               A
    GeForce 8400 SE                       0420               -
    GeForce 8500 GT                       0421               A
    GeForce 8400 GS                       0422               A
    GeForce 8300 GS                       0423               -
    GeForce 8400 GS                       0424               A
    GeForce 8600M GS                      0425               A
    GeForce 8400M GT                      0426               A
    GeForce 8400M GS                      0427               A
    GeForce 8400M G                       0428               A
    Quadro NVS 140M                       0429               A
    Quadro NVS 130M                       042A               A
    Quadro NVS 135M                       042B               A
    GeForce 9400 GT                       042C               A
    Quadro FX 360M                        042D               A
    GeForce 9300M G                       042E               A
    Quadro NVS 290                        042F               A
    GeForce GTX 295                       05E0               A
    GeForce GTX 280                       05E1               A
    GeForce GTX 260                       05E2               A
    GeForce GTX 285                       05E3               A
    GeForce GTX 275                       05E6               A
    Tesla C1060                           05E7               A
    Tesla T10 Processor                   05E7 10DE 0595     A
    Tesla T10 Processor                   05E7 10DE 068F     A
    Tesla M1060                           05E7 10DE 0697     A
    Tesla M1060                           05E7 10DE 0714     A
    Tesla M1060                           05E7 10DE 0743     A
    GeForce GTX 260                       05EA               A
    GeForce GTX 295                       05EB               A
    Quadroplex 2200 D2                    05ED               A
    Quadroplex 2200 S4                    05F8               A
    Quadro CX                             05F9               A
    Quadro FX 5800                        05FD               A
    Quadro FX 4800                        05FE               A
    Quadro FX 3800                        05FF               A
    GeForce 8800 GTS 512                  0600               A
    GeForce 9800 GT                       0601               A
    GeForce 8800 GT                       0602               A
    GeForce GT 230                        0603               A
    GeForce 9800 GX2                      0604               A
    GeForce 9800 GT                       0605               A
    GeForce 8800 GS                       0606               A
    GeForce GTS 240                       0607               A
    GeForce 9800M GTX                     0608               A
    GeForce 8800M GTS                     0609               A
    GeForce 8800 GS                       0609 106B 00A7     A
    GeForce GTX 280M                      060A               A
    GeForce 9800M GT                      060B               A
    GeForce 8800M GTX                     060C               A
    GeForce 8800 GS                       060D               A
    GeForce GTX 285M                      060F               A
    GeForce 9600 GSO                      0610               A
    GeForce 8800 GT                       0611               A
    GeForce 9800 GTX/9800 GTX+            0612               A
    GeForce 9800 GTX+                     0613               A
    GeForce 9800 GT                       0614               A
    GeForce GTS 250                       0615               A
    GeForce 9800M GTX                     0617               A
    GeForce GTX 260M                      0618               A
    Quadro FX 4700 X2                     0619               A
    Quadro FX 3700                        061A               A
    Quadro VX 200                         061B               A
    Quadro FX 3600M                       061C               A
    Quadro FX 2800M                       061D               A
    Quadro FX 3700M                       061E               A
    Quadro FX 3800M                       061F               A
    GeForce GT 230                        0621               A
    GeForce 9600 GT                       0622               A
    GeForce 9600 GS                       0623               A
    GeForce 9600 GSO 512                  0625               A
    GeForce GT 130                        0626               A
    GeForce GT 140                        0627               A
    GeForce 9800M GTS                     0628               A
    GeForce 9700M GTS                     062A               A
    GeForce 9800M GS                      062B               A
    GeForce 9800M GTS                     062C               A
    GeForce 9600 GT                       062D               A
    GeForce 9600 GT                       062E               A
    GeForce GT 130                        062E 106B 0605     A
    GeForce 9700 S                        0630               A
    GeForce GTS 160M                      0631               A
    GeForce GTS 150M                      0632               A
    GeForce 9600 GSO                      0635               A
    GeForce 9600 GT                       0637               A
    Quadro FX 1800                        0638               A
    Quadro FX 2700M                       063A               A
    GeForce 9500 GT                       0640               A
    GeForce 9400 GT                       0641               A
    GeForce 9500 GT                       0643               A
    GeForce 9500 GS                       0644               A
    GeForce 9500 GS                       0645               A
    GeForce GT 120                        0646               A
    GeForce 9600M GT                      0647               A
    GeForce 9600M GS                      0648               A
    GeForce 9600M GT                      0649               A
    GeForce GT 220M                       0649 1043 202D     A
    GeForce 9700M GT                      064A               A
    GeForce 9500M G                       064B               A
    GeForce 9650M GT                      064C               A
    GeForce G 110M                        0651               A
    GeForce GT 130M                       0652               A
    GeForce GT 240M LE                    0652 152D 0850     A
    GeForce GT 120M                       0653               A
    GeForce GT 220M                       0654               A
    GeForce GT 320M                       0654 1043 14A2     A
    GeForce GT 320M                       0654 1043 14D2     A
    GeForce GT 120                        0655 106B 0633     A
    GeForce GT 120                        0656 106B 0693     A
    Quadro FX 380                         0658               A
    Quadro FX 580                         0659               A
    Quadro FX 1700M                       065A               A
    GeForce 9400 GT                       065B               A
    Quadro FX 770M                        065C               A
    GeForce 9300 GE                       06E0               B 1
    GeForce 9300 GS                       06E1               B 1
    GeForce 8400                          06E2               B 1
    GeForce 8400 SE                       06E3               -
    GeForce 8400 GS                       06E4               A 1
    GeForce 9300M GS                      06E5               B 1
    GeForce G100                          06E6               B 1
    GeForce 9300 SE                       06E7               -
    GeForce 9200M GS                      06E8               B 1
    GeForce 9200M GE                      06E8 103C 360B     B 1
    GeForce 9300M GS                      06E9               B 1
    Quadro NVS 150M                       06EA               B 1
    Quadro NVS 160M                       06EB               B 1
    GeForce G 105M                        06EC               B 1
    GeForce G 103M                        06EF               B 1
    GeForce G105M                         06F1               B 1
    Quadro NVS 420                        06F8               B 1
    Quadro FX 370 LP                      06F9               B 1
    Quadro FX 370 Low Profile             06F9 10DE 060D     B 1
    Quadro NVS 450                        06FA               B 1
    Quadro FX 370M                        06FB               B 1
    Quadro NVS 295                        06FD               B 1
    HICx16 + Graphics                     06FF               B 1
    HICx8 + Graphics                      06FF 10DE 0711     B 1
    GeForce 8200M                         0840               B 1
    GeForce 9100M G                       0844               B 1
    GeForce 8200M G                       0845               B 1
    GeForce 9200                          0846               B 1
    GeForce 9100                          0847               B 1
    GeForce 8300                          0848               B 1
    GeForce 8200                          0849               B 1
    nForce 730a                           084A               B 1
    GeForce 9200                          084B               B 1
    nForce 980a/780a SLI                  084C               B 1
    nForce 750a SLI                       084D               B 1
    GeForce 8100 / nForce 720a            084F               -
    GeForce 9400                          0860               B 1
    GeForce 9400                          0861               B 1
    GeForce 9400M G                       0862               B 1
    GeForce 9400M                         0863               B 1
    GeForce 9300                          0864               B 1
    ION                                   0865               B 1
    GeForce 9400M G                       0866               B 1
    GeForce 9400M                         0866 106B 00B1     B 1
    GeForce 9400                          0867               B 1
    nForce 760i SLI                       0868               B 1
    GeForce 9400                          0869               B 1
    GeForce 9400                          086A               B 1
    GeForce 9300 / nForce 730i            086C               B 1
    GeForce 9200                          086D               B 1
    GeForce 9100M G                       086E               B 1
    GeForce 8200M G                       086F               B 1
    GeForce 9400M                         0870               B 1
    GeForce 9200                          0871               B 1
    GeForce G102M                         0872               B 1
    GeForce G205M                         0872 1043 1C42     B 1
    GeForce G102M                         0873               B 1
    GeForce G205M                         0873 1043 1C52     B 1
    ION                                   0874               B 1
    ION                                   0876               B 1
    GeForce 9400                          087A               B 1
    ION                                   087D               B 1
    ION LE                                087E               B 1
    ION LE                                087F               B 1
    GeForce 320M                          08A0               C
    GeForce 320M                          08A2               C
    GeForce 320M                          08A3               C
    GeForce 320M                          08A4               C
    GeForce 320M                          08A5               C
    GeForce GT 220                        0A20               C
    GeForce 315                           0A22               -
    GeForce 210                           0A23               C
    GeForce 405                           0A26               C
    GeForce 405                           0A27               C
    GeForce GT 230M                       0A28               C
    GeForce GT 330M                       0A29               C
    GeForce GT 230M                       0A2A               C
    GeForce GT 330M                       0A2B               C
    NVS 5100M                             0A2C               C
    GeForce GT 320M                       0A2D               A
    GeForce GT 415                        0A32               C
    GeForce GT 240M                       0A34               C
    GeForce GT 325M                       0A35               C
    Quadro 400                            0A38               C
    Quadro FX 880M                        0A3C               C
    GeForce G210                          0A60               C
    GeForce 205                           0A62               C
    GeForce 310                           0A63               C
    Second Generation ION                 0A64               C
    GeForce 210                           0A65               C
    GeForce 310                           0A66               C
    GeForce 315                           0A67               -
    GeForce G105M                         0A68               B
    GeForce G105M                         0A69               B
    NVS 2100M                             0A6A               C
    NVS 3100M                             0A6C               C
    GeForce 305M                          0A6E               C
    Second Generation ION                 0A6E 17AA 3607     C
    Second Generation ION                 0A6F               C
    GeForce 310M                          0A70               C
    Second Generation ION                 0A70 17AA 3605     C
    Second Generation ION                 0A70 17AA 3617     C
    GeForce 305M                          0A71               C
    GeForce 310M                          0A72               C
    GeForce 305M                          0A73               C
    Second Generation ION                 0A73 17AA 3607     C
    Second Generation ION                 0A73 17AA 3610     C
    GeForce G210M                         0A74               C
    GeForce G210                          0A74 17AA 903A     C
    GeForce 310M                          0A75               C
    Second Generation ION                 0A75 17AA 3605     C
    Second Generation ION                 0A76               C
    Quadro FX 380 LP                      0A78               C
    GeForce 315M                          0A7A               C
    GeForce 405                           0A7A 1462 AA51     C
    GeForce 405                           0A7A 1462 AA58     C
    GeForce 405                           0A7A 1462 AC71     C
    GeForce 405                           0A7A 1462 AC82     C
    GeForce 405                           0A7A 1642 3980     C
    GeForce 405M                          0A7A 17AA 3950     C
    GeForce 405M                          0A7A 17AA 397D     C
    GeForce 405                           0A7A 1B0A 90B4     C
    GeForce 405                           0A7A 1BFD 0003     C
    GeForce 405                           0A7A 1BFD 8006     C
    Quadro FX 380M                        0A7C               C
    GeForce GT 330                        0CA0               A
    GeForce GT 320                        0CA2               C
    GeForce GT 240                        0CA3               C
    GeForce GT 340                        0CA4               C
    GeForce GT 220                        0CA5               C
    GeForce GT 330                        0CA7               A
    GeForce GTS 260M                      0CA8               C
    GeForce GTS 250M                      0CA9               C
    GeForce GT 220                        0CAC               C
    GeForce GT 335M                       0CAF               C
    GeForce GTS 350M                      0CB0               C
    GeForce GTS 360M                      0CB1               C
    Quadro FX 1800M                       0CBC               C
    GeForce 9300 GS                       10C0               B
    GeForce 8400GS                        10C3               A
    GeForce 405                           10C5               C
    NVS 300                               10D8               C


The 304.xx driver supports the following set of GPUs:


    NVIDIA GPU product                    Device PCI ID
    ----------------------------------    ----------------------------------
    GeForce 6800 Ultra                    0040
    GeForce 6800                          0041
    GeForce 6800 LE                       0042
    GeForce 6800 XE                       0043
    GeForce 6800 XT                       0044
    GeForce 6800 GT                       0045
    GeForce 6800 GT                       0046
    GeForce 6800 GS                       0047
    GeForce 6800 XT                       0048
    Quadro FX 4000                        004E
    GeForce 7800 GTX                      0090
    GeForce 7800 GTX                      0091
    GeForce 7800 GT                       0092
    GeForce 7800 GS                       0093
    GeForce 7800 SLI                      0095
    GeForce Go 7800                       0098
    GeForce Go 7800 GTX                   0099
    Quadro FX 4500                        009D
    GeForce 6800 GS                       00C0
    GeForce 6800                          00C1
    GeForce 6800 LE                       00C2
    GeForce 6800 XT                       00C3
    GeForce Go 6800                       00C8
    GeForce Go 6800 Ultra                 00C9
    Quadro FX Go1400                      00CC
    Quadro FX 3450/4000 SDI               00CD
    Quadro FX 1400                        00CE
    GeForce 6600 GT                       00F1
    GeForce 6600                          00F2
    GeForce 6200                          00F3
    GeForce 6600 LE                       00F4
    GeForce 7800 GS                       00F5
    GeForce 6800 GS                       00F6
    Quadro FX 3400/Quadro FX 4000         00F8
    GeForce 6800 Ultra                    00F9
    GeForce 6600 GT                       0140
    GeForce 6600                          0141
    GeForce 6600 LE                       0142
    GeForce 6600 VE                       0143
    GeForce Go 6600                       0144
    GeForce 6610 XL                       0145
    GeForce Go 6600 TE/6200 TE            0146
    GeForce 6700 XL                       0147
    GeForce Go 6600                       0148
    GeForce Go 6600 GT                    0149
    Quadro NVS 440                        014A
    Quadro FX 540M                        014C
    Quadro FX 550                         014D
    Quadro FX 540                         014E
    GeForce 6200                          014F
    GeForce 6500                          0160
    GeForce 6200 TurboCache(TM)           0161
    GeForce 6200SE TurboCache(TM)         0162
    GeForce 6200 LE                       0163
    GeForce Go 6200                       0164
    Quadro NVS 285                        0165
    GeForce Go 6400                       0166
    GeForce Go 6200                       0167
    GeForce Go 6400                       0168
    GeForce 6250                          0169
    GeForce 7100 GS                       016A
    GeForce 7350 LE                       01D0
    GeForce 7300 LE                       01D1
    GeForce 7550 LE                       01D2
    GeForce 7300 SE/7200 GS               01D3
    GeForce Go 7200                       01D6
    GeForce Go 7300                       01D7
    GeForce Go 7400                       01D8
    Quadro NVS 110M                       01DA
    Quadro NVS 120M                       01DB
    Quadro FX 350M                        01DC
    GeForce 7500 LE                       01DD
    Quadro FX 350                         01DE
    GeForce 7300 GS                       01DF
    GeForce 6800                          0211
    GeForce 6800 LE                       0212
    GeForce 6800 GT                       0215
    GeForce 6800 XT                       0218
    GeForce 6200                          0221
    GeForce 6200 A-LE                     0222
    GeForce 6150                          0240
    GeForce 6150 LE                       0241
    GeForce 6100                          0242
    GeForce Go 6150                       0244
    Quadro NVS 210S / GeForce 6150LE      0245
    GeForce Go 6100                       0247
    GeForce 7900 GTX                      0290
    GeForce 7900 GT/GTO                   0291
    GeForce 7900 GS                       0292
    GeForce 7950 GX2                      0293
    GeForce 7950 GX2                      0294
    GeForce 7950 GT                       0295
    GeForce Go 7950 GTX                   0297
    GeForce Go 7900 GS                    0298
    Quadro NVS 510M                       0299
    Quadro FX 2500M                       029A
    Quadro FX 1500M                       029B
    Quadro FX 5500                        029C
    Quadro FX 3500                        029D
    Quadro FX 1500                        029E
    Quadro FX 4500 X2                     029F
    GeForce 7600 GT                       02E0
    GeForce 7600 GS                       02E1
    GeForce 7300 GT                       02E2
    GeForce 7900 GS                       02E3
    GeForce 7950 GT                       02E4
    GeForce 7650 GS                       038B
    GeForce 7650 GS                       0390
    GeForce 7600 GT                       0391
    GeForce 7600 GS                       0392
    GeForce 7300 GT                       0393
    GeForce 7600 LE                       0394
    GeForce 7300 GT                       0395
    GeForce Go 7700                       0397
    GeForce Go 7600                       0398
    GeForce Go 7600 GT                    0399
    Quadro FX 560M                        039C
    Quadro FX 560                         039E
    GeForce 6150SE nForce 430             03D0
    GeForce 6100 nForce 405               03D1
    GeForce 6100 nForce 400               03D2
    GeForce 6100 nForce 420               03D5
    GeForce 7025 / nForce 630a            03D6
    GeForce 7150M / nForce 630M           0531
    GeForce 7000M / nForce 610M           0533
    GeForce 7050 PV / nForce 630a         053A
    GeForce 7050 PV / nForce 630a         053B
    GeForce 7025 / nForce 630a            053E
    GeForce 7150 / nForce 630i            07E0
    GeForce 7100 / nForce 630i            07E1
    GeForce 7050 / nForce 630i            07E2
    GeForce 7050 / nForce 610i            07E3
    GeForce 7050 / nForce 620i            07E5


