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ADITI MAJUMDER

University of California, Irvine, Phone: 949-824-8877
Department of Computer Science, Fax: 949-824-4056
4056 Donald Bren Hall, Email: majumder@ics.uci.edu
Irvine, CA 92697-3425 URL: http://www.cs.unc.edu/˜majumder

Areas Of Interest Multi-Projector Displays, Visualization, Computer Graphics, Computer Vision, Image Processing,
Human Perception, Virtual Reality, Human Computer Interaction, Visualization Tools.

Education University of North Carolina at Chapel Hill
PhD in Computer Science (1996- 2003).
Thesis: A Practical Framework to Achieve Perceptually Seamless Multi-Projector Displays

Jadavpur University, Calcutta, India
B.E in Computer Science and Engineering (1992-1996)
Silver Medalist in the Engineering Faculty for Overall Academic Performance in Senior Years (1994-1996)
Gold Medalist in the Engineering Faculty for Overall Academic Performance in Junior Years (1992-1994)

Experience Associate Professor (2008-Present)
Department of Computer Science, UC-Irvine

Assistant Professor (2003-2008)
Department of Computer Science, UC Irvine

Student Research Fellow (2001-2003)
Mathematics and Computer Science Division, Argonne National Laboratory

Givens Associate (Summer 2001)
Mathematics and Computer Science Division, Argonne National Laboratory

Graduate Student Fellow (Summer 1999)
Bell Laboratories, Holmdel, NJ

Graduate Student Researcher (1998-2001)
Department of Computer Science, UNC Chapel Hill

Courses/Tutorials/ Aditi Majumder and Behzad Sajadi
Panels Buidling your own Projection Based VR Display System,

Course Organizer, IEEE Virtual Reality, March 2010

Invited Author/Speaker on Large Format Displays
Projectors for Graphics,
ACM SIGGRAPH, 2008 (Course Organizer: Ramesh Raskar, Oliver Bimber)

Invited Panelist
The Future of Projector-Camera Systems
IEEE International Workshop on Projector-Camera Systems (PROCAMS), 2008

Aditi Majumder and Michael S. Brown,
Camera-Based Vision Techniques to Build Large-Area Multi-Projector Displays
Course Organizer, IEEE International Conference on Computer Vision and Pattern Recognition, June 2005

Aditi Majumder and Michael S. Brown,
Camera-Based Techniques for Building Large-Area Multi-Projector Displays
Course Organizer, ECCV (European Conference on Computer Vision), May 2004

Aditi Majumder and Michael S. Brown,
Building Large Area Displays
Course Organizer, Eurographics, September 2003

Aditi Majumder and Michael S. Brown,
Large-Scale Displays for the Masses: Techniques for Building Affordable and Flexible Multi-Projector Displays
Course Organizer, ACM SIGGRAPH, July 2003



Publications Book

B1. Aditi Majumder, Michael S. Brown, “ Practical Multi-Projector Display Design”, A. K. Peters,
August, 2007

Book Chapters

E2. Aditi Majumder, “Ubiquitous Displays”, Distributed Video Sensor Networks, Edited By B. Bhanu,
C.V. Ravishankar, A. K. Roy Chowdhury, H. Aghajan, D. Terzopolous, 2011

E1. Aditi Majumder, “Computer Graphics Optique: Optical Superposition of Projected Computer
Graphics”, Energy Simulation-Training, Ocean Engineering and Instrumentation, Research Papers of Link
Foundation Fellows, Volume 2, Brian J. Thompson (Ed.).

Refereed Journal Articles

J23. Aditi Majumder, Behzad Sajadi, “Advances in Large Area Displays: The Changing Face
of Visualization”, IEEE Computer, May, 2013.

J22. Behzad Sajadi, Aditi Majumder, Rosalia G. Schneider, Manuel Menezes De Oliveira Neto,
Ramesh Raskar, “Using Patterns to Encode Color Information in Dichromats”, IEEE Transactions
in Visualization and Computer Graphics, 2012, Presented in IEEE Information Visualization
2012 [26% acceptance].

J21. Behzad Sajadi, M. Gopi, Aditi Majumder, “Edge-Guided Resolution Enhancement in Projectors
Using Optical Pixel Sharing”, ACM Transactions on Graphics, 31(4), article 79, 2012, Presented
in ACM Siggraph, 2012 [21% acceptance].

J20. Dan Aliaga, Yu Hong Yeung, Alvin J. Law, Behzad Sajadi, Aditi Majumder, “Fast High-Resolution
Appearance Editing Using Superimposed Projections”, ACM Transactions on Graphics, 31(2),
article 13, 2012, Presented in ACM Siggraph 2012 [23% acceptance].

J19. Koel Das, Monica Siegenthaler, Aditi Majumder, Hans Keirstead, M. Gopi, “Automated Cell
Classification and Visualization for Analyzing Remyelination Therapy”, The Visual Computer,
27(12), pp. 1055-1069, 2011 [40% acceptance].

J18. Behzad Sajadi, Aditi Majumder, “Auto-Calibration of Multi-Projector CAVE-like Immersive
Environments”, IEEE Transactions on Visualization and Computer Graphics, 18(3), pp. 381-393, 2011
[26% acceptance].