The 173.14.xx driver supports the following set of GPUs:


    NVIDIA GPU product                    Device PCI ID
    ----------------------------------    ----------------------------------
    GeForce PCX 5750                      00FA
    GeForce PCX 5900                      00FB
    Quadro FX 330/GeForce PCX 5300        00FC
    Quadro FX 330/Quadro NVS 280 PCI-E    00FD
    Quadro FX 1300                        00FE
    GeForce FX 5800 Ultra                 0301
    GeForce FX 5800                       0302
    Quadro FX 2000                        0308
    Quadro FX 1000                        0309
    GeForce FX 5600 Ultra                 0311
    GeForce FX 5600                       0312
    GeForce FX 5600XT                     0314
    GeForce FX Go5600                     031A
    GeForce FX Go5650                     031B
    Quadro FX Go700                       031C
    GeForce FX 5200                       0320
    GeForce FX 5200 Ultra                 0321
    GeForce FX 5200                       0322
    GeForce FX 5200LE                     0323
    GeForce FX Go5200                     0324
    GeForce FX Go5250                     0325
    GeForce FX 5500                       0326
    GeForce FX 5100                       0327
    GeForce FX Go5200 32M/64M             0328
    Quadro NVS 55/280 PCI                 032A
    Quadro FX 500/FX 600                  032B
    GeForce FX Go53xx                     032C
    GeForce FX Go5100                     032D
    GeForce FX 5900 Ultra                 0330
    GeForce FX 5900                       0331
    GeForce FX 5900XT                     0332
    GeForce FX 5950 Ultra                 0333
    GeForce FX 5900ZT                     0334
    Quadro FX 3000                        0338
    Quadro FX 700                         033F
    GeForce FX 5700 Ultra                 0341
    GeForce FX 5700                       0342
    GeForce FX 5700LE                     0343
    GeForce FX 5700VE                     0344
    GeForce FX Go5700                     0347
    GeForce FX Go5700                     0348
    Quadro FX Go1000                      034C
    Quadro FX 1100                        034E


The 96.43.xx driver supports the following set of GPUs:


    NVIDIA GPU product                    Device PCI ID
    ----------------------------------    ----------------------------------
    GeForce2 MX/MX 400                    0110
    GeForce2 MX 100/200                   0111
    GeForce2 Go                           0112
    Quadro2 MXR/EX/Go                     0113
    GeForce4 MX 460                       0170
    GeForce4 MX 440                       0171
    GeForce4 MX 420                       0172
    GeForce4 MX 440-SE                    0173
    GeForce4 440 Go                       0174
    GeForce4 420 Go                       0175
    GeForce4 420 Go 32M                   0176
    GeForce4 460 Go                       0177
    Quadro4 550 XGL                       0178
    GeForce4 440 Go 64M                   0179
    Quadro NVS 400                        017A
    Quadro4 500 GoGL                      017C
    GeForce4 410 Go 16M                   017D
    GeForce4 MX 440 with AGP8X            0181
    GeForce4 MX 440SE with AGP8X          0182
    GeForce4 MX 420 with AGP8X            0183
    GeForce4 MX 4000                      0185
    Quadro4 580 XGL                       0188
    Quadro NVS 280 SD                     018A
    Quadro4 380 XGL                       018B
    Quadro NVS 50 PCI                     018C
    GeForce2 Integrated GPU               01A0
    GeForce4 MX Integrated GPU            01F0
    GeForce3                              0200
    GeForce3 Ti 200                       0201
    GeForce3 Ti 500                       0202
    Quadro DCC                            0203
    GeForce4 Ti 4600                      0250
    GeForce4 Ti 4400                      0251
    GeForce4 Ti 4200                      0253
    Quadro4 900 XGL                       0258
    Quadro4 750 XGL                       0259
    Quadro4 700 XGL                       025B
    GeForce4 Ti 4800                      0280
    GeForce4 Ti 4200 with AGP8X           0281
    GeForce4 Ti 4800 SE                   0282
    GeForce4 4200 Go                      0286
    Quadro4 980 XGL                       0288
    Quadro4 780 XGL                       0289
    Quadro4 700 GoGL                      028C


The 71.86.xx driver supports the following set of GPUs:


    NVIDIA GPU product                    Device PCI ID
    ----------------------------------    ----------------------------------
    RIVA TNT                              0020
    RIVA TNT2/TNT2 Pro                    0028
    RIVA TNT2 Ultra                       0029
    Vanta/Vanta LT                        002C
    RIVA TNT2 Model 64/Model 64 Pro       002D
    Aladdin TNT2                          00A0
    GeForce 256                           0100
    GeForce DDR                           0101
    Quadro                                0103
    GeForce2 GTS/GeForce2 Pro             0150
    GeForce2 Ti                           0151
    GeForce2 Ultra                        0152
    Quadro2 Pro                           0153


* If three IDs are listed, the first is the PCI Device ID, the second is the
PCI Subsystem Vendor ID, and the third is the PCI Subsystem Device ID.

______________________________________________________________________________

Appendix B. X Config Options
______________________________________________________________________________

The following driver options are supported by the NVIDIA X driver. They may be
specified either in the Screen or Device sections of the X config file.

X Config Options

Option "Accel" "boolean"

    Controls whether the X driver uses the GPU for graphics processing.
    Disabling acceleration is useful when another component, such as CUDA,
    requires exclusive use of the GPU's processing cores. Performance of the X
    server will be reduced when acceleration is disabled, and some features
    may not be available.

    OpenGL and VDPAU are not supported when Accel is disabled.

    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    Default: acceleration is enabled.

Option "RenderAccel" "boolean"

    Enable or disable hardware acceleration of the RENDER extension. Default:
    hardware acceleration of the RENDER extension is enabled.

Option "NoRenderExtension" "boolean"

    Disable the RENDER extension. Other than recompiling it, the X server does
    not seem to have another way of disabling this. Fortunately, we can
    control this from the driver so we export this option. This is useful in
    depth 8 where RENDER would normally steal most of the default colormap.
    Default: RENDER is offered when possible.

Option "UBB" "boolean"

    Enable or disable the Unified Back Buffer on Quadro-based GPUs (Quadro NVS
    excluded); see Chapter 19 for a description of UBB. This option has no
    effect on non-Quadro GPU products. Default: UBB is on for Quadro GPUs.

Option "NoFlip" "boolean"

    Disable OpenGL flipping; see Chapter 19 for a description. Default: OpenGL
    will swap by flipping when possible.

Option "GLShaderDiskCache" "boolean"

    This option controls whether the OpenGL driver will utilize a disk cache
    to save and reuse compiled shaders. See the description of the
    __GL_SHADER_DISK_CACHE and __GL_SHADER_DISK_CACHE_PATH environment
    variables in Chapter 11 for more details.

Option "Dac8Bit" "boolean"

    By default, the GPU uses a color look-up table (LUT) with 11 bits of
    precision. This provides more accurate color on analog and high-depth
    DisplayPort outputs, or when dithering is enabled. Setting this option to
    TRUE forces the GPU to use an 8-bit LUT. Default: a high precision LUT is
    used, when available.

Option "Overlay" "boolean"

    Enables RGB workstation overlay visuals. This is only supported on Quadro
    GPUs (Quadro NVS GPUs excluded) in depth 24. This option causes the server
    to advertise the SERVER_OVERLAY_VISUALS root window property and GLX will
    report single- and double-buffered, Z-buffered 16-bit overlay visuals. The
    transparency key is pixel 0x0000 (hex). There is no gamma correction
    support in the overlay plane. This feature requires XFree86 version 4.2.0
    or newer, or the X.Org X server. RGB workstation overlays are not
    supported when the Composite extension is enabled.

    UBB must be enabled when overlays are enabled (this is the default
    behavior).

Option "CIOverlay" "boolean"

    Enables Color Index workstation overlay visuals with identical
    restrictions to Option "Overlay" above. This option causes the server to
    advertise the SERVER_OVERLAY_VISUALS root window property. Some of the
    visuals advertised that way may be listed in the main plane (layer 0) for
    compatibility purposes. They however belong to the overlay (layer 1). The
    server will offer visuals both with and without a transparency key. These
    are depth 8 PseudoColor visuals. Enabling Color Index overlays on X
    servers older than XFree86 4.3 will force the RENDER extension to be
    disabled due to bugs in the RENDER extension in older X servers. Color
    Index workstation overlays are not supported when the Composite extension
    is enabled. Default: off.

    UBB must be enabled when overlays are enabled (this is the default
    behavior).

Option "TransparentIndex" "integer"

    When color index overlays are enabled, use this option to choose which
    pixel is used for the transparent pixel in visuals featuring transparent
    pixels. This value is clamped between 0 and 255 (Note: some applications
    such as Alias's Maya require this to be zero in order to work correctly).
    Default: 0.

Option "OverlayDefaultVisual" "boolean"

    When overlays are used, this option sets the default visual to an overlay
    visual thereby putting the root window in the overlay. This option is not
    recommended for RGB overlays. Default: off.

Option "EmulatedOverlaysTimerMs" "integer"

    Enables the use of a timer within the X server to perform the updates to
    the emulated overlay or CI overlay. This option can be used to improve the
    performance of the emulated or CI overlays by reducing the frequency of
    the updates. The value specified indicates the desired number of
    milliseconds between overlay updates. To disable the use of the timer
    either leave the option unset or set it to 0. Default: off.

Option "EmulatedOverlaysThreshold" "boolean"

    Enables the use of a threshold within the X server to perform the updates
    to the emulated overlay or CI overlay. The emulated or CI overlay updates
    can be deferred but this threshold will limit the number of deferred
    OpenGL updates allowed before the overlay is updated. This option can be
    used to trade off performance and animation quality. Default: on.

Option "EmulatedOverlaysThresholdValue" "integer"

    Controls the threshold used in updating the emulated or CI overlays. This
    is used in conjunction with the EmulatedOverlaysThreshold option to trade
    off performance and animation quality. Higher values for this option favor
    performance over quality. Setting low values of this option will not cause
    the overlay to be updated more often than the frequence specified by the
    EmulatedOverlaysTimerMs option. Default: 5.

Option "SWCursor" "boolean"

    Enable or disable software rendering of the X cursor. Default: off.

Option "HWCursor" "boolean"

    Enable or disable hardware rendering of the X cursor. Default: on.

Option "ConnectedMonitor" "string"

    Allows you to override what the NVIDIA kernel module detects is connected
    to your graphics card. This may be useful, for example, if you use a KVM
    (keyboard, video, mouse) switch and you are switched away when X is
    started. In such a situation, the NVIDIA kernel module cannot detect which
    display devices are connected, and the NVIDIA X driver assumes you have a
    single CRT.

    Valid values for this option are "CRT" (cathode ray tube) or "DFP"
    (digital flat panel); if using multiple display devices, this option may
    be a comma-separated list of display devices; e.g.: "CRT, CRT" or "CRT,
    DFP".

    It is generally recommended to not use this option, but instead use the
    "UseDisplayDevice" option.

    NOTE: anything attached to a 15 pin VGA connector is regarded by the
    driver as a CRT. "DFP" should only be used to refer to digital flat panels
    connected via DVI, HDMI, or DisplayPort.

    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    Default: string is NULL (the NVIDIA driver will detect the connected
    display devices).

Option "UseDisplayDevice" "string"

    The "UseDisplayDevice" X configuration option is a list of one or more
    display devices, which limits the display devices the NVIDIA X driver will
    consider for an X screen. The display device names used in the option may
    be either specific (with a numeric suffix; e.g., "DFP-1") or general
    (without a numeric suffix; e.g., "DFP").

    When assigning display devices to X screens, the NVIDIA X driver walks
    through the list of all (not already assigned) display devices detected as
    connected. When the "UseDisplayDevice" X configuration option is
    specified, the X driver will only consider connected display devices which
    are also included in the "UseDisplayDevice" list. This can be thought of
    as a "mask" against the connected (and not already assigned) display
    devices.

    Note the subtle difference between this option and the "ConnectedMonitor"
    option: the "ConnectedMonitor" option overrides which display devices are
    actually detected, while the "UseDisplayDevice" option controls which of
    the detected display devices will be used on this X screen.

    Of the list of display devices considered for this X screen (either all
    connected display devices, or a subset limited by the "UseDisplayDevice"
    option), the NVIDIA X driver first looks at CRTs, then at DFPs. For
    example, if both a CRT and a DFP are connected, by default the X driver
    would assign the CRT to this X screen. However, by specifying:
    
        Option "UseDisplayDevice" "DFP"
    
    the X screen would use the DFP instead. Or, if CRT-0, DFP-0, and DFP-1 are
    connected, the X driver would assign CRT-0 and DFP-0 to the X screen.
    However, by specifying:
    
        Option "UseDisplayDevice" "CRT-0, DFP-1"
    
    the X screen would use CRT-0 and DFP-1 instead.