J17. Alvin J. Law, Daniel Aliaga, Zygmut Pizlo, Behzad Sajadi, Aditi Majumder, “Perceptually Based
Appearance Modification for Complaint Appearance Editing”, Computer Graphics Forum, 30(8),
pp. 2288-2300, 2011, Presented in IEEE Scientific Visualization 2011 [29% acceptance].

J16. Behzad Sajadi, Aditi Majumder, Kazuhiro Hiwada, Atsuto Maki, Ramesh Raskar, “Switchable
Primaries Using Shiftable Layers of Color Filter Arrays”, ACM Transactions on Graphics, 30(4),
article 65, 2011, Presented in ACM Siggraph 2011 [18% acceptance].

J15. Behzad Sajadi, Aditi Majumder, “Automatic Registration of Multi-Projector Domes Using a Single
Uncalibrated Camera”, Computer Graphics Forum, 30(3), pp. 1161-1170, 2011, Presented in
EUROVIS 2011 [30% acceptance].

J14. Behzad Sajadi, Aditi Majumder, “Auto-Calibrating Projectors for Tiled Displays On Piecewise
Smooth Vertically Extruded Surfaces”, IEEE Transactions on Visualization and Computer Graphics,
17(9), pp. 1209-1222, 2011 [26% acceptance].

J13. Pablo Roman, Maxim Lazarov, Aditi Majumder, “A Scalable Distributed Paradigm for Multi-User
Interaction with Tiled Rear Projection Display Walls”, IEEE Transactions on Visualization
and Computer Graphics, 16 (6), 2010, Presented in IEEE Scientific Visualization 2010
[26% acceptance].

J12. Alvin J. Law, Daniel Aliaga, Aditi Majumder, “Projector Placement Planning for High Quality
Visualizations on Real World Colored Objects”, IEEE Transactions on Visualization and Computer
Graphics, 16(6), 2010, Presented in IEEE Scientific Visualization 2010 [26% acceptance]



J11. Behzad Sajadi, Aditi Majumder, “Scalable Multi-View Registration for Multi-Projector Displays
on Vertically Extruded Surfaces”, Computer Graphics Forum, 29(3), pp.1063-1072, 2010,
Presented at EUROVIS 2010 [30.5% acceptance].

J10. Behzad Sajadi, Aditi Majumder, “Markerless View-Independent Registration of Multiple
Distorted Projectors on Extruded Surfaces Using an Uncalibrated Camera”, IEEE Transactions on
Visualization and Computer Graphics, 15(6), pp. 1307-1316, 2009, Presented and Received
the Second Best Paper Award in IEEE Scientific Visualization 2009 [26% acceptance]

J9. Behzad Sajadi, Maxim Lazarov, M. Gopi, Aditi Majumder, “Color Seamlessness in Multi-Projector
Displays Using Constrained Gamut Morphing”, IEEE Transactions on Visualization and Computer
Graphics, 15(6), pp. 1317-1326, 2009, Presented at IEEE Scientific Visualization 2009
[26% acceptance]

J8. Aditi Majumder, Ezekiel Bhasker, Ray Juang, “Advances towards high-resolution pack-and-go
displays: A survey”, Journal for the Society of Information Display (JSID), Special Issue for Selected papers
from SID Symposium, 16(3), pp. 481-491, 2007. [7% acceptance]

J7. Ezekiel Bhasker, Ray Juang, Aditi Majumder, “Registration Techniques for Using Imperfect and
Partially Calibrated Devices in Planar Multi-Projector Displays”, IEEE Transactions on Visualization
and Computer Graphics (TVCG), 13(6), pp. 1368-1375, 2007, Presented in IEEE Visualization, 2007.

J6. Aditi Majumder, Sandra Irani, “Perception Based Contrast Enhancement of Images, ACM Transactions
on Applied Perception, Vol. 4, No. 3, Article 17, November 2007 .

J5. Ezekiel Bhasker, Pinaki Sinha, Aditi Majumder, “Asynchronous Distributed Calibration for Scalable
and Reconfigurable Multi-Projector Displays”, IEEE Transactions on Visualization and Computer Graphics,
12(5), pp 1101-1108, 2006, Presented in IEEE Visualization 2006.

J4. Aditi Majumder, M. Gopi, “Modeling Color Properties of Tiled Displays”, Computer Graphics Forum
Vol. 24, No. 2, pp 149-163, June, 2005.

J3. Michael Brown, Aditi Majumder, Ruigang Yang, “Camera Based Calibration Techniques for Seamless
Multi-Projector Displays”, IEEE Transactions on Visualization and Computer Graphics, Vol. 11, No. 2,
pp 193-206, March-April, 2005

J2. Aditi Majumder, Rick Stevens, “Perceptual Photometric Seamlessness in Projection-Based Tiled
Displays”, ACM Transactions on Graphics, Vol. 24, No. 1, pp 118-139, January 2005.

J1. Aditi Majumder, Rick Stevens, “Color Non-Uniformity in Projection Based Displays: Analysis and
Solutions”, IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 2, pp 177-188,
March-April, 2004.

Refereed Conference/Workshop Publications

C37. Mahdi Abbaspour Tehrani, Aditi Majumder, M. Gopi, “Undistorting Foreground Objects in
Wide Angle Images”, International Symposium on Multimedia, 2013 [25% acceptance].