    Additionally, the special value "none" can be specified for the
    "UseDisplayDevice" option. When this value is given, any programming of
    the display hardware is disabled. The NVIDIA driver will not perform any
    mode validation or mode setting for this X screen. This is intended for
    use in conjunction with CUDA or in remote graphics solutions such as VNC
    or Hewlett Packard's Remote Graphics Software (RGS).

    "UseDisplayDevice" defaults to "none" on GPUs that have no display
    capabilities, such as some Tesla GPUs and some mobile GPUs used in Optimus
    notebook configurations.

    Note the following restrictions for setting the "UseDisplayDevice" to
    "none":
    
       o OpenGL SyncToVBlank will have no effect.
    
       o None of Stereo, Overlay, CIOverlay, or SLI are allowed when
         "UseDisplayDevice" is set to "none".
    
    
Option "UseEdidFreqs" "boolean"

    This option controls whether the NVIDIA X driver will use the HorizSync
    and VertRefresh ranges given in a display device's EDID, if any. When
    UseEdidFreqs is set to True, EDID-provided range information will override
    the HorizSync and VertRefresh ranges specified in the Monitor section. If
    a display device does not provide an EDID, or the EDID does not specify an
    hsync or vrefresh range, then the X server will default to the HorizSync
    and VertRefresh ranges specified in the Monitor section of your X config
    file. These frequency ranges are used when validating modes for your
    display device.

    Default: True (EDID frequencies will be used)

Option "UseEDID" "boolean"

    By default, the NVIDIA X driver makes use of a display device's EDID, when
    available, during construction of its mode pool. The EDID is used as a
    source for possible modes, for valid frequency ranges, and for collecting
    data on the physical dimensions of the display device for computing the
    DPI (see Appendix E). However, if you wish to disable the driver's use of
    the EDID, you can set this option to False:
    
        Option "UseEDID" "FALSE"
    
    Note that, rather than globally disable all uses of the EDID, you can
    individually disable each particular use of the EDID; e.g.,
    
        Option "UseEDIDFreqs" "FALSE"
        Option "UseEDIDDpi" "FALSE"
        Option "ModeValidation" "NoEdidModes"
    
    
    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    Default: True (use EDID).

Option "MetaModeOrientation" "string"

    Controls the default relationship between display devices when using
    multiple display devices on a single X screen. Takes one of the following
    values: "RightOf" "LeftOf" "Above" "Below" "SamePositionAs". For backwards
    compatibility, "TwinViewOrientation" is a synonym for
    "MetaModeOrientation", and "Clone" is a synonym for "SamePositionAs". See
    Chapter 12 for details. Default: string is NULL.

Option "MetaModes" "string"

    This option describes the combination of modes to use on each monitor when
    using TwinView or SLI Mosaic Mode. See Chapter 12 and Chapter 28 for
    details. Default: string is NULL.

Option "nvidiaXineramaInfo" "boolean"

    The NVIDIA X driver normally provides a Xinerama extension that X clients
    (such as window managers) can use to discover the current layout of
    display devices within an X screen. Some window mangers get confused by
    this information, so this option is provided to disable this behavior.
    Default: true (NVIDIA Xinerama information is provided).

    On X servers with RandR 1.2 support, the X server's RandR implementation
    may provide its own Xinerama implementation if NVIDIA Xinerama information
    is not provided. So, on X servers with RandR 1.2, disabling
    "nvidiaXineramaInfo" causes the NVIDIA X driver to still register its
    Xinerama implementation but report a single screen-sized region. On X
    servers without RandR 1.2 support, disabling "nvidiaXineramaInfo" causes
    the NVIDIA X driver to not register its Xinerama implementation.

    Due to bugs in some older software, NVIDIA Xinerama information is not
    provided by default on X.Org 7.1 and older when the X server is started
    with only one display device enabled.

    For backwards compatibility, "NoTwinViewXineramaInfo" is a synonym for
    disabling "nvidiaXineramaInfo".

Option "nvidiaXineramaInfoOrder" "string"

    When the NVIDIA X driver provides nvidiaXineramaInfo (see the
    nvidiaXineramaInfo X config option), it by default reports the currently
    enabled display devices in the order "CRT, DFP". The
    nvidiaXineramaInfoOrder X config option can be used to override this
    order.

    The option string is a comma-separated list of display device names. The
    display device names can either be general (e.g, "CRT", which identifies
    all CRTs), or specific (e.g., "CRT-1", which identifies a particular CRT).
    Not all display devices need to be identified in the option string;
    display devices that are not listed will be implicitly appended to the end
    of the list, in their default order.

    Note that nvidiaXineramaInfoOrder tracks all display devices that could
    possibly be connected to the GPU, not just the ones that are currently
    enabled. When reporting the Xinerama information, the NVIDIA X driver
    walks through the display devices in the order specified, only reporting
    enabled display devices.

    Examples:
    
            "DFP"
            "DFP-1, DFP-0, CRT"
    
    In the first example, any enabled DFPs would be reported first (any
    enabled CRTs would be reported afterwards). In the second example, if
    DFP-1 were enabled, it would be reported first, then DFP-0, and then any
    enabled CRTs; finally, any other enabled DFPs would be reported.

    For backwards compatibility, "TwinViewXineramaInfoOrder" is a synonym for
    "nvidiaXineramaInfoOrder".

    Default: "CRT, DFP"

Option "nvidiaXineramaInfoOverride" "string"

    This option overrides the values reported by the NVIDIA X driver's
    nvidiaXineramaInfo implementation. This disregards the actual display
    devices used by the X screen and any order specified in
    nvidiaXineramaInfoOrder.

    The option string is interpreted as a comma-separated list of regions,
    specified as '[width]x[height]+[x-offset]+[y-offset]'. The regions' sizes
    and offsets are not validated against the X screen size, but are directly
    reported to any Xinerama client.

    Examples:
    
            "1600x1200+0+0, 1600x1200+1600+0"
            "1024x768+0+0, 1024x768+1024+0, 1024x768+0+768, 1024x768+1024+768"
    
    
    For backwards compatibility, "TwinViewXineramaInfoOverride" is a synonym
    for "nvidiaXineramaInfoOverride".

Option "Stereo" "integer"

    Enable offering of quad-buffered stereo visuals on Quadro. Integer
    indicates the type of stereo equipment being used:
    
        Value             Equipment
        --------------    ---------------------------------------------------
        3                 Onboard stereo support. This is usually only found
                          on professional cards. The glasses connect via a
                          DIN connector on the back of the graphics card.
        4                 One-eye-per-display passive stereo. This mode
                          allows each display to be configured to statically
                          display either left or right eye content. This can
                          be especially useful with multi-display
                          configurations (TwinView or SLI Mosaic). For
                          example, this is commonly used in conjunction with
                          special projectors to produce 2 polarized images
                          which are then viewed with polarized glasses. To
                          use this stereo mode, it is recommended that you
                          configure TwinView (or pairs of displays in SLI
                          Mosaic) in clone mode with the same resolution,
                          panning offset, and panning domains on each
                          display. See Chapter 12 for more information about
                          configuring multiple displays.
        5                 Vertical interlaced stereo mode, for use with
                          SeeReal Stereo Digital Flat Panels.
        6                 Color interleaved stereo mode, for use with
                          Sharp3D Stereo Digital Flat Panels.
        7                 Horizontal interlaced stereo mode, for use with
                          Arisawa, Hyundai, Zalman, Pavione, and Miracube
                          Digital Flat Panels.
        8                 Checkerboard pattern stereo mode, for use with 3D
                          DLP Display Devices.
        9                 Inverse checkerboard pattern stereo mode, for use
                          with 3D DLP Display Devices.
        10                NVIDIA 3D Vision mode for use with NVIDIA 3D
                          Vision glasses. The NVIDIA 3D Vision infrared
                          emitter must be connected to a USB port of your
                          computer, and to the 3-pin DIN connector of a
                          Quadro graphics board before starting the X
                          server. Hot-plugging the USB infrared stereo
                          emitter is not yet supported. Also, 3D Vision
                          Stereo Linux support requires a Linux kernel built
                          with USB device filesystem (usbfs) and USB 2.0
                          support. Not presently supported on FreeBSD or
                          Solaris.
        11                NVIDIA 3D VisionPro mode for use with NVIDIA 3D
                          VisionPro glasses. The NVIDIA 3D VisionPro RF hub
                          must be connected to a USB port of your computer,
                          and to the 3-pin DIN connector of a Quadro
                          graphics board before starting the X server.
                          Hot-plugging the USB RF hub is not yet supported.
                          Also, 3D VisionPro Stereo Linux support requires a
                          Linux kernel built with USB device filesystem
                          (usbfs) and USB 2.0 support. When RF hub is
                          connected and X is started in NVIDIA 3D VisionPro
                          stereo mode, a new page will be available in
                          nvidia-settings for various configuration
                          settings. Some of these settings can also be done
                          via nvidia-settings command line interface. Refer
                          to the corresponding Help section in
                          nvidia-settings for further details. Not presently
                          supported on FreeBSD or Solaris.
        12                HDMI 3D mode for use with HDMI 3D compatible
                          display devices with their own stereo emitters.
                          This mode is only available on NVIDIA Kepler and
                          later GPUs.
        13                Tridelity SL stereo mode, for use with Tridelity
                          SL display devices.
    
    Default: 0 (Stereo is not enabled).

    Stereo options 3, 10, 11, and 12 are known as "active" stereo. Other
    options are known as "passive" stereo.

    When active stereo is used with multiple display devices, it is
    recommended that modes within each MetaMode have identical timing values
    (modelines). See Chapter 18 for suggestions on making sure the modes
    within your MetaModes are identical.

    The following table summarizes the available stereo modes, their supported
    GPUs, and their intended display devices:
    
        Stereo mode (value)     Graphics card           Display supported
                                supported [1]       
        --------------------    --------------------    --------------------
        Onboard DIN (3)         Quadro graphics         Displays with high
                                cards                   refresh rate
        One-eye-per-display     Quadro graphics         Any
        (4)                     cards               
        Vertical Interlaced     Quadro graphics         SeeReal Stereo DFP
        (5)                     cards               
        Color Interleaved       Quadro graphics         Sharp3D stereo DFP
        (6)                     cards               
        Horizontal              Quadro graphics         Arisawa, Hyundai,
        Interlaced (7)          cards                   Zalman, Pavione,
                                                        and Miracube
        Checkerboard            Quadro graphics         3D DLP display
        Pattern (8)             cards                   devices
        Inverse                 Quadro graphics         3D DLP display
        Checkerboard (9)        cards                   devices
        NVIDIA 3D Vision        Quadro graphics         Supported 3D Vision
        (10)                    cards [2]               ready displays [3]
        NVIDIA 3D VisionPro     Quadro graphics         Supported 3D Vision
        (11)                    cards [2]               ready displays [3]
        HDMI 3D (12)            Quadro graphics         Supported HDMI 3D
                                cards with NVIDIA       displays [4]
                                Kepler or higher    
                                GPUs [2]            
        Tridelity SL (13)       Quadro graphics         Tridelity SL DFP
                                cards               
        
    
    
    
        [1] Quadro graphics cards excluding Quadro NVS cards.
        [2]
        http://www.nvidia.com/object/quadro_pro_graphics_boards_linux.html
        [3] http://www.nvidia.com/object/3D_Vision_Requirements.html
        [4] Supported 3D TVs, Projectors, and Home Theater Receivers listed
        on http://www.nvidia.com/object/3dtv-play-system-requirements.html
        and Desktop LCD Monitors with 3D Vision HDMI support listed on
        http://www.nvidia.com/object/3D_Vision_Requirements.html
    
    
    UBB must be enabled when stereo is enabled (this is the default behavior).

    Active stereo can be enabled on digital display devices (connected via
    DVI, HDMI, or DisplayPort). However, some digital display devices might
    not behave as desired with active stereo:
    
       o Some digital display devices may not be able to toggle pixel colors
         quickly enough when flipping between eyes on every vblank.
    
       o Some digital display devices may have an optical polarization that
         interferes with stereo goggles.
    
       o Active stereo requires high refresh rates, because a vertical refresh
         is needed to display each eye. Some digital display devices have a
         low refresh rate, which will result in flickering when used for
         active stereo.
    
       o Some digital display devices might internally convert from other
         refresh rates to their native refresh rate (e.g., 60Hz), resulting in
         incompatible rates between the stereo glasses and stereo displayed on
         screen.
    
    These limitations do not apply to any display devices suitable for stereo
    options 10, 11, or 12.

    Stereo option 12 (HDMI 3D) is also known as HDMI Frame Packed Stereo mode,
    where the left and right eye images are stacked into a single frame with a
    doubled pixel clock and refresh rate. This doubled refresh rate is used
    for Frame Lock and in refresh rate queries through NV-CONTROL clients, and
    the doubled pixel clock and refresh rate are used in mode validation.
    Interlaced modes are not supported with this stereo mode. The following
    nvidia-settings command line can be used to determine whether a display's
    current mode is an HDMI 3D mode with a doubled refresh rate:
    
        nvidia-settings --query=Hdmi3D
    
    
    On GPUs before Kepler, if an active stereo mode is enabled, OpenGL
    applications that make use of Quad-Buffered Stereo and the
    GLX_NV_swap_group extension are limited to a max frame rate of half the
    monitor's refresh rate.

    Stereo applies to an entire X screen, so it will apply to all display
    devices on that X screen, whether or not they all support the selected
    Stereo mode.

Option "ForceStereoFlipping" "boolean"

    Stereo flipping is the process by which left and right eyes are displayed
    on alternating vertical refreshes. Normally, stereo flipping is only
    performed when a stereo drawable is visible. This option forces stereo
    flipping even when no stereo drawables are visible.

    This is to be used in conjunction with the "Stereo" option. If "Stereo" is
    0, the "ForceStereoFlipping" option has no effect. If otherwise, the
    "ForceStereoFlipping" option will force the behavior indicated by the
    "Stereo" option, even if no stereo drawables are visible. This option is
    useful in a multiple-screen environment in which a stereo application is
    run on a different screen than the stereo master.

    Possible values:
    
        Value             Behavior
        --------------    ---------------------------------------------------
        0                 Stereo flipping is not forced. The default
                          behavior as indicated by the "Stereo" option is
                          used.
        1                 Stereo flipping is forced. Stereo is running even
                          if no stereo drawables are visible. The stereo
                          mode depends on the value of the "Stereo" option.
    
    Default: 0 (Stereo flipping is not forced).

Option "XineramaStereoFlipping" "boolean"

    By default, when using Stereo with Xinerama, all physical X screens having
    a visible stereo drawable will stereo flip. Use this option to allow only
    one physical X screen to stereo flip at a time.