C36. Il-Seok Oh, Jinseon Lee, Aditi Majumder, “Multi-scale Image Segmentation Using MSER”,
Computer Analysis of Images and Patterns (CAIP), August 2013.

C35. Behzad Sajadi, Duy-Quoc Lai, Alexander Iher, M. Gopi, Aditi Majumder, “Image Enhancement
in Projectors Via Optical Pixel Shift and Overlay”, International Conference on Computational
Photography (ICCP), April, 2013.

C34. Sangwon Chen, M. Gopi, Aditi Majumder, “HD-GraphViz: Highly Distributed Graph Visualization
on Tiled Displays”, Indian Conference on Vision, Graphics and Image Processing (ICVGIP), December

, 2012.

C33. Kiarash Amiri, Shih-Hsien Yang, Fadi Kurdahi, Magda El Zarki, Aditi Majumder,
“Collaborative Video Playback on a Federation of Tiled Mobile Projectors enabled by Visual Feedback”,
ACM Multimedia Systems, 2012 [30% acceptance].

C32. Kiarash Amiri, Shih-Hsien Yang, Fadi Kurdahi, Magda El-Zarki, Aditi Majumder, Camera Based
Video Synchronization for a Federation of Mobile Projectors, IEEE/ACM Workshop on



Projector Camera Systems, June 2011 [30% acceptance].

C31. Koel Das, Monica Siegenthaler, Aditi Majumder, Hans Keirstead, M. Gopi, “Automated Analysis
of Remyelination Therapy for Spinal Cord Injury”, International Conference on Computer Vision,
Graphics and Image Processing, Chennai, India, December 2010 [27% acceptance].

C30. Behzad Sajadi, Aditi Majumder, “Automatic Registration of Multiple Projectors on Swept
Surfaces”, ACM Virtual Reality and Software Technology, Hong Kong, November 2010
[25% acceptance].

C29. Behzad Sajadi, Maxim Lazarov, Aditi Majumder, “ADICT: Accurate Direct and Inverse Color
Transformation”, European Conference on Computer Vision (ECCV), Crete, Greece, September 2010
[27% acceptance].

C28. Aditi Majumder, Robert G. Brown, Hussein S. El-Ghoroury, “Display Gamut Reshaping for Color
Emulation and Balancing”, IEEE/ACM Workshop on Projector-Camera Systems, San Francisco,
June 2010,Best Paper Award [33% acceptance]

C27. Maxim Lazarov, Aditi Majumder, “Device-Independent Representation of Photometric Properties
of a Camera”, IEEE/ACM Workshop on Projector-Camera Systems, San Francisco, June 2010
[33% acceptance].

C26. Behzad Sajadi, Aditi Majumder, “Auto-Calibration of Cylindrical Multi-Projector Systems”,
Proceedings of IEEE Virtual Reality, Waltham, MA, March 2010, Best Paper Award [25% acceptance].

C25. Maxim Lazarov, Hamed Pirsiavash, Behzad Sajadi, Uddipan Mukherjee, Aditi Majumder,
“Data Handling Displays”, IEEE/ACM Workshop on Projector Camera Systems, Miami, FL, June,
2009, [33% acceptance].

C24. Behzad Sajadi, Aditi Majumder, “P-35:Maintaining Color Consistency Across Non-Linear Devices,”
SID Symposium Digest of Technical Papers, San Antonio, TX, May 2009.

C23. Hamed Pirsiavash, Vivek Singh, Aditi Majumder, Ramesh Jain, ”Shared Visualization Spaces
for Environment to Environment Communication”, Workshop on Media Arts, Science,
and Technology (MAST),Santa Barbara, CA, Jan 2009.

C22. Ezekiel Bhasker, Ray Juang, Aditi Majumder, “Advances Towards Next Generation Flexible
Multi-Projector Displays”, ACM Siggraph Workshop on Emerging Display Technologies, San Diego,
August, 2007.

C21. Ezekiel Bhasker, Aditi Majumder, “Geometric Modeling and Calibration of Planar Multi-Projector
Displays Using Rational Bezier Patches”, IEEE CVPR Workshop on Projector Camera Systems,
Minneapolis, Minnesota, June 2007 [40% acceptance].

C20. Ray Juang, Aditi Majumder, “Photometric Self-Calibration of a Projector-Camera System”, IEEE
CVPR Workshop on Projector Camera Systems, Minneapolis, Minnesota, June 2007 [40% acceptance].

C19. Ezekiel Bhasker, Aditi Majumder, “ Self Calibrating Tiled Displays”, SID Symposium Digest of
Technical Papers, Long Beach, May, 2007 [ 13% acceptance]

C18. Pinaki Sinha, Ezekiel Bhasker, Aditi Majumder, “Mobile Display Via Distributed Networked
Projector-Camera Systems”, IEEE CVPR Workshop on Projector Camera Systems, New York,
June 2006 [ 30% acceptance].

C17. Aditi Majumder, Sandra Irani “Contrast Enhancement of Images Using Human Contrast Sensitivity”
ACM Symposium on Applied Perception in Graphics and Visualization, pp 69-76, Boston, July 2006
[35% acceptance].