    This is to be used in conjunction with the "Stereo" and "Xinerama"
    options. If "Stereo" is 0 or "Xinerama" is 0, the "XineramaStereoFlipping"
    option has no effect.

    If you wish to have all X screens stereo flip all the time, see the
    "ForceStereoFlipping" option.

    Possible values:
    
        Value             Behavior
        --------------    ---------------------------------------------------
        0                 Stereo flipping is enabled on one X screen at a
                          time. Stereo is enabled on the first X screen
                          having the stereo drawable.
        1                 Stereo flipping in enabled on all X screens.
    
    Default: 1 (Stereo flipping is enabled on all X screens).

Option "IgnoreDisplayDevices" "string"

    This option tells the NVIDIA kernel module to completely ignore the
    indicated classes of display devices when checking which display devices
    are connected. You may specify a comma-separated list containing any of
    "CRT", "DFP", and "TV". For example:
    
    Option "IgnoreDisplayDevices" "DFP, TV"
    
    will cause the NVIDIA driver to not attempt to detect if any digital flat
    panels or TVs are connected. This option is not normally necessary;
    however, some video BIOSes contain incorrect information about which
    display devices may be connected, or which i2c port should be used for
    detection. These errors can cause long delays in starting X. If you are
    experiencing such delays, you may be able to avoid this by telling the
    NVIDIA driver to ignore display devices which you know are not connected.
    NOTE: anything attached to a 15 pin VGA connector is regarded by the
    driver as a CRT. "DFP" should only be used to refer to digital flat panels
    connected via a DVI port.

    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

Option "MultisampleCompatibility" "boolean"

    Enable or disable the use of separate front and back multisample buffers.
    Enabling this will consume more memory but is necessary for correct output
    when rendering to both the front and back buffers of a multisample or FSAA
    drawable. This option is necessary for correct operation of SoftImage XSI.
    Default: false (a single multisample buffer is shared between the front
    and back buffers).

Option "NoPowerConnectorCheck" "boolean"

    The NVIDIA X driver will fail initialization on a GPU if it detects that
    the GPU that requires an external power connector does not have an
    external power connector plugged in. This option can be used to bypass
    this test.

    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    Default: false (the power connector test is performed).

Option "ThermalConfigurationCheck" "boolean"

    The NVIDIA X driver will fail initialization on a GPU if it detects that
    the GPU has a bad thermal configuration. This may indicate a problem with
    how your graphics board was built, or simply a driver bug. It is
    recommended that you contact your graphics board vendor if you encounter
    this problem.

    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    This option can be set to False to bypass this test. Default: true (the
    thermal configuration test is performed).

Option "AllowGLXWithComposite" "boolean"

    Enables GLX even when the Composite X extension is loaded. ENABLE AT YOUR
    OWN RISK. OpenGL applications will not display correctly in many
    circumstances with this setting enabled.

    This option is intended for use on versions of X.Org older than X11R6.9.0.
    On X11R6.9.0 or newer, the NVIDIA OpenGL implementation interacts properly
    by default with the Composite X extension and this option should not be
    needed. However, on X11R6.9.0 or newer, support for GLX with Composite can
    be disabled by setting this option to False.

    Default: false (GLX is disabled when Composite is enabled on X releases
    older than X11R6.9.0).

Option "AddARGBGLXVisuals" "boolean"

    Adds a 32-bit ARGB visual for each supported OpenGL configuration. This
    allows applications to use OpenGL to render with alpha transparency into
    32-bit windows and pixmaps. This option requires the Composite extension.
    Default: ARGB GLX visuals are enabled on X servers new enough to support
    them when the Composite extension is also enabled and the screen depth is
    24 or 30.

Option "DisableGLXRootClipping" "boolean"

    If enabled, no clipping will be performed on rendering done by OpenGL in
    the root window. This option is deprecated. It is needed by older versions
    of OpenGL-based composite managers that draw the contents of redirected
    windows directly into the root window using OpenGL. Most OpenGL-based
    composite managers have been updated to support the Composite Overlay
    Window, a feature introduced in Xorg release 7.1. Using the Composite
    Overlay Window is the preferred method for performing OpenGL-based
    compositing.

Option "DamageEvents" "boolean"

    Use OS-level events to efficiently notify X when a client has performed
    direct rendering to a window that needs to be composited. This will
    significantly improve performance and interactivity when using GLX
    applications with a composite manager running. It will also affect
    applications using GLX when rotation is enabled. Enabled by default.

Option "ExactModeTimingsDVI" "boolean"

    Forces the initialization of the X server with the exact timings specified
    in the ModeLine. Default: false (for DVI devices, the X server initializes
    with the closest mode in the EDID list).

    The "AllowNonEdidModes" token in the "ModeValidation" X configuration
    option has the same effect as "ExactModeTimingsDVI", but
    "AllowNonEdidModes" has per-display device granularity.

Option "Coolbits" "integer"

    Enables various unsupported features, such as support for GPU clock
    manipulation in the NV-CONTROL X extension. This option accepts a bit mask
    of features to enable.

    WARNING: this may cause system damage and void warranties. This utility
    can run your computer system out of the manufacturer's design
    specifications, including, but not limited to: higher system voltages,
    above normal temperatures, excessive frequencies, and changes to BIOS that
    may corrupt the BIOS. Your computer's operating system may hang and result
    in data loss or corrupted images. Depending on the manufacturer of your
    computer system, the computer system, hardware and software warranties may
    be voided, and you may not receive any further manufacturer support.
    NVIDIA does not provide customer service support for the Coolbits option.
    It is for these reasons that absolutely no warranty or guarantee is either
    express or implied. Before enabling and using, you should determine the
    suitability of the utility for your intended use, and you shall assume all
    responsibility in connection therewith.

    When "2" (Bit 1) is set in the "Coolbits" option value, the NVIDIA driver
    will attempt to initialize SLI when using GPUs with different amounts of
    video memory.

    When "4" (Bit 2) is set in the "Coolbits" option value, the
    nvidia-settings Thermal Monitor page will allow configuration of GPU fan
    speed, on graphics boards with programmable fan capability.

    When "8" (Bit 3) is set in the "Coolbits" option value, the PowerMizer
    page in the nvidia-settings control panel will display a table that allows
    setting per-clock domain and per-performance level offsets to apply to
    clock values. This is allowed on certain GeForce GPUs. Not all clock
    domains or performance levels may be modified. On GPUs based on the Pascal
    architecture the offset is applied to all performance levels.

    When "16" (Bit 4) is set in the "Coolbits" option value, the
    nvidia-settings command line interface allows setting GPU overvoltage.
    This is allowed on certain GeForce GPUs.

    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    The default for this option is 0 (unsupported features are disabled).

Option "MultiGPU" "string"

    This option controls the configuration of Multi-GPU rendering in supported
    configurations.
    
        Value                               Behavior
        --------------------------------    --------------------------------
        0, no, off, false, Single           Use only a single GPU when
                                            rendering
        1, yes, on, true, Auto              Enable Multi-GPU and allow the
                                            driver to automatically select
                                            the appropriate rendering mode.
        AFR                                 Enable Multi-GPU and use the
                                            Alternate Frame Rendering mode.
        SFR                                 Enable Multi-GPU and use the
                                            Split Frame Rendering mode.
        AA                                  Enable Multi-GPU and use
                                            antialiasing. Use this in
                                            conjunction with full scene
                                            antialiasing to improve visual
                                            quality.
    
    
Option "SLI" "string"

    This option controls the configuration of SLI rendering in supported
    configurations.
    
        Value                               Behavior
        --------------------------------    --------------------------------
        0, no, off, false, Single           Use only a single GPU when
                                            rendering
        1, yes, on, true, Auto              Enable SLI and allow the driver
                                            to automatically select the
                                            appropriate rendering mode.
        AFR                                 Enable SLI and use the Alternate
                                            Frame Rendering mode.
        SFR                                 Enable SLI and use the Split
                                            Frame Rendering mode.
        AA                                  Enable SLI and use SLI
                                            Antialiasing. Use this in
                                            conjunction with full scene
                                            antialiasing to improve visual
                                            quality.
        AFRofAA                             Enable SLI and use SLI Alternate
                                            Frame Rendering of Antialiasing
                                            mode. Use this in conjunction
                                            with full scene antialiasing to
                                            improve visual quality. This
                                            option is only valid for SLI
                                            configurations with 4 GPUs.
        Mosaic                              Enable SLI and use SLI Mosaic
                                            Mode. Use this in conjunction
                                            with the MetaModes X
                                            configuration option to specify
                                            the combination of mode(s) used
                                            on each display.
    
    
Option "TripleBuffer" "boolean"

    Enable or disable the use of triple buffering. If this option is enabled,
    OpenGL windows that sync to vblank and are double-buffered will be given a
    third buffer. This decreases the time an application stalls while waiting
    for vblank events, but increases latency slightly (delay between user
    input and displayed result).

Option "DPI" "string"

    This option specifies the Dots Per Inch for the X screen; for example:
    
        Option "DPI" "75 x 85"
    
    will set the horizontal DPI to 75 and the vertical DPI to 85. By default,
    the X driver will compute the DPI of the X screen from the EDID of any
    connected display devices. See Appendix E for details. Default: string is
    NULL (disabled).

Option "UseEdidDpi" "string"

    By default, the NVIDIA X driver computes the DPI of an X screen based on
    the physical size of the display device, as reported in the EDID, and the
    size in pixels of the first mode to be used on the display device. If
    multiple display devices are used by the X screen, then the NVIDIA X
    screen will choose which display device to use. This option can be used to
    specify which display device to use. The string argument can be a display
    device name, such as:
    
        Option "UseEdidDpi" "DFP-0"
    
    or the argument can be "FALSE" to disable use of EDID-based DPI
    calculations:
    
        Option "UseEdidDpi" "FALSE"
    
    See Appendix E for details. Default: string is NULL (the driver computes
    the DPI from the EDID of a display device and selects the display device).

Option "ConstantDPI" "boolean"

    By default on X.Org 6.9 or newer, the NVIDIA X driver recomputes the size
    in millimeters of the X screen whenever the size in pixels of the X screen
    is changed using XRandR, such that the DPI remains constant.

    This behavior can be disabled (which means that the size in millimeters
    will not change when the size in pixels of the X screen changes) by
    setting the "ConstantDPI" option to "FALSE"; e.g.,
    
        Option "ConstantDPI" "FALSE"
    
    ConstantDPI defaults to True.

    On X releases older than X.Org 6.9, the NVIDIA X driver cannot change the
    size in millimeters of the X screen. Therefore the DPI of the X screen
    will change when XRandR changes the size in pixels of the X screen. The
    driver will behave as if ConstantDPI was forced to FALSE.

Option "CustomEDID" "string"

    This option forces the X driver to use the EDID specified in a file rather
    than the display's EDID. You may specify a semicolon separated list of
    display names and filename pairs. Valid display device names include
    "CRT-0", "CRT-1", "DFP-0", "DFP-1", "TV-0", "TV-1", or one of the generic
    names "CRT", "DFP", "TV", which apply the EDID to all devices of the
    specified type. Additionally, if SLI Mosaic is enabled, this name can be
    prefixed by a GPU name (e.g., "GPU-0.CRT-0"). The file contains a raw EDID
    (e.g., a file generated by nvidia-settings).

    For example:
    
        Option "CustomEDID" "CRT-0:/tmp/edid1.bin; DFP-0:/tmp/edid2.bin"
    
    will assign the EDID from the file /tmp/edid1.bin to the display device
    CRT-0, and the EDID from the file /tmp/edid2.bin to the display device
    DFP-0. Note that a display device name must always be specified even if
    only one EDID is specified.

    Caution: Specifying an EDID that doesn't exactly match your display may
    damage your hardware, as it allows the driver to specify timings beyond
    the capabilities of your display. Use with care.

    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

Option "IgnoreEDIDChecksum" "string"

    This option forces the X driver to accept an EDID even if the checksum is
    invalid. You may specify a comma separated list of display names. Valid
    display device names include "CRT-0", "CRT-1", "DFP-0", "DFP-1", "TV-0",
    "TV-1", or one of the generic names "CRT", "DFP", "TV", which ignore the
    EDID checksum on all devices of the specified type. Additionally, if SLI
    Mosaic is enabled, this name can be prefixed by a GPU name (e.g.,
    "GPU-0.CRT-0").

    For example:
    
        Option "IgnoreEDIDChecksum" "CRT, DFP-0"
    
    will cause the nvidia driver to ignore the EDID checksum for all CRT
    monitors and the displays DFP-0 and TV-0.

    Caution: An invalid EDID checksum may indicate a corrupt EDID. A corrupt
    EDID may have mode timings beyond the capabilities of your display, and
    using it could damage your hardware. Use with care.

    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

Option "ModeValidation" "string"

    This option provides fine-grained control over each stage of the mode
    validation pipeline, disabling individual mode validation checks. This
    option should only very rarely be used.

    The option string is a semicolon-separated list of comma-separated lists
    of mode validation arguments. Each list of mode validation arguments can
    optionally be prepended with a display device name and GPU specifier.
    
        "<dpy-0>: <tok>, <tok>; <dpy-1>: <tok>, <tok>, <tok>; ..."
    
    
    Possible arguments:
    
       o "NoMaxPClkCheck": each mode has a pixel clock; this pixel clock is
         validated against the maximum pixel clock of the hardware (for a DFP,
         this is the maximum pixel clock of the TMDS encoder, for a CRT, this
         is the maximum pixel clock of the DAC). This argument disables the
         maximum pixel clock checking stage of the mode validation pipeline.
    
       o "NoEdidMaxPClkCheck": a display device's EDID can specify the maximum
         pixel clock that the display device supports; a mode's pixel clock is
         validated against this pixel clock maximum. This argument disables
         this stage of the mode validation pipeline.
    
       o "NoMaxSizeCheck": each NVIDIA GPU has a maximum resolution that it
         can drive; this argument disables this stage of the mode validation
         pipeline.
    
       o "NoHorizSyncCheck": a mode's horizontal sync is validated against the
         range of valid horizontal sync values; this argument disables this
         stage of the mode validation pipeline.
    
       o "NoVertRefreshCheck": a mode's vertical refresh rate is validated
         against the range of valid vertical refresh rate values; this
         argument disables this stage of the mode validation pipeline.
    
       o "NoVirtualSizeCheck": if the X configuration file requests a specific
         virtual screen size, a mode cannot be larger than that virtual size;
         this argument disables this stage of the mode validation pipeline.
    
       o "NoVesaModes": when constructing the mode pool for a display device,
         the X driver uses a built-in list of VESA modes as one of the mode
         sources; this argument disables use of these built-in VESA modes.
    
       o "NoEdidModes": when constructing the mode pool for a display device,
         the X driver uses any modes listed in the display device's EDID as
         one of the mode sources; this argument disables use of EDID-specified
         modes.
    
       o "NoXServerModes": when constructing the mode pool for a display
         device, the X driver uses the built-in modes provided by the core
         XFree86/Xorg X server as one of the mode sources; this argument
         disables use of these modes. Note that this argument does not disable
         custom ModeLines specified in the X config file; see the
         "NoCustomModes" argument for that.
    
       o "NoCustomModes": when constructing the mode pool for a display
         device, the X driver uses custom ModeLines specified in the X config
         file (through the "Mode" or "ModeLine" entries in the Monitor
         Section) as one of the mode sources; this argument disables use of
         these modes.
    
       o "NoPredefinedModes": when constructing the mode pool for a display
         device, the X driver uses additional modes predefined by the NVIDIA X
         driver; this argument disables use of these modes.
    
       o "NoUserModes": additional modes can be added to the mode pool
         dynamically, using the NV-CONTROL X extension; this argument
         prohibits user-specified modes via the NV-CONTROL X extension.
    
       o "NoExtendedGpuCapabilitiesCheck": allow mode timings that may exceed
         the GPU's extended capability checks.
    
       o "ObeyEdidContradictions": an EDID may contradict itself by listing a
         mode as supported, but the mode may exceed an EDID-specified valid
         frequency range (HorizSync, VertRefresh, or maximum pixel clock).
         Normally, the NVIDIA X driver prints a warning in this scenario, but
         does not invalidate an EDID-specified mode just because it exceeds an
         EDID-specified valid frequency range. However, the
         "ObeyEdidContradictions" argument instructs the NVIDIA X driver to
         invalidate these modes.
    
       o "NoTotalSizeCheck": allow modes in which the individual visible or
         sync pulse timings exceed the total raster size.
    
       o "NoDualLinkDVICheck": for mode timings used on dual link DVI DFPs,
         the driver must perform additional checks to ensure that the correct
         pixels are sent on the correct link. For some of these checks, the
         driver will invalidate the mode timings; for other checks, the driver
         will implicitly modify the mode timings to meet the GPU's dual link
         DVI requirements. This token disables this dual link DVI checking.
    
       o "NoDisplayPortBandwidthCheck": for mode timings used on DisplayPort
         devices, the driver must verify that the DisplayPort link can be
         configured to carry enough bandwidth to support a given mode's pixel
         clock. For example, some DisplayPort-to-VGA adapters only support 2
         DisplayPort lanes, limiting the resolutions they can display. This
         token disables this DisplayPort bandwidth check.
    
       o "AllowNon3DVisionModes": modes that are not optimized for NVIDIA 3D
         Vision are invalidated, by default, when 3D Vision (stereo mode 10)
         or 3D Vision Pro (stereo mode 11) is enabled. This token allows the
         use of non-3D Vision modes on a 3D Vision monitor. (Stereo behavior
         of non-3D Vision modes on 3D Vision monitors is undefined.)
    
       o "AllowNonHDMI3DModes": modes that are incompatible with HDMI 3D are
         invalidated, by default, when HDMI 3D (stereo mode 12) is enabled.
         This token allows the use of non-HDMI 3D modes when HDMI 3D is
         selected. HDMI 3D will be disabled when a non-HDMI 3D mode is in use.
    
       o "AllowNonEdidModes": if a mode is not listed in a display device's
         EDID mode list, then the NVIDIA X driver will discard the mode if the
         EDID 1.3 "GTF Supported" flag is unset, if the EDID 1.4 "Continuous
         Frequency" flag is unset, or if the display device is connected to
         the GPU by a digital protocol (e.g., DVI, DP, etc). This token
         disables these checks for non-EDID modes.
    
       o "NoEdidHDMI2Check": HDMI 2.0 adds support for 4K@60Hz modes with
         either full RGB 4:4:4 pixel encoding or YUV (also known as YCbCr)
         4:2:0 pixel encoding. Using these modes with RGB 4:4:4 pixel encoding
         requires GPU support as well as display support indicated in the
         display device's EDID. This token allows the use of these modes at
         RGB 4:4:4 as long as the GPU supports them, even if the display
         device's EDID does not indicate support. Otherwise, these modes will
         be displayed in the YUV 4:2:0 color space.
    
    
    Examples:
    
        Option "ModeValidation" "NoMaxPClkCheck"
    
    disable the maximum pixel clock check when validating modes on all display
    devices.
    
        Option "ModeValidation" "CRT-0: NoEdidModes, NoMaxPClkCheck;
    GPU-0.DFP-0: NoVesaModes"
    
    do not use EDID modes and do not perform the maximum pixel clock check on
    CRT-0, and do not use VESA modes on DFP-0 of GPU-0.

Option "ColorSpace" "string"

    This option sets the preferred color space for all or a subset of the
    connected flat panels.

    The option string is a semicolon-separated list of device specific
    options. Each option can optionally be prepended with a display device
    name and a GPU specifier.
    
        "<dpy-0>: <tok>; <dpy-1>: <tok>; ..."
    
    
    Possible arguments:
    
       o "RGB": sets color space to RGB. RGB color space supports two valid
         color ranges; full and limited. By default, full color range is set
         when the color space is RGB.
    
       o "YCbCr444": sets color space to YCbCr 4:4:4. YCbCr supports only
         limited color range. It is not possible to set this color space if
         the GPU or display is not capable of limited range.
    
    
    If the ColorSpace option is not specified, or is incorrectly specified,
    then the color space is set to RGB by default. If the current mode is an
    HDMI 2.0 4K@60Hz mode and either the display or GPU is incapable of
    driving this mode in the RGB 4:4:4 color space, the preferred color space
    will be overridden to YCbCr420. Full color range is still supported in
    YCbCr420 mode. The current actual color space in use on the display can be
    queried with the following nvidia-settings command line:
    
        nvidia-settings --query=CurrentColorSpace
    
    
    Examples:
    
        Option "ColorSpace" "YCbCr444"
    
    set the color space to YCbCr 4:4:4 on all flat panels.
    
        Option "ColorSpace" "GPU-0.DFP-0: YCbCr444"
    
    set the color space to YCbCr 4:4:4 on DFP-0 of GPU-0.

Option "ColorRange" "string"

    This option sets the preferred color range for all or a subset of the
    connected flat panels.

    The option string is a semicolon-separated list of device specific
    options. Each option can optionally be prepended with a display device
    name and a GPU specifier.
    
        "<dpy-0>: <tok>; <dpy-1>: <tok>; ..."
    
    
    Either full or limited color range may be selected as the preferred color
    range. The actual color range depends on the current color space, and will
    be overridden to limited color range if the current color space requires
    it. The current actual color range in use on the display can be queried
    with the following nvidia-settings command line:
    
        nvidia-settings --query=CurrentColorRange
    
    
    Possible arguments:
    
       o "Full": sets color range to full range. By default, full color range
         is set when the color space is RGB.
    
       o "Limited": sets color range to limited range. YCbCr444 supports only
         limited color range. Consequently, limited range is selected by the
         driver when color space is set to YCbCr444, and can not be changed.
    
    
    If the ColorRange option is not specified, or is incorrectly specified,
    then an appropriate default value is selected based on the selected color
    space.

    Examples:
    
        Option "ColorRange" "Limited"
    
    set the color range to limited on all flat panels.
    
        Option "ColorRange" "GPU-0.DFP-0: Limited"
    
    set the color range to limited on DFP-0 of GPU-0.

Option "ModeDebug" "boolean"

    This option causes the X driver to print verbose details about mode
    validation to the X log file. Note that this option is applied globally:
    setting this option to TRUE will enable verbose mode validation logging
    for all NVIDIA X screens in the X server.

Option "FlatPanelProperties" "string"

    This option requests particular properties for all or a subset of the
    connected flat panels.

    The option string is a semicolon-separated list of comma-separated
    property=value pairs. Each list of property=value pairs can optionally be
    prepended with a flat panel name and GPU specifier.
    
        "<DFP-0>: <property=value>, <property=value>; <DFP-1>:
    <property=value>; ..."
    
    
    Recognized properties:
    
       o "Dithering": controls the flat panel dithering configuration;
         possible values are: 'Auto' (the driver will decide when to dither),
         'Enabled' (the driver will always dither, if possible), and
         'Disabled' (the driver will never dither).
    
       o "DitheringMode": controls the flat panel dithering mode; possible
         values are: 'Auto' (the driver will choose possible default mode),
         'Dynamic-2x2' (a 2x2 dithering pattern is updated for every frame),
         'Static-2x2' (a 2x2 dithering pattern remains constant throughout the
         frames), and 'Temporal' (a pseudo-random dithering algorithm is
         used).
    
    
    Examples:
    
        Option "FlatPanelProperties" "DitheringMode = Static-2x2"
    
    set the flat panel dithering mode to Static-2x2 on all flat panels.
    
        Option "FlatPanelProperties" "GPU-0.DFP-0: Dithering = Disabled;
    DFP-1: Dithering = Enabled, DitheringMode = Static-2x2"
    
    set dithering to disabled on DFP-0 on GPU-0, set DFP-1's dithering to
    enabled and dithering mode to static 2x2.

Option "ProbeAllGpus" "boolean"

    When the NVIDIA X driver initializes, it probes all GPUs in the system,
    even if no X screens are configured on them. This is done so that the X
    driver can report information about all the system's GPUs through the
    NV-CONTROL X extension. This option can be set to FALSE to disable this
    behavior, such that only GPUs with X screens configured on them will be
    probed.

    Note that disabling this option may affect configurability through
    nvidia-settings, since the X driver will not know about GPUs that aren't
    currently being used or the display devices attached to them.

    Default: all GPUs in the system are probed.

Option "IncludeImplicitMetaModes" "boolean"

    When the X server starts, a mode pool is created per display device,
    containing all the mode timings that the NVIDIA X driver determined to be
    valid for the display device. However, the only MetaModes that are made
    available to the X server are the ones explicitly requested in the X
    configuration file.

    It is convenient for fullscreen applications to be able to change between
    the modes in the mode pool, even if a given target mode was not explicitly
    requested in the X configuration file.

    To facilitate this, the NVIDIA X driver will implicitly add MetaModes for
    all modes in the primary display device's mode pool. This makes all the
    modes in the mode pool available to full screen applications that use the
    XF86VidMode extension or RandR 1.0/1.1 requests.

    Further, to make sure that fullscreen applications have a reasonable set
    of MetaModes available to them, the NVIDIA X driver will also add implicit
    MetaModes for common resolutions: 1920x1200, 1920x1080, 1600x1200,
    1280x1024, 1280x720, 1024x768, 800x600, 640x480. For these common
    resolution implicit MetaModes, the common resolution will be the
    ViewPortIn, and nvidia-auto-select will be the mode. The ViewPortOut will
    be configured such that the ViewPortIn is aspect scaled within the mode.
    Each common resolution implicit MetaMode will be added if there is not
    already a MetaMode with that resolution, and if the resolution is not
    larger than the nvidia-auto-select mode of the display device. See Chapter
    12 for details of the relationship between ViewPortIn, ViewPortOut, and
    the mode within a MetaMode.

    The IncludeImplicitMetaModes X configuration option can be used to disable
    the addition of implicit MetaModes. Or, it can be used to alter how
    implicit MetaModes are added. The option can have either a boolean value
    or a comma-separated list of token=value pairs, where the possible tokens
    are:
    
       o "DisplayDevice": specifies the display device for which the implicit
         MetaModes should be created. Any name that can be used to identify a
         display device can be used here; see Appendix C for details.
    
       o "Mode": specifies the name of the mode to use with the common
         resolution-based implicit MetaModes. The default is
         "nvidia-auto-select". Any mode in the display device's mode pool can
         be used here.
    
       o "Scaling": specifies how the ViewPortOut should be configured between
         the ViewPortIn and the mode for the common resolution-based implicit
         MetaModes. Possible values are "Scaled", "Aspect-Scaled", or
         "Centered". The default is "Aspect-Scaled".
    
       o "UseModePool": specifies whether modes from the display device's mode
         pool should be used to create implicit MetaModes. The default is
         "true".
    
       o "UseCommonResolutions": specifies whether the common resolution list
         should be used to create implicit MetaModes. The default is "true".
    
       o "Derive16x9Mode": specifies whether to create an implicit MetaMode
         with a resolution whose aspect ratio is 16:9, using the width of
         nvidia-auto-select. E.g., using a 2560x1600 monitor, this would
         create an implicit MetaMode of 2560x1440. The default is "true".
    
       o "ExtraResolutions": a comma-separated list of additional resolutions
         to use for creating implicit MetaModes. These will be created in the
         same way as the common resolution implicit MetaModes: the resolution
         will be used as the ViewPortIn, the nvidia-auto-select mode will be
         used as the mode, and the ViewPortOut will be computed to aspect
         scale the resolution within the mode. Note that the list of
         resolutions must be enclosed in parentheses, so that the commas are
         not interpreted as token=value pair separators.
    
    Some examples:
    
    Option "IncludeImplicitMetaModes" "off"
    Option "IncludeImplicitMetaModes" "on" (the default)
    Option "IncludeImplicitMetaModes" "DisplayDevice = DVI-I-2,
    Scaling=Aspect-Scaled, UseModePool = false"
    Option "IncludeImplicitMetaModes" "ExtraResolutions = ( 2560x1440, 320x200
    ), DisplayDevice = DVI-I-0"
    
    
Option "IndirectMemoryAccess" "boolean"

    Some graphics cards have more video memory than can be mapped at once by
    the CPU (generally at most 256 MB of video memory can be CPU-mapped). This
    option allows the driver to:
    
       o place more pixmaps in video memory, which will improve hardware
         rendering performance but may slow down software rendering;
    
       o allocate buffers larger than 256 MB, which is necessary to reach the
         maximum buffer size on newer GPUs.
    
    
    On some systems, up to 3 gigabytes of virtual address space may be
    reserved in the X server for indirect memory access. This virtual memory
    does not consume any physical resources. Note that the amount of reserved
    memory may be limited on 32-bit platforms, so some problems with large
    buffer allocations can be resolved by switching to a 64-bit operating
    system.

    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    Default: on (indirect memory access will be used, when available).

Option "AllowSHMPixmaps" "boolean"

    This option controls whether applications can use the MIT-SHM X extension
    to create pixmaps whose contents are shared between the X server and the
    client. These pixmaps prevent the NVIDIA driver from performing a number
    of optimizations and degrade performance in many circumstances.

    Disabling this option disables only shared memory pixmaps. Applications
    can still use the MIT-SHM extension to transfer data to the X server
    through shared memory using XShmPutImage.

    Default: off (shared memory pixmaps are not allowed).

Option "SoftwareRenderCacheSize" "boolean"

    This option controls the size of a cache in system memory used to
    accelerate software rendering. The size is specified in bytes, but may be
    rounded or capped based on inherent limits of the cache.

    Default: 0x800000 (8 Megabytes).

Option "AllowIndirectGLXProtocol" "boolean"

    There are two ways that GLX applications can render on an X screen: direct
    and indirect. Direct rendering is generally faster and more featureful,
    but indirect rendering may be used in more configurations. Direct
    rendering requires that the application be running on the same machine as
    the X server, and that the OpenGL library have sufficient permissions to
    access the kernel driver. Indirect rendering works with remote X11
    connections as well as unprivileged clients like those in a chroot with no
    access to device nodes.