C16. Aditi Majumder, “Luminance Management for Seamless Multi-Projector Displays”, SID Symposium
Digest of Technical Papers, Volume 36, Issue 1, pages 1506-1509, Boston, May 2005 [10% acceptance].

C15. Kartic Subr, Aditi Majumder, Sandra Irani, “Greedy Algorithm for Local Contrast Enhancement
of Images”, International Conference on Image Analysis and Processing (ICIAP), pp 171-179, Cagliari,
Italy, September, 2005 [15% acceptance].

C14. Aditi Majumder, “Contrast Enhancement of Multi-Displays Using Human Contrast Sensitivity”,



IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp 377-382,
San Diego, June, 2005. [16% acceptance]

C13. Aditi Majumder, “Is Spatial Super-Resolution Feasible with Multiple Overlapping Projectors?”,
Proceedings of IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), Vol. 4
pp 209-212, Philadelphia, 2005. [27% acceptance]

C12. Aditi Majumder, “Camera Based Evaluation of Photometric Compensation Methods on Multi-Projector
Displays ”, Proceedings of IEEE International Conference on Image Processing, pp 3527-3530,
Singapore,2004 [25% acceptance].

C11. Michael S. Brown, Aditi Majumder, Ruigang Yang, “Camera Based Calibration Techniques for Seamless
Multi-Projector Displays ”, Applications of Computer Vision Workshop, Proceedings of
European Conference of Computer Vision, 2004. [40% acceptance]

C10. Aditi Majumder, David Jones, Matthew McCrory, Michael E Papka, Rick Stevens, “Using a Camera to
Capture and Correct Spatial Photometric Variation in Multi-Projector Displays”, IEEE International
Workshop on Projector-Camera Systems, 2003 [33% acceptance].

C9. Andrew Raij, Gennette Gill, Aditi Majumder, Herman Towles, Henry Fuchs, “PixelFlex2:
A Comprehensive, Automatic, Casually-Aligned Multi-Projector Display” IEEE International
Workshop on Projector-Camera Systems, 2003 [33% acceptance].

C8. Aditi Majumder and Rick Stevens, “Photometrically Continuous Imagery in Reconfigurable Large
Area Displays”, 3rd Annual High Information Content Display System Symposium, 2003 [25% acceptance].

C7. Aditi Majumder and Rick Stevens, “LAM: Luminance Attenuation Map for Photometric Uniformity
Across Projection Based Displays”, ACM Virtual Reality Software and Technology, pp 147-154, 2002
[25% acceptance]

C6. Justin Binns, Gennette Gill, Mark Hereld, David Jones, Ivan Judson, Ti Leggett, Aditi Majumder,
Matthew McCroy, Michael E. Papka, and Rick Stevens, “Applying Geometry and Color Correction to
Tiled Display Walls” (Poster), IEEE Visualization, 2002 [40% acceptance].

C5. Aditi Majumder, “Properties of Color Variation Across Multi-Projector Display”, SID Eurodisplay
Digest, pp 807-810, Nice, France, July, 2002 [30% acceptance].

C4. Aditi Majumder and M. Gopi, “Real Time Charcoal Rendering Using Contrast Enhancement Operators”,
Symposium of Non Photorealistic Animation and Rendering, pp 59-66, Annecy, France, June, 2002
[45% acceptance].

C3. Aditi Majumder and Greg Welch, “Computer Graphics Optique: Optical Superposition of Projected
Computer Graphics”, Eurographics Workshop on Virtual Environments/ Immersive Projection Technology
Stuttgart, Germany, May 2001. [40% acceptance]

C2. Aditi Majumder, Zhu He, Herman Towles and Greg Welch, “Achieving Color Uniformity Across
Multi-Projector Displays”, IEEE Visualization, pp 117-124, Salt Lake City, October, 2000. [34% acceptance]

C1. Aditi Majumder, M. Gopi, Brent W. Seales and Henry Fuchs, “Geometric Stitching for Real-Time
Panoramic Image Generation Using Texture Maps”, ACM Multimedia, pp 169-178, Orlando, October, 1999
[18% acceptance].

Technical Reports

T3. Ray Juang, Maxim Lazarov, Aditi Majumder, “Efficient Estimation and Device-Independent
Representation of Photometric Properties of a Projector-Camera Pair”, Technical Report
UCI, 08-11, 2008

T2. Behzad Sajadi, Aditi Majumder, “Smoothing Spatial Chrominance Variation Across Tiled
Displays”, Technical Report UCI, 08-04, 2008

T1. Aditi Majumder, Robert Brown, Hussein El Ghoroury “Display Gamut Reshaping for Color
Emulation and Balancing”, Technical Report UCI 08-04, 2008

System S1. Jakub Segen, Aditi Majumder, Senthil Kumar and Joshua Gluckman, “Virtual Music and Dance Controlled
Demonstration by the Gestures of a Human Conductor”, Emerging Technologies, ACM SIGGRAPH 1999.



Patents/Artifacts P10. Behzad Sajadi, Aditi Majumder, ”A Projector with Enhanced Resolution Via Optical
Pixel Sharing”, US Patent Provisional (UC Case No. 2012-446-2).

P9. Behzad Sajadi, Aditi Majumder, ”Augmented Reality Using Projector Camera Enabled Devices”
US Patent Provisional (UC Case No. 2012-134-2).