    For those who wish to disable the use of indirect GLX protocol on a given
    X screen, setting the "AllowIndirectGLXProtocol" to a true value will
    cause GLX CreateContext requests with the "direct" parameter set to
    "False" to fail with a BadValue error.

    Starting with X.Org server 1.16, there are also command-line switches to
    enable or disable use of indirect GLX contexts. "-iglx" disables use of
    indirect GLX protocol, and "+iglx" enables use of indirect GLX protocol.
    +iglx is the default in server 1.16. -iglx is the default in server 1.17
    and newer.

    The NVIDIA GLX implementation will prohibit creation of indirect GLX
    contexts if the AllowIndirectGLXProtocol option is set to False, or the
    -iglx switch was passed to the X server (X.Org server 1.16 or higher), or
    the X server defaulted to '-iglx'.

    Default: enabled (indirect protocol is allowed, unless disabled by the
    server).

Option "AllowUnofficialGLXProtocol" "boolean"

    By default, the NVIDIA GLX implementation will not expose GLX protocol for
    GL commands if the protocol is not considered complete. Protocol could be
    considered incomplete for a number of reasons. The implementation could
    still be under development and contain known bugs, or the protocol
    specification itself could be under development or going through review.
    If users would like to test the server-side portion of such protocol when
    using indirect rendering, they can enable this option. If any X screen
    enables this option, it will enable protocol on all screens in the server.

    When an NVIDIA GLX client is used, the related environment variable
    "__GL_ALLOW_UNOFFICIAL_PROTOCOL" will need to be set as well to enable
    support in the client.

Option "PanAllDisplays" "boolean"

    When this option is enabled, all displays in the current MetaMode will pan
    as the pointer is moved. If disabled, only the displays whose panning
    domain contains the pointer (at its new location) are panned.

    Default: enabled (all displays are panned when the pointer is moved).

Option "GvoDataFormat" "string"

    This option controls the initial configuration of SDI (GVO) device's
    output data format.
    
        Valid Values
        ---------------------------------------------------------------------
        R8G8B8_To_YCrCb444
        R8G8B8_To_YCrCb422
        X8X8X8_To_PassThru444
    
    
    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    Default: R8G8B8_To_YCrCb444.

Option "GvoSyncMode" "string"

    This option controls the initial synchronization mode of the SDI (GVO)
    device.
    
        Value             Behavior
        --------------    ---------------------------------------------------
        FreeRunning       The SDI output will be synchronized with the
                          timing chosen from the SDI signal format list.
        GenLock           SDI output will be synchronized with the external
                          sync signal (if present/detected) with pixel
                          accuracy.
        FrameLock         SDI output will be synchronized with the external
                          sync signal (if present/detected) with frame
                          accuracy.
    
    
    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    Default: FreeRunning (Will not lock to an input signal).

Option "GvoSyncSource" "string"

    This option controls the initial synchronization source (type) of the SDI
    (GVO) device. Note that the GvoSyncMode should be set to either GenLock or
    FrameLock for this option to take effect.
    
        Value             Behavior
        --------------    ---------------------------------------------------
        Composite         Interpret sync source as composite.
        SDI               Interpret sync source as SDI.
    
    
    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    Default: SDI.

Option "Interactive" "boolean"

    This option controls the behavior of the driver's watchdog, which attempts
    to detect and terminate GPU programs that get stuck, in order to ensure
    that the GPU remains available for other processes. GPU compute
    applications, however, often have long-running GPU programs, and killing
    them would be undesirable. If you are using GPU compute applications and
    they are getting prematurely terminated, try turning this option off.

    When this option is set for an X screen, it will be applied to all X
    screens running on the same GPU.

    Default: on. The driver will attempt to detect and terminate GPU programs
    that cause excessive delays for other processes using the GPU.

Option "BaseMosaic" "boolean"

    This option can be used to extend a single X screen transparently across
    display outputs on each GPU. This is like SLI Mosaic mode except that it
    does not require a video bridge connected to the graphics cards. Due to
    this Base Mosaic does not guarantee there will be no tearing between the
    display boundaries. Base Mosaic is supported on SLI configurations up to
    three display devices. It is also supported on Quadro FX 380, Quadro FX
    580 and all non-mobile NVS cards on all available display devices.

    Use this in conjunction with the MetaModes X configuration option to
    specify the combination of mode(s) used on each display. nvidia-xconfig
    can be used to configure Base Mosaic via a command like 'nvidia-xconfig
    --base-mosaic --metamodes=METAMODES' where the METAMODES string specifies
    the desired grid configuration. For example, to configure four DFPs in a
    2x2 configuration, each running at 1920x1024, with two DFPs connected to
    two cards, the command would be:
    
        nvidia-xconfig --base-mosaic --metamodes="GPU-0.DFP-0: 1920x1024+0+0,
    GPU-0.DFP-1: 1920x1024+1920+0, GPU-1.DFP-0: 1920x1024+0+1024, GPU-1.DFP-1:
    1920x1024+1920+1024"
    
    
Option "ConstrainCursor" "boolean"

    When this option is enabled, the mouse cursor will be constrained to the
    region of the desktop that is visible within the union of all displays'
    panning domains in the current MetaMode. When it is disabled, it may be
    possible to move the cursor to regions of the X screen that are not
    visible on any display.

    Note that if this would make a display's panning domain inaccessible (in
    other words, if the union of all panning domains is disjoint), then the
    cursor will not be constrained.

    This option has no effect if the X server doesn't support cursor
    constraint. This support was added in X.Org server version 1.10 (see "Q.
    How do I interpret X server version numbers?" in Chapter 7).

    Default: on, if the X server supports it. The cursor will be constrained
    to the panning domain of each monitor, when possible.

Option "UseHotplugEvents" "boolean"

    When this option is enabled, the NVIDIA X driver will generate RandR
    display changed events when displays are plugged into or unplugged from an
    NVIDIA GPU. Some desktop environments will listen for these events and
    dynamically reconfigure the desktop when displays are added or removed.

    Disabling this option suppresses the generation of these RandR events for
    non-DisplayPort displays, i.e., ones connected via VGA, DVI, or HDMI.
    Hotplug events cannot be suppressed for displays connected via
    DisplayPort.

    Note that probing the display configuration (e.g. with xrandr or
    nvidia-settings) may cause RandR display changed events to be generated,
    regardless of whether this option is enabled or disabled. Additionally,
    some VGA ports are incapable of hotplug detection: on such ports, the
    addition or removal of displays can only be detected by re-probing the
    display configuration.

    Default: on. The driver will generate RandR events when displays are added
    or removed.

Option "AllowEmptyInitialConfiguration" "boolean"

    Normally, the NVIDIA X driver will fail to start if it cannot find any
    display devices connected to the NVIDIA GPU.
    AllowEmptyInitialConfiguration overrides that behavior so that the X
    server will start anyway, even if no display devices are connected.

    Enabling this option makes sense in configurations when starting the X
    server with no display devices connected to the NVIDIA GPU is expected,
    but one might be connected later. For example, some monitors do not show
    up as connected when they are powered off, even if they are physically
    connected to the GPU.

    Another scenario where this is useful is in Optimus-based laptops, where
    RandR 1.4 display offload (see Chapter 32) is used to display the screen
    on the non-NVIDIA internal display panel, but an external display might be
    connected later.

    Default: off. The driver will refuse to start if it can't find at least
    one connected display device.

Option "InbandStereoSignaling" "boolean"

    This option can be used to enable the DisplayPort in-band stereo signaling
    done via the MISC1 field in the main stream attribute (MSA) data that's
    sent once per frame during the vertical blanking period of the main video
    stream. DisplayPort in-band stereo signaling is only available on certain
    Quadro boards.

    Default: off. DisplayPort in-band stereo signaling will be disabled.

Option "UseSysmemPixmapAccel" "boolean"

    Enables the GPU to accelerate X drawing operations using system memory in
    addition to memory on the GPU. Disabling this option is generally not
    recommended, but it may reduce X driver memory usage in some situations at
    the cost of some performance.

    This option does not affect the usage of GPU acceleration for pixmaps
    bound to GLX drawables, EGL surfaces, or EGL images. GPU acceleration of
    such pixmaps is critical for interactive performance.

    Default: on. When video memory is unavailable, the GPU will still attempt
    to accelerate X drawing operations on pixmaps allocated in system memory.

Option "ForceCompositionPipeline" "string"

    The NVIDIA X driver can use a composition pipeline to apply X screen
    transformations and rotations. Normally, this composition pipeline is
    enabled implicitly when necessary, or when the MetaMode token
    "ForceCompositionPipeline" is specified. This X configuration option can
    be used to explicitly enable the composition pipeline, even if the
    corresponding MetaMode token is not specified.

    The option value is a comma-separated list of display device names. The
    composition pipeline will be forced on for all display devices in the
    comma-separated list.

    Alternatively, the option value can be any boolean true string ("1", "on",
    "true", "yes"), in which case all display devices will have their
    composition pipeline enabled.

    By default, the option value is NULL.

Option "ForceFullCompositionPipeline" "string"

    This option has the same possible values and semantics as
    "ForceCompositionPipeline", but it additionally makes use of the
    composition pipeline to apply ViewPortOut scaling.

Option "AllowHMD" "string"

    Most Virtual Reality Head Mounted Displays (HMDs), such as the HTC VIVE,
    require special image processing. This means it is usually undesirable to
    display the X11 desktop on an HMD. By default, the NVIDIA X driver will
    treat any detected HMDs as disconnected. To override this behavior, set
    the X configuration option "AllowHMD" to "yes", or explicitly list the
    HMDs to allow (any other HMDs will continue to be ignored).

    Examples:
    
        Option "AllowHMD" "yes"
    
    
    
        Option "AllowHMD" "HDMI-0, HDMI-1"
    
    
Option "ConnectToAcpid" "boolean"

    The ACPI daemon (acpid) receives information about ACPI events like
    AC/Battery power, docking, etc. acpid will deliver these events to the
    NVIDIA X driver via a UNIX domain socket connection. By default, the
    NVIDIA X driver will attempt to connect to acpid to receive these events.
    Set this option to "off" to prevent the NVIDIA X driver from connecting to
    acpid. Default: on (the NVIDIA X driver will attempt to connect to acpid).

Option "AcpidSocketPath" "string"

    The NVIDIA X driver attempts to connect to the ACPI daemon (acpid) via a
    UNIX domain socket. The default path to this socket is
    "/var/run/acpid.socket". Set this option to specify an alternate path to
    acpid's socket. Default: "/var/run/acpid.socket".

Option "EnableACPIBrightnessHotkeys" "boolean"

    Enable or disable handling of ACPI brightness change hotkey events.
    Default: enabled

Option "3DVisionUSBPath" "string"

    When NVIDIA 3D Vision is enabled, the X driver searches through the usbfs
    to find the connected USB dongle. Set this option to specify the sysfs
    path of the dongle, from which the X driver will infer the usbfs path.

    Example:
    
    Option "3DVisionUSBPath" "/sys/bus/usb/devices/1-1"
    
    
Option "3DVisionProConfigFile" "string"

    NVIDIA 3D VisionPro provides various configuration options and pairs
    various glasses to sync to the hub. It is convenient to store this
    configuration information to re-use when X restarts. Filename provided in
    this option is used by NVIDIA X driver to store this information. Ensure
    that X server has read and write access permissions to the filename
    provided. Default: No configuration is stored.

    Example:
    
    Option "3DVisionProConfigFile" "/etc/nvidia_3d_vision_pro_config_filename"
    
    
Option "3DVisionDisplayType" "integer"

    When NVIDIA 3D Vision is enabled with a non 3D Vision ready display, use
    this option to specify the display type.
    
        Value             Behavior
        --------------    ---------------------------------------------------
        1                 Assume it is a CRT.
        2                 Assume it is a DLP.
        3                 Assume it is a DLP TV and enable the checkerboard
                          output.
    
    
    Default: 1

    Example:
    
    Option "3DVisionDisplayType" "1"
    
    
Option "3DVisionProHwButtonPairing" "boolean"

    When NVIDIA 3D Vision Pro is enabled, use this option to disable hardware
    button based pairing. Single click button on the hub to enter into pairing
    mode which pairs single pair of glasses at a time. Double click button on
    the hub to enter into a pairing mode which pairs multiple pairs of glasses
    at a time.

    Default: True

    Example:
    
    Option "3DVisionProHwButtonPairing" "False"
    
    
Option "3DVisionProHwSinglePairingTimeout" "integer"

    When NVIDIA 3D Vision Pro and hardware button based pairing are enabled,
    use this option to set timeout in seconds for pairing single pair of
    glasses.

    Default: 6

    Example:
    
    Option "3DVisionProHwSinglePairingTimeout" "10"
    
    
Option "3DVisionProHwMultiPairingTimeout" "integer"

    When NVIDIA 3D Vision Pro and hardware button based pairing is enabled,
    use this option to set timeout in seconds for pairing multiple pairs of
    glasses.

    Default: 10

    Example:
    
    Option "3DVisionProHwMultiPairingTimeout" "10"
    
    
Option "3DVisionProHwDoubleClickThreshold" "integer"

    When NVIDIA 3D Vision Pro and hardware button based pairing is enabled,
    use this option to set the threshold for detecting double click event of
    the button. Threshold is time in ms. within which user has to click the
    button twice to generate double click event.

    Default: 1000 ms

    Example:
    
    Option "3DVisionProHwDoubleClickThreshold" "1500"
    
    
Option "DisableBuiltin3DVisionEmitter" "boolean"

    This option can be used to disable the NVIDIA 3D Vision infrared emitter
    that is built into some 3D Vision ready display panels. This can be useful
    when an external NVIDIA 3D Vision emitter needs to be used with such a
    panel.

    Default: False

    Example:
    
    Option "DisableBuiltin3DVisionEmitter" "True"
    
    

______________________________________________________________________________

Appendix C. Display Device Names
______________________________________________________________________________

A "display device" refers to a hardware device capable of displaying an image.
Most NVIDIA GPUs can drive multiple display devices simultaneously.

Many X configuration options can be used to separately configure each display
device in use by the X screen. To address an individual display device, you
can use one of several names that are assigned to it.

For example, the "ModeValidation" X configuration option by default applies to
all display devices on the X screen. E.g.,

    Option "ModeValidation" "NoMaxPClkCheck"

You can use a display device name qualifier to configure each display device's
ModeValidation separately. E.g.,

    Option "ModeValidation" "DFP-0: NoMaxPClkCheck; CRT-1: NoVesaModes"


The description of each X configuration option in Appendix B provides more
detail on the available syntax for each option.

The available display device names vary by GPU. To find all available names
for your configuration, start the X server with verbose logging enabled (e.g.,
`startx -- -logverbose 5`, or enable the "ModeDebug" X configuration option
with `nvidia-xconfig --mode-debug` and restart the X server).

The X log (normally /var/log/Xorg.0.log) will contain a list of what display
devices are valid for the GPU. E.g.,

(--) NVIDIA(0): Valid display device(s) on Quadro 6000 at PCI:10:0:0
(--) NVIDIA(0):     CRT-0
(--) NVIDIA(0):     CRT-1
(--) NVIDIA(0):     DELL U2410 (DFP-0) (connected)
(--) NVIDIA(0):     NEC LCD1980SXi (DFP-1) (connected)



The X log will also contain a list of which display devices are assigned to
the X screen. E.g.,

(II) NVIDIA(0): Display device(s) assigned to X screen 0:
(II) NVIDIA(0):   CRT-0
(II) NVIDIA(0):   CRT-1
(II) NVIDIA(0):   DELL U2410 (DFP-0)
(II) NVIDIA(0):   NEC LCD1980SXi (DFP-1)


Note that when multiple X screens are configured on the same GPU, the NVIDIA X
driver assigns different display devices to each X screen. On X servers that
support RandR 1.2 or later, the NVIDIA X driver will create an RandR output
for each display device assigned to an X screen.

The X log will also report a list of "Name Aliases" for each display device.
E.g.,

(--) NVIDIA(0): Name Aliases for NEC LCD1980SXi (DFP-1):
(--) NVIDIA(0):   DFP
(--) NVIDIA(0):   DFP-1
(--) NVIDIA(0):   DPY-3
(--) NVIDIA(0):   DVI-I-3
(--) NVIDIA(0):   DPY-EDID-373091cb-5c07-6430-54d2-1112efd64b44


These aliases can be used interchangeably to refer to the same display device
in any X configuration option, as an nvidia-settings target specification, or
in NV-CONTROL protocol that uses similar strings, such as
NV_CTRL_STRING_CURRENT_METAMODE_VERSION_2 (available through the
nvidia-settings command line as `nvidia-settings --query CurrentMetaMode`).

Each alias has different properties that may affect which alias is appropriate
to use. The possible alias names are:


   o A "type"-based name (e.g., "DFP-1"). This name is a unique index plus a
     display device type name, though in actuality the "type name" is selected
     based on the protocol through which the X driver communicates to the
     display device. If the X driver communicates using VGA, then the name is
     "CRT"; if the driver communicates using TMDS, LVDS, or DP, then the name
     is "DFP"; if the driver communicates using S-Video, composite video, or
     component video, then the name is "TV".

     This may cause confusion in some cases (e.g., a digital flat panel
     connected via VGA will have the name "CRT"), but this name alias is
     provided for backwards compatibility with earlier NVIDIA driver releases.

     Also for backwards compatibility, an alias is provided that uses the
     "type name" without an index. This name alias will match any display
     device of that type: it is not unique across the X screen.

     Note that the index in this type-based name is based on which physical
     connector is used. If you reconnect a display device to a different
     connector on the GPU, the type-based name will be different.

   o A connector-based name (e.g., "DVI-I-3"). This name is a unique index
     plus a name that is based on the physical connector through which the
     display device is connected to the GPU. E.g., "VGA-1", "DVI-I-0",
     "DVI-D-3", "LVDS-1", "DP-2", "HDMI-3", "eDP-6". On X servers that support
     RandR 1.2 or later, this name is also used as the RandR output name.

     Note that the index in this connector-based name is based on which
     physical connector is used. If you reconnect a display device to a
     different connector on the GPU, the connector-based name will be
     different.

     When Mosaic is enabled, this name is prefixed with a GPU identifier to
     make it unique. For example, a Mosaic configuration with two DisplayPort
     devices might have two different outputs with names "GPU-0.DP-0" and
     "GPU-1.DP-0", respectively. See Appendix K for a description of valid GPU
     names.

   o An EDID-based name (e.g.,
     "DPY-EDID-373091cb-5c07-6430-54d2-1112efd64b44"). This name is a SHA-1
     hash, formatted in canonical UUID 8-4-4-4-12 format, of the display
     device's EDID. This name will be the same regardless of which physical
     connector on the GPU you use, but it will not be unique if you have
     multiple display devices with the same EDID.

   o An NV-CONTROL target ID-based name (e.g., "DPY-3"). The NVIDIA X driver
     will assign a unique ID to each display device on the entire X server.
     These IDs are not guaranteed to be persistent from one run of the X
     server to the next, so is likely not convenient for X configuration file
     use. It is more frequently used in communication with NV-CONTROL clients
     such as nvidia-settings.


When DisplayPort 1.2 branch devices are present, display devices will be
created with type- and connector-based names that are based on how they are
connected to the branch device tree. For example, if a connector named DP-2
has a branch device attached and a DisplayPort device is connected to the
branch device's first downstream port, a display device named "DP-2.1" might
be created. If another branch device is connected between the first branch
device and the display device, the name might be "DP-2.1.1".

Any display device name can have an optional GPU qualifier prefix. E.g.,
"GPU-0.DVI-I-3". This is useful in Mosaic configurations: type- and
connector-based display device names are only unique within a GPU, so the GPU
qualifier is used to distinguish between identically named display devices on
different GPUs. For example:

    Option "MetaModes"   "GPU-0.CRT-0: 1600x1200, GPU-1.CRT-0: 1024x768"

If no GPU is specified for a particular display device name, the setting will
apply to any devices with that name across all GPUs. Note that the GPU UUID
can also be used as the qualifier. E.g.,
"GPU-758a4cf7-0761-62c7-9bf7-c7d950b817c6.DVI-I-1". See Appendix K For
details.

______________________________________________________________________________

Appendix D. GLX Support
______________________________________________________________________________

This release supports GLX 1.4.

Additionally, the following GLX extensions are supported on appropriate GPUs:

   o GLX_EXT_visual_info

   o GLX_EXT_visual_rating

   o GLX_SGIX_fbconfig

   o GLX_SGIX_pbuffer

   o GLX_ARB_get_proc_address

   o GLX_SGI_video_sync

   o GLX_SGI_swap_control

   o GLX_ARB_multisample

   o GLX_NV_float_buffer

   o GLX_ARB_fbconfig_float

   o GLX_NV_swap_group

   o GLX_NV_video_out

   o GLX_EXT_texture_from_pixmap

   o GLX_NV_copy_image

   o GLX_ARB_create_context

   o GLX_EXT_import_context

   o GLX_EXT_fbconfig_packed_float

   o GLX_EXT_framebuffer_sRGB

   o GLX_NV_present_video

   o GLX_NV_multisample_coverage

   o GLX_EXT_swap_control

   o GLX_NV_video_capture

   o GLX_ARB_create_context_profile

   o GLX_EXT_create_context_es_profile

   o GLX_EXT_create_context_es2_profile

   o GLX_EXT_swap_control_tear

   o GLX_EXT_buffer_age

   o GLX_ARB_create_context_robustness

For a description of these extensions, see the OpenGL extension registry at
http://www.opengl.org/registry/

Some of the above extensions exist as part of core GLX 1.4 functionality,
however, they are also exported as extensions for backwards compatibility.

Unofficial GLX protocol support exists in NVIDIA's GLX client and GLX server
implementations for the following OpenGL extensions:

   o GL_ARB_geometry_shader4

   o GL_ARB_shader_objects

   o GL_ARB_texture_buffer_object

   o GL_ARB_vertex_buffer_object

   o GL_ARB_vertex_shader

   o GL_EXT_bindable_uniform

   o GL_EXT_compiled_vertex_array

   o GL_EXT_geometry_shader4

   o GL_EXT_gpu_shader4

   o GL_EXT_texture_buffer_object

   o GL_NV_geometry_program4

   o GL_NV_vertex_program

   o GL_NV_parameter_buffer_object

   o GL_NV_vertex_program4

Until the GLX protocol for these OpenGL extensions is finalized, using these
extensions through GLX indirect rendering will require the
AllowUnofficialGLXProtocol X configuration option, and the
__GL_ALLOW_UNOFFICIAL_PROTOCOL environment variable in the environment of the
client application. Unofficial protocol requires the use of NVIDIA GLX
libraries on both the client and the server. Note: GLX protocol is used when
an OpenGL application indirect renders (i.e., runs on one computer, but
submits protocol requests such that the rendering is performed on another
computer). The above OpenGL extensions are fully supported when doing direct
rendering.

GLX visuals and FBConfigs are only available for X screens with depths 16, 24,
or 30.

______________________________________________________________________________

Appendix E. Dots Per Inch
______________________________________________________________________________

DPI (Dots Per Inch), also known as PPI (Pixels Per Inch), is a property of an
X screen that describes the physical size of pixels. Some X applications, such
as xterm, can use the DPI of an X screen to determine how large (in pixels) to
draw an object in order for that object to be displayed at the desired
physical size on the display device.

The DPI of an X screen is computed by dividing the size of the X screen in
pixels by the size of the X screen in inches:

    DPI = SizeInPixels / SizeInInches

Since the X screen stores its physical size in millimeters rather than inches
(1 inch = 25.4 millimeters):

    DPI = (SizeInPixels * 25.4) / SizeInMillimeters

The NVIDIA X driver reports the size of the X screen in pixels and in
millimeters. On X.Org 6.9 or newer, when the XRandR extension resizes the X
screen in pixels, the NVIDIA X driver computes a new size in millimeters for
the X screen, to maintain a constant DPI (see the "Physical Size" column of
the `xrandr -q` output as an example). This is done because a changing DPI can
cause interaction problems for some applications. To disable this behavior,
and instead keep the same millimeter size for the X screen (and therefore have
a changing DPI), set the ConstantDPI option to FALSE.

You can query the DPI of your X screen by running:


    % xdpyinfo | grep -B1 dot


which should generate output like this:


    dimensions:    1280x1024 pixels (382x302 millimeters)
    resolution:    85x86 dots per inch



The NVIDIA X driver performs several steps during X screen initialization to
determine the DPI of each X screen:


   o If the display device provides an EDID, and the EDID contains information
     about the physical size of the display device, that is used to compute
     the DPI, along with the size in pixels of the first mode to be used on
     the display device.

     Note that in some cases, the physical size information stored in a
     display device's EDID may be unreliable. This could result in a display
     device's DPI being computed incorrectly, potentially leading to undesired
     consequences such as fonts that are scaled larger or smaller than
     expected. These issues can be worked around by manually setting a DPI
     using the "DPI" X configuration option, or by disabling the use of the
     EDID's physical size information for computing DPI by setting the
     UseEdidDpi X configuration option to "FALSE"'.

     If multiple display devices are used by this X screen, then the NVIDIA X
     screen will choose which display device to use. You can override this
     with the "UseEdidDpi" X configuration option: you can specify a
     particular display device to use; e.g.:
     
         Option "UseEdidDpi" "DFP-1"
     
     or disable EDID-computed DPI by setting this option to false:
     
         Option "UseEdidDpi" "FALSE"
     
     EDID-based DPI computation is enabled by default when an EDID is
     available.

   o If the "-dpi" commandline option to the X server is specified, that is
     used to set the DPI (see `X -h` for details). This will override the
     "UseEdidDpi" option.

   o If the DPI X configuration option is specified, that will be used to set
     the DPI. This will override the "UseEdidDpi" option.

   o If none of the above are available, then the "DisplaySize" X config file
     Monitor section information will be used to determine the DPI, if
     provided; see the xorg.conf or XF86Config man pages for details.

   o If none of the above are available, the DPI defaults to 75x75.


You can find how the NVIDIA X driver determined the DPI by looking in your X
log file. There will be a line that looks something like the following:

    (--) NVIDIA(0): DPI set to (101, 101); computed from "UseEdidDpi" X config
option


Note that the physical size of the X screen, as reported through `xdpyinfo` is
computed based on the DPI and the size of the X screen in pixels.

The DPI of an X screen can be poorly defined when multiple display devices are
enabled on the X screen: those display devices might have different actual
DPIs, yet DPI is advertised from the X server to the X application with X
screen granularity. Solutions for this include:


   o Use separate X screens, with one display device on each X screen; see
     Chapter 14 for details.

   o The RandR X extension version 1.2 and later reports the physical size of
     each RandR Output, so applications could possibly choose to render
     content at different sizes, depending on which portion of the X screen is
     displayed on which display devices. Client applications can also
     configure the reported per-RandR Output physical size. See, e.g., the
     xrandr(1) '--fbmm' command line option.

   o Experiment with different DPI settings to find a DPI that is suitable for
     all display devices on the X screen.


______________________________________________________________________________

Appendix F. i2c Bus Support
______________________________________________________________________________

The NVIDIA Linux kernel module now includes i2c (also called I-squared-c,
Inter-IC Communications, or IIC) functionality that allows the NVIDIA Linux
kernel module to export i2c ports found on board NVIDIA cards to the Linux
kernel. This allows i2c devices on-board the NVIDIA graphics card, as well as
devices connected to the VGA and/or DVI ports, to be accessed from kernel
modules or userspace programs in a manner consistent with other i2c ports
exported by the Linux kernel through the i2c framework.

You must have i2c support compiled into the kernel, or as a module, and X must
be running. The Linux kernel documentation covers the kernel and userspace
/dev APIs, which you may wish to use to access NVIDIA i2c ports.

For further information regarding the Linux kernel's i2c framework, refer to
the documentation for your kernel, located at .../Documentation/i2c/ within
the kernel source tree.

The following functionality is currently supported:


  I2C_FUNC_I2C
  I2C_FUNC_SMBUS_QUICK
  I2C_FUNC_SMBUS_BYTE
  I2C_FUNC_SMBUS_BYTE_DATA
  I2C_FUNC_SMBUS_WORD_DATA



______________________________________________________________________________

Appendix G. VDPAU Support
______________________________________________________________________________

This release includes support for the Video Decode and Presentation API for
Unix-like systems (VDPAU) on most GeForce 8 series and newer add-in cards, as
well as motherboard chipsets with integrated graphics that have PureVideo
support based on these GPUs.

Use of VDPAU requires installation of a separate wrapper library called
libvdpau. Please see your system distributor's documentation for information
on how to install this library. More information can be found at
http://freedesktop.org/wiki/Software/VDPAU/.

VDPAU is only available for X screens with depths 16, 24, or 30.

VDPAU supports Xinerama. The following restrictions apply:

   o Physical X screen 0 must be driven by the NVIDIA driver.

   o VDPAU will only display on physical X screens driven by the NVIDIA
     driver, and which are driven by a GPU both compatible with VDPAU, and
     compatible with the GPU driving physical X screen 0.


Under Xinerama, VDPAU performs all operations other than display on a single
GPU. By default, the GPU associated with physical X screen 0 is used. The
environment variable VDPAU_NVIDIA_XINERAMA_PHYSICAL_SCREEN may be used to
specify a physical screen number, and then VDPAU will operate on the GPU
associated with that physical screen. This variable should be set to the
integer screen number as configured in the X configuration file. The selected
physical X screen must be driven by the NVIDIA driver.