P8. Behzad Sajadi, Aditi Majumder, ”Automatic Registration of Multiple Projectors on a Dome or
Partial Dome”, US Patent Provisional (UC Case No. 2012-133-2).

P7. Aditi Majumder, Kiarash Amiri, Shih-Hsien Yang, Magda El Zarki, Fadi Kurdahi,
”Camera Based Video Synchronization of a Federation of Pico-Projectors”, US Patent Provisional
(UC Case No. 2011-860-1).

P6. Behzad Sajadi, Aditi Majumder, ”An Accurate Direct And Inverse Color Transfer Function”,
US Patent Pending (UC Case No. 2009-607-1).

P5. Aditi Majumder, M. Gopi, Behzad Sajadi, ”Color Seamlessness in Tiled Displays”, US Patent
Pending (UC Case No. 2009-608-1).

P4. Behzad Sajadi, Aditi Majumder, ”Markerless Geometric Registration Of Multiple Projectors
(With Or Without Distortions) On Cylindrical And Other Extruded Surfaces Using An Uncalibrated
Camera”, US Patent Pending (UC Case No. 2009-606-1).

P3. Aditi Majumder, Ezekiel Bhasker and Pinaki Sinha, “Apparatus and Method for Self Calibrating
Multi-Projector Displays Via Plug and Play Projectors”, United States Patent 7,942,530.

P2. Aditi Majumder and Rick Stevens, “Method to Smooth Photometric Variation Across
Multi-Projector Displays”, United States Patent 7,038,727.

P1. Aditi Majumder and Rick Stevens, “Optimal Luminance Smoothing to Achieve Color Seamlessness in
Tiled Displays”, Software artifact, Copyright June 10, 2005 (ANL software report ANL-SF-02-053)

Awards A12. nVidia Academic Partner, 2011.
A11. CUDA Teaching Center recognition for ICS from nVidia, 2011
A10. Midcareer Research Award, 2011, ICS, UCI.
A9. Best Paper Award, June, 2010, IEEE/ACM Workshop on Projector Camera Systems.
A8. Best Paper Award, March, 2010, IEEE Virtual Reality.
A7. Faculty Research Incentive Award, 2009, ICS, UCI.
A6. Runner Up for Best Paper Award, October, 2009, IEEE Visualization.
A5. NSF CAREER Award, 2009.
A4. Young Scientist of the Year, 2002, Argonne National Laboratory.
A3. Wallace Givens Fellow, Summer 2001, Argonne National Laboratory.
A2. Link Fellow, 2000 − 2001.
A1. Jagadish Bose National Science Talent Scholar (JBNSTS), India, 1992 − 1996.

Publicity A Wave of Hand, Calit2 Interface Magazine, Spring 2012.
Releases Attendance Up at IEEE Computer Society VR Conference, IEEE Computer Society News, 13 March, 2012.

Visualizing the Future, ACM Tech News, 13 Oct, 2011.
Visualizing the Future, Feature Panorama on UCI main website, October 2011.
CAREER Grant to Fund Ubiquitous Displays, Calit2 Newsroom, October 2009.
Coming Together At The Seams: Picture Perfect Projection, Calit2 Interface Magazine, Winter 2007.

Invited Talks Keynote Speaker, Brazilian Symposium on Virtual Reality, Rio de Janerio, May 2012.
Google, Mountain View, Oct 2011.
HP Research, Palo Alto, Oct 2011.
nVidia, Santa Clara, October 2011.
Keynote Speaker, International Symposium on Visual Computing, Las Vegas, Dec 2010.
Local IEEE Chapter, San Diego, Nov 2010.
Qualcomm, San Diego, Nov 2010.
Johannes Kepler University, Department of Computer Science, Linz, Austria, May 2010.
National University of Singapore, Computer Science Department, Singapore, Sep 2009
University of California – Los Angeles, Department of Computer Science, Oct 2008
Rochester Institute of Technology, Munsell Color Science Laboratory, Center for Imaging Science, Sep 2008
Yale University, Computer Science Department, Sep 2008
University of Utah, Scientific Computing and Imaging Institute, Sep 2008



University of California, Davis, SciDAC Institute for Ultrascale Visualization, Jun 2008
Northwestern University, EECS Department, May 2008
University of Maryland at College Park, Computer Science Dept, May 2008
Purdue University, Computer Science Dept, May, 2008
Jadavpur University, Kolkata, India, Dec 27, 2007.
MIT Media Labs, Cambridge, May 27, 2005.
Mitsubishi Electric Research Laboratory (MERL), Cambridge, May 27, 2005.
MICS Seminar at Department of Energy (DOE), Washington DC, Feb 25, 2004
University of Maryland at College Park, Computer Science Dept, October 2003.
Surgical Simulation Center, Washington DC, October 2003.
Indian Institute of Technology (IIT), Kharagpur, India, October, 2003.

Research Grants G6. Co-Primary Investigator, NSF EAGER: REAQTIVE - Resource Aggregation
and Quality Tradeoffs for Integration of Video projector Ensembles, 2010-2011,
$100,000 [Other Co-PIs: Magda El Zarki and Fadi Kurdahi].

G5. Sole Primary Investigator, NSF CAREER AWARD: Ubiquitous Displays Via
a Distributed Framework, 2009-2013, $637,000.