G1. IMPLEMENTATION LIMITS

VDPAU is specified as a generic API - the choice of which features to support,
and performance levels of those features, is left up to individual
implementations. The details of NVIDIA's implementation are provided below.


VDPVIDEOSURFACE

The maximum supported resolution is 8192x8192 for GPUs with VDPAU feature set
H, and 4096x4096 for all other GPUs.

The following surface formats and get-/put-bits combinations are supported:

   o VDP_CHROMA_TYPE_420 (Supported get-/put-bits formats are
     VDP_YCBCR_FORMAT_NV12, VDP_YCBCR_FORMAT_YV12)

   o VDP_CHROMA_TYPE_422 (Supported get-/put-bits formats are
     VDP_YCBCR_FORMAT_UYVY, VDP_YCBCR_FORMAT_YUYV)



VDPBITMAPSURFACE

The maximum supported resolution is 16384x16384 pixels.

The following surface formats are supported:

   o VDP_RGBA_FORMAT_B8G8R8A8

   o VDP_RGBA_FORMAT_R8G8B8A8

   o VDP_RGBA_FORMAT_B10G10R10A2

   o VDP_RGBA_FORMAT_R10G10B10A2

   o VDP_RGBA_FORMAT_A8


Note that VdpBitmapSurfaceCreate's frequently_accessed parameter directly
controls whether the bitmap data will be placed into video RAM (VDP_TRUE) or
system memory (VDP_FALSE). Note that if the bitmap data cannot be placed into
video RAM when requested due to resource constraints, the implementation will
automatically fall back to placing the data into system RAM.


VDPOUTPUTSURFACE

The maximum supported resolution is 16384x16384 pixels.

The following surface formats are supported:

   o VDP_RGBA_FORMAT_B8G8R8A8

   o VDP_RGBA_FORMAT_R10G10B10A2


For all surface formats, the following get-/put-bits indexed formats are
supported:

   o VDP_INDEXED_FORMAT_A4I4

   o VDP_INDEXED_FORMAT_I4A4

   o VDP_INDEXED_FORMAT_A8I8

   o VDP_INDEXED_FORMAT_I8A8


For all surface formats, the following get-/put-bits YCbCr formats are
supported:

   o VDP_YCBCR_FORMAT_Y8U8V8A8

   o VDP_YCBCR_FORMAT_V8U8Y8A8



VDPDECODER

In all cases, VdpDecoder objects solely support 8-bit 4:2:0 streams, and only
support writing to VDP_CHROMA_TYPE_420 surfaces.

The exact set of supported VdpDecoderProfile values depends on the GPU in use.
Appendix A lists which GPUs support which video feature set. An explanation of
each video feature set may be found below. When reading these lists, please
note that VC1_SIMPLE and VC1_MAIN may be referred to as WMV, WMV3, or WMV9 in
other contexts. Partial acceleration means that VLD (bitstream) decoding is
performed on the CPU, with the GPU performing IDCT and motion compensation.
Complete acceleration means that the GPU performs all of VLD, IDCT, and motion
compensation.


VDPAU FEATURE SETS A AND B

GPUs with VDPAU feature sets A and B are not supported by this driver.


VDPAU FEATURE SETS C, D, AND E

GPUs with VDPAU feature set C, D, or E support at least the following
VdpDecoderProfile values, and associated limits:

   o VDP_DECODER_PROFILE_MPEG1, VDP_DECODER_PROFILE_MPEG2_SIMPLE,
     VDP_DECODER_PROFILE_MPEG2_MAIN:
     
        o Complete acceleration.
     
        o Minimum width or height: 3 macroblocks (48 pixels).
     
        o Maximum width or height: 128 macroblocks (2048 pixels) for feature
          set C, 252 macroblocks (4032 pixels) wide by 253 macroblocks (4048
          pixels) high for feature set D, 255 macroblocks (4080 pixels) for
          feature set E.
     
        o Maximum macroblocks: 8192 for feature set C, 65536 for feature sets
          D or E.
     
     
   o VDP_DECODER_PROFILE_H264_MAIN, VDP_DECODER_PROFILE_H264_HIGH,
     VDP_DECODER_PROFILE_H264_CONSTRAINED_BASELINE,
     VDP_DECODER_PROFILE_H264_PROGRESSIVE_HIGH,
     VDP_DECODER_PROFILE_H264_CONSTRAINED_HIGH:
     
        o Complete acceleration.
     
        o Minimum width or height: 3 macroblocks (48 pixels).
     
        o Maximum width or height: 128 macroblocks (2048 pixels) for feature
          set C, 252 macroblocks (4032 pixels) wide by 255 macroblocks (4080
          pixels) high for feature set D, 256 macroblocks (4096 pixels) for
          feature set E.
     
        o Maximum macroblocks: 8192 for feature set C, 65536 for feature sets
          D or E.
     
     
   o VDP_DECODER_PROFILE_H264_BASELINE, VDP_DECODER_PROFILE_H264_EXTENDED:
     
        o Partial acceleration. The NVIDIA VDPAU implementation does not
          support flexible macroblock ordering, arbitrary slice ordering,
          redundant slices, data partitioning, SI slices, or SP slices.
          Content utilizing these features may decode with visible corruption.
     
        o Minimum width or height: 3 macroblocks (48 pixels).
     
        o Maximum width or height: 128 macroblocks (2048 pixels) for feature
          set C, 252 macroblocks (4032 pixels) wide by 255 macroblocks (4080
          pixels) high for feature set D, 256 macroblocks (4096 pixels) for
          feature set E.
     
        o Maximum macroblocks: 8192 for feature set C, 65536 for feature sets
          D or E.
     
     
   o VDP_DECODER_PROFILE_VC1_SIMPLE, VDP_DECODER_PROFILE_VC1_MAIN,
     VDP_DECODER_PROFILE_VC1_ADVANCED:
     
        o Complete acceleration.
     
        o Minimum width or height: 3 macroblocks (48 pixels).
     
        o Maximum width or height: 128 macroblocks (2048 pixels).
     
        o Maximum macroblocks: 8190
     
     
   o VDP_DECODER_PROFILE_MPEG4_PART2_SP, VDP_DECODER_PROFILE_MPEG4_PART2_ASP,
     VDP_DECODER_PROFILE_DIVX4_QMOBILE, VDP_DECODER_PROFILE_DIVX4_MOBILE,
     VDP_DECODER_PROFILE_DIVX4_HOME_THEATER,
     VDP_DECODER_PROFILE_DIVX4_HD_1080P, VDP_DECODER_PROFILE_DIVX5_QMOBILE,
     VDP_DECODER_PROFILE_DIVX5_MOBILE, VDP_DECODER_PROFILE_DIVX5_HOME_THEATER,
     VDP_DECODER_PROFILE_DIVX5_HD_1080P
     
        o Complete acceleration.
     
        o Minimum width or height: 3 macroblocks (48 pixels).
     
        o Maximum width or height: 128 macroblocks (2048 pixels).
     
        o Maximum macroblocks: 8192
     
     The following features are currently not supported:
     
        o GMC (Global Motion Compensation)
     
        o Data partitioning
     
        o reversible VLC
     
     

These GPUs also support VDP_VIDEO_MIXER_FEATURE_HIGH_QUALITY_SCALING_L1.

GPUs with VDPAU feature set E support an enhanced error concealment mode which
provides more robust error handling when decoding corrupted video streams.
This error concealment is on by default, and may have a minor CPU performance
impact in certain configurations. To disable this, set the environment
variable VDPAU_NVIDIA_DISABLE_ERROR_CONCEALMENT to 1.


VDPAU FEATURE SET F

GPUs with VDPAU feature set F support all of the same VdpDecoderProfile values
and other features as VDPAU feature set E. Feature set F adds:

   o VDP_DECODER_PROFILE_HEVC_MAIN:
     
        o Complete acceleration.
     
        o Minimum width or height: 128 luma samples (pixels).
     
        o Maximum width or height: 4096 luma samples (pixels) wide by 2304
          luma samples (pixels) tall.
     
        o Maximum macroblocks: not applicable.
     
     


VDPAU FEATURE SET G

GPUs with VDPAU feature set G support all of the same VdpDecoderProfile values
and other features as VDPAU feature set F. In addition, these GPUs have
hardware support for the HEVC Main 12 profile. VDPAU does not currently
support the HEVC Main 12 profile.


VDPAU FEATURE SET H

GPUs with VDPAU feature set H support all of the same VdpDecoderProfile values
and other features as VDPAU feature set G. Feature set H adds:

   o VDP_DECODER_PROFILE_HEVC_MAIN:
     
        o Complete acceleration.
     
        o Minimum width or height: 128 luma samples (pixels).
     
        o Maximum width or height: 8192 luma samples (pixels) wide by 8192
          luma samples (pixels) tall.
     
        o Maximum macroblocks: not applicable.
     
     


VDPVIDEOMIXER

The maximum supported resolution is 8192x8192 for GPUs with VDPAU feature set
H, and 4096x4096 for all other GPUs.

The video mixer supports all video and output surface resolutions and formats
that the implementation supports.

The video mixer supports at most 4 auxiliary layers.

The following features are supported:

   o VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL

   o VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL_SPATIAL

   o VDP_VIDEO_MIXER_FEATURE_INVERSE_TELECINE

   o VDP_VIDEO_MIXER_FEATURE_NOISE_REDUCTION

   o VDP_VIDEO_MIXER_FEATURE_SHARPNESS

   o VDP_VIDEO_MIXER_FEATURE_LUMA_KEY


In order for either VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL or
VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL_SPATIAL to operate correctly, the
application must supply at least 2 past and 1 future fields to each
VdpMixerRender call. If those fields are not provided, the VdpMixer will fall
back to bob de-interlacing.

Both regular de-interlacing and half-rate de-interlacing are supported. Both
have the same requirements in terms of the number of past/future fields
required. Both modes should produce equivalent results.

In order for VDP_VIDEO_MIXER_FEATURE_INVERSE_TELECINE to have any effect, one
of VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL or
VDP_VIDEO_MIXER_FEATURE_DEINTERLACE_TEMPORAL_SPATIAL must be requested and
enabled. Inverse telecine has the same requirement on the minimum number of
past/future fields that must be provided. Inverse telecine will not operate
when "half-rate" de-interlacing is used.

While it is possible to apply de-interlacing algorithms to progressive streams
using the techniques outlined in the VDPAU documentation, NVIDIA does not
recommend doing so. One is likely to introduce more artifacts due to the
inverse telecine process than are removed by detection of bad edits etc.


VDPPRESENTATIONQUEUE

The resolution of VdpTime is approximately 10 nanoseconds. At some arbitrary
point during system startup, the initial value of this clock is synchronized
to the system's real-time clock, as represented by nanoseconds since since Jan
1, 1970. However, no attempt is made to keep the two time-bases synchronized
after this point. Divergence can and will occur.

NVIDIA's VdpPresentationQueue supports two methods for displaying surfaces;
overlay and blit. The overlay method will be used wherever possible, with the
blit method acting as a more general fallback.

Whenever a presentation queue is created, the driver determines whether the
overlay method may ever be used, based on system configuration, and whether
any other application already owns the overlay. If overlay usage is
potentially possible, the presentation queue is marked as owning the overlay.

Whenever a surface is displayed, the driver determines whether the overlay
method may be used for that frame, based on both whether the presentation
queue owns the overlay, and the set of overlay usage limitations below. In
other words, the driver may switch back and forth between overlay and blit
methods dynamically. The most likely cause for dynamic switching is when a
compositing manager is enabled or disabled, and the window becomes redirected
or unredirected.

The following conditions or system configurations will prevent usage of the
overlay path:

   o Overlay hardware already in use, e.g. by another VDPAU, GL, or X11
     application, or by SDI output.

   o Desktop rotation enabled on the given X screen.

   o The presentation target window is redirected, due to a compositing
     manager actively running.

   o The environment variable VDPAU_NVIDIA_NO_OVERLAY is set to a string
     representation of a non-zero integer.

   o The driver determines that the performance requirements of overlay usage
     cannot be met by the current hardware configuration.


Both the overlay and blit methods sync to VBLANK. The overlay path is
guaranteed never to tear, whereas the blit method is classed as "best effort".

When TwinView is enabled, the blit method can only sync to one of the display
devices; this may cause tearing corruption on the display device to which
VDPAU is not syncing. You can use the environment variable
VDPAU_NVIDIA_SYNC_DISPLAY_DEVICE to specify the display device to which VDPAU
should sync. You should set this environment variable to the name of a display
device, for example "CRT-1". Look for the line "Connected display device(s):"
in your X log file for a list of the display devices present and their names.
You may also find it useful to review Chapter 12 "Configuring Twinview" and
the section on Ensuring Identical Mode Timings in Chapter 18.

A VdpPresentationQueue allows a maximum of 8 surfaces to be QUEUED or VISIBLE
at any one time. This limit is per presentation queue. If this limit is
exceeded, VdpPresentationQueueDisplay blocks until an entry in the
presentation queue becomes free.


G2. PERFORMANCE LEVELS

This documentation describes the capabilities of the NVIDIA VDPAU
implementation. Hardware performance may vary significantly between cards. No
guarantees are made, nor implied, that any particular combination of system
configuration, GPU configuration, VDPAU feature set, VDPAU API usage,
application, video stream, etc., will be able to decode streams at any
particular frame rate.


G3. GETTING THE BEST PERFORMANCE FROM THE API

System performance (raw throughput, latency, and jitter tolerance) can be
affected by a variety of factors. One of these factors is how the client
application uses VDPAU; i.e. the number of surfaces allocated for buffering,
order of operations, etc.

NVIDIA GPUs typically contain a number of separate hardware modules that are
capable of performing different parts of the video decode, post-processing,
and display operations in parallel. To obtain the best performance, the client
application must attempt to keep all these modules busy with work at all
times.

Consider the decoding process. At a bare minimum, the application must
allocate one video surface for each reference frame that the stream can use (2
for MPEG or VC-1, a variable stream-dependent number for H.264) plus one
surface for the picture currently being decoded. However, if this minimum
number of surfaces is used, performance may be poor. This is because
back-to-back decodes of non-reference frames will need to be written into the
same video surface. This will require that decode of the second frame wait
until decode of the first has completed; a pipeline stall.

Further, if the video surfaces are being read by the video mixer for
post-processing, and eventual display, this will "lock" the surfaces for even
longer, since the video mixer needs to read the data from the surface, which
prevents any subsequent decode operations from writing to the surface. Recall
that when advanced de-interlacing techniques are used, a history of video
surfaces must be provided to the video mixer, thus necessitating that even
more video surfaces be allocated.

For this reason, NVIDIA recommends the following number of video surfaces be
allocated:

   o (num_ref + 3) for progressive content, and no de-interlacing.

   o (num_ref + 5) for interlaced content using advanced de-interlacing.


Next, consider the display path via the presentation queue. This portion of
the pipeline requires at least 2 output surfaces; one that is being actively
displayed by the presentation queue, and one being rendered to for subsequent
display. As before, using thi