G4. Sole Primary Investigator, NSF SGER: Analysis of Solution Space for Achieving
Ubiquitous Pixels, 2007-2008, $70,000.

G3. Sole Primary Investigator, UCI COLCLR Travel Grant, 2006-2007, $3000.

G2. Sole Primary Investigator, UCI COLCLR Travel Grant, 2005-2006, $3000.

G1. Senior Investigator, ”An IT Infrastructure for Responding to the Unexpected”,
NSF 446617-21857, 2004-2009, $1,801,590.

Equipment Grants D5. nVidia donation for CUDA Teaching Center Facility, 2011, $26,000 (46 GPUs and TA funds)
D4. nVidia GPU donation, 2011, $16,000
D3. Canon Projector Donation, 2009, $9,000
D2. Epson Projector Donation, 2008, $9,600
D1. Canon Camera Donation, 2008, $2000

Collaborations I6. Advisory Member, Vortex Immersion, May 2012 - Present
I5. Advisory Member, Allosphere, UC-Santa Barbara, May 2012 - Present
I4. Advisory Consultant, Cubic Defense, Oct 2011 - Dec 2011
I3. Advisory Consultant, Disney Imagineering, Glendale, May 2009 - May 2010
I2. Advisory Board Member, Ostendo Technologies, Carlsbad, 2005 - 2008
I1. Consultant, Ostendo Technologies, Carlsbad, 2005 - 2007
Development of first multi-projector curved screen desktop, coming to market in 2009
http://www.youtube.com/watch?v=3ndH8yPHopI

Professional Program Co-Chair
Activities VISTech: Workshop on Visualization Infrastructure Systems and Technology,

SuperComputing, 2013.

Guest Editor
Special Section of Computer and Graphics on Advanced Displays, 2013.

Guest Editor
Special Issue of IEEE Transactions on Visualization and Computer Graphics
on Best Papers from IEEE Virtual Reality, 18(7), 2012.

General Co-Chair
IEEE Virtual Reality (VR), Orange County, 2012.

Program Co-Chair
IEEE Virtual Reality (VR), Singapore, March, 2011.

Program Chair
IEEE/ACM Workshop on Projector Camera Systems (PROCAMS), Miami, June 2009.

General Co-Chair
ACM Virtual Reality Software and Technology (VRST), Irvine, November 2007.



Program Co-Chair
IEEE CVPR Workshop on Projector Camera Systems (PROCAMS), San Diego, June, 2005.

Session Chair
IEEE CVPR Workshop on Projector Camera Systems (PROCAMS),June, 2007.
IEEE CVPR Workshop on Projector Camera Systems (PROCAMS),June, 2006.

Panels
NSF SBIR/STTR Phase I Panel, Photonic and Optical Systems, August 2013.
NSF CAREER Award Panel, IIS, April, 2008.

Program Committe
IEEE Visualization, October, 2011.
IEEE Virtual Reality, March 2011.
IEEE/ACM SIGGRAPH Workshop on Projector Camera Systems (PROCAMS), June, 2010
IEEE/ACM SIGGRAPH Workshop on Projector Camera Systems (PROCAMS), June, 2009
IEEE/ACM SIGGRAPH Workshop on Projector Camera Systems (PROCAMS), August, 2008
ACM Virtual Reality Software and Technology, Irvine, November 2007
IEEE CVPR Workshop on Projector Camera Systems (PROCAMS), June, 2007
IEEE CVPR Workshop on Projector Camera Systems (PROCAMS), June, 2006
IEEE CVPR Workshop on Projector Camera Systems (PROCAMS), June, 2005

Reviewer
ACM Transactions on Graphics (TOG)
IEEE Transactions on Visualization and Computer Graphics (TVCG)
IEEE Computer Graphics and Application
IEEE Computer Vision and Pattern Recognition (CVPR)
Journal of Electronic Imaging
International Journal of Image and Graphics
Eurographics
Computer Graphics Forum
Eurographics Symposium on Rendering
ACM Siggraph
IEEE Visualization
ACM Symposium on User Interface Software and Technology
International Journal of Computer Vision
Computer Aided Geometric Design
IEEE and ACM International Symposium on Mixed and Augmented Reality

Service to Director of Visualization Lab, CalIT2, Fall 2010 - Present
Campus Member of Visualization Lab, CalIT2, Inception - Fall 2010

Member of CalIT2 Divisional Council, 2010 - Present
Member of Student Outreach, Access and Retention Committee, ICS, 2010
Member of Faculty Recruitment Committee, CS, 2007
Member of Graduate Admissions Committee, CS, 2006 – 2008, 2010, 2011

Demos and Presentations of the Multi-Projector Display
Candidates Day, ICS, 2006
Video Presentation during Dedication Day of Bren Hall, 2007
Faculty Candidates, 2007
Several academic/industry visitors hosted by Calit2

New Course Undergraduate Course on Digital Image Processing (CS 111)
Development Graduate Course on Visual Computing (CS 211A)

Graduate Course on Visual Perception (CS 213)

Advisory Students Graduated
Activities Behzad Sajadi - (PhD - Summer 2012) - D. E. Shaw and Associates

Duy Quoc-Lai (MS - Spring 2011) – UCI PhD Student
Maxim Lazarov (M.S. - Summer 2010) – Dreamworks Animations
Pablo Roman (M.S. - Spring 2010) – Kyoto University, PhD Student
Mitsunubo Sugimoto (M.S. - Spring 2009)
Anna Diez (M.S. - Spring 2009)
Ray Juang (M.S. - Summer 2007) – Advanced Physics Lab, Maryland



Current Graduate Student Advisee
Duy Quoc-Lai (2011-Present) - Past Candidacy
Mahdi Abbaspour Tehrani (2012-Present)

Past Graduate Student Mentorship
Sridevi Maharaj (2011-2012)
Golnaz Ghasi (2011-2012)
Uddipan Mukherjee (2008 - 2009)
Ankit Gupta (2008 - 2009)
Ezekiel Bhasker (2006 - 2007)
Pinaki Sinha (2005 - 2006)

PhD Dissertation Committee
Kiarash Amiri - (PhD - Spring 2012)
Shih Hsien Yang - (PhD - Spring 2012)
Tien Bau - (PhD - Winter 2011)
Don Black - (PhD - Summer 2009)
Pablo Diaz Gutirrez (PhD - Spring 2008)

Undergraduate Student Advisee
Kitty Ho (2009-2010) – Rockwell Collins
Christopher Larsen (2009 - 2010) – Western Digital
Jason Kim (2004 - 2005) – Pixar Animations
Christopher Larson (SURF-IT fellowship for summer 2006)
Maxim Lazarov (SURP awardee for summer 2007, 2007- 2008), Best UROP Project Award for 2008 - MS, UCI

PhD Candidacy Committee
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Career Highlights 

 I joined UCI in 2003 as computer graphics and visualization (CG&V) faculty and 
received tenure in the CS Department in School of Information and Computer Science in 2009. I 
co-founded our lab in UCI, iGravi: Interactive Graphics and Visualization lab. I am also the 
Director of the Visualization Lab in Calit2, an institute on campus to foster collaborative 
research.  

Research 

   

Existing research area: My area of research from the inception of my career at UCI has 
been on novel projection based displays. Technically, this work has focused on automatic 
camera-based registration and interactive multi-user interfaces on multi-projector based virtual 
and spatially augmented reality environments making them affordable, accessible and extremely 
easy to deploy for lay-users as in hospitals, schools, and public spaces. In particular, we have 
been advancing the frontiers of research in handling large non-planar display surfaces (Figure 1) 
and in designing distributed scalable methodologies to interact with them (Figure 2). 

We have more than 40 publications in this direction (16 journal and 27 conference) in the 
best venues in graphics and visualization like IEEE Transactions on Visualization and Computer 
Graphics, ACM Transactions on Graphics, IEEE Visualization and ACM Siggraph. The high-
point was in 2009 when we dominated the session on Large Displays in IEEE Visualization with 
multiple papers and a best paper award. We won two more best paper awards in 2009-2010 
including one in the very top venue of IEEE Virtual Reality. All these culminated in a recent 
invited publication in IEEE Computer, 2013 in the special issue on visualization titled Advances 
in Large Area Displays: The Changing Face of Visualization bringing iGravi to limelight in 
terms of academic excellence and achievements. 

Figure 1: This figure shows a 4x2 array of 8 projectors on a cylindrical display (left) of 14’ radius and
angular span of 90 degrees (installation in CalIT building) and  a dome of 5ft radius at Bren Hall
(right). Both are at UC-Irvine and are registered completely automatically using a single uncalibrated
camera by applying the optimization techniques for constrained non-planar surfaces. It also shows a
swept surface display at Disney Imagineering (middle) which uses the automatic registration
techniques developed at UC-Irvine. The display is 30’wide, 22’ deep and 13’ high.  



  

 

 
Establishing a new direction of research: During the last two years we made inroads in 

a new area of research in computational cameras/displays. This research is considerably resource 
heavy requiring grooming students in multiple complementary skill sets (e,g. hardware and 
optical engineering, prototype building), expensive infrastructure and considerable finances. 
Hence, the main players in this domain are top ranking places like MIT, Columbia, Stanford and 
UC Berkeley. When comparing this with the stringent resources available at UCI in these very 
difficult times, we knew that our journey would be hard. But, we strategically chose important 
yet low-budget problems to work on and succeeded in building a new camera (Figure 3) and new 
projector (Figure 4) resulting in 6 high quality publications in the last 2 years at top venues like 
ACM Siggraph and IEEE Visualization. The high point was in ACM Siggraph 2012 where we 
made our place as one of the four papers in the only session for computation displays in ACM 
Siggraph 2012 – the other players being MIT, UC-Berkeley and Stanford. We hope to maintain 
such good work in this new direction of research in the future. 
 

 

 

Figure 2: A planar display wall built in UC-Irvine using a distributed network of 9 active displays in a
3xs3 array (left). The display is shown from the front undergoing distributed registration using QR codes
[10] (middle).  The display is then used for map visualization and navigation (right) via the distributed
scalable paradigm for simultaneous multi-user real-time interaction [11]. 

Figure 3: Left: Our prototype  flexible camera using shiftable color filter arrays. This allows us to have
the SNR quality of RGB camera during the daytime, the SNR quality of a CMY camera in the night time
and the higher color fidelity of a 6-primary camera via switchable modes on our single camera. Right:
Image quality from our camera matches the image quality of the different kinds of camera, but is available
in a single device. 



 

 

Industrial Impact of Research: My lab is one of the most active labs in the school of ICS 
in terms of patenting IPs. We have filed more than 5 cases for patents in the past two years and 
have been granted a couple of them. This has led to industrial collaborations with very visible 
partners like Disney Imagineering and nVidia. Disney is now using our technology to register 
multi-projector displays on their immersive virtual reality environment for in-house simulations. 
nVidia has recognized UCI as an nVidia Academic Partner with equipment donation (of around 
$16K) facilitating the application of my research to mobile collaborative displays, a problem of 
immense interest to nVidia. We have recently worked with a defense company, Cubic Defense, 
to transfer our IP to a real product of simulation systems for the US military. This is now being 
considered for licensing by Cubic. We have also helped the Allosphere team at UC-Santa 
Barbara to use our technology for registering their 16 projector display on the huge double-
hemisphere Allosphere facility. Currently, we are also working with Vortex Immersion of 
Hollywood to explore the application of our technology in the entertainment industry. Such 
endeavors require a tremendous amount of time and are often not well-recognized within the 
realm of academics, but nevertheless are very useful in being recognized as an academically 
excellent research facility. 

Funding: My main source of funding for supporting my students has been the NSF 
CAREER award ($637K) I was granted in 2009. This proposal titled Ubiquitous Displays Via a 
Distributed Framework was one of the select few of the awards chosen to be supported from 
ARRA (American Recovery and Reinvestment Act) funds. I had also secured two SGER 
fundings – one as sole PI ($70K) and another with two Co-PIs ($100K). However, recently 
computer graphics and visualization (CG&V) funding in NSF has become very stringent (often 

Figure 4: This figure shows our concept and prototype of our variable resolution projector. Left: This
illustrates the basic concept of decomposing a target high resolution image, I, to a high resolution edge
image, Ie and a complementary low resolution non-edge image, Ine. Ie and Ine are then displayed in a time
sequential manner to create an image with spatially varying resolution where edges are displayed at a
higher pixel density than the rest of the image. We call this the edge-enhanced image, Iv. Iv is perceptually
close to I. Middle: The image from the enhanced-resolution projector compared with a target high-
resolution image and a low resolution image. Note that the edge-enhanced image is perceptually almost
indistinguishable from the target high-resolution image. Right: A side view of our prototype enhanced-
resolution projector that achieves 1024x768 edge-enhanced images by cascading two light modulator
panels of 512x384 resolution. The numbers in the image are in millimeters. 



less than 5% success rates), as can be attested by many members of the community. The result of 
this is the last three of my proposals at NSF has been declined despite having a rating of highly 
competitive. Funding for graphics has been severely impacted by the recent development in NSF 
to remove any CG&V representation and merge it with computer vision. I am now in the pursuit 
of alternate funding sources and am starting collaborations to aid applications of CG&V in 
domains that impact society directly like health and education.  

Education 

 Teaching: I have been instrumental in designing several new courses in ICS. These 
include a UG course in Digital Image Processing and two graduate courses, Visual Perception 
and Visual Computing. The course on Visual Computing has been especially successful and has 
been designated as a core graduate course being the entry point course for students before they 
can take advanced courses in computer graphics, computer vision and image processing. 

 UG Mentoring: I have been strongly involved in UG mentoring. Initial infrastructure in 
my lab was set up by UG student Jason Kim in 2005. Jason was placed in Pixar after graduation. 
UG Maxim Lazarov pursued UG research with me as a SURP (Summer Undergraduate Research 
Program) Fellow in 2007-2008 and was awarded the Graduating Senior with Outstanding 
Research Contribution from the school in 2008. He works in Dreamworks Entertainment. 
Finally, more recently I mentored UG Kitty Ho and Christopher Larsen in iGravi who were 
placed in Rockwell Collins and Western Digital in 2012 respectively.  

Graduate Mentoring: I have graduated a team of good students in the past few years 
placed today in top institutions. I have graduated an outstanding PhD student in Behzad Sajadi in 
summer 2012. Behzad had almost 20 publications when he finished (16 of which were his last 
two years), all in top venues making him one of the most outstanding students to ever graduate 
from our department, as many of our colleagues would attest. This helped him to get multiple 
excellent job offers including a postdoc position in MIT and CMU, a research scientist position 
at nVidia research to head their displays team, and a research financial analyst position at D.E. 
Shaw. I also groomed a set of excellent masters students, namely Maxim Lazarov (currently in 
Dreamworks), Ray Juang (currently in Google), and Pablo Roman (currently a PhD student in 
Kyoto University). Currently, I have two good PhD students who are working with me for the 
past year or two. I hope that they will graduate and get placed in similarly great places as my 
earlier students.  

My research requires skill-sets that are not limited to traditional computer science (CS) 
training. In our lab, we have built cameras from scratch, opened up projector hardware and 
modified it, and built large VR and spatially augmented reality systems.  In addition to complex 
software/algorithm development, as is common in CS, this needs an innate interest in working 
with hardware (including cameras, projectors, and optics) and programming them; and 
willingness to learn topics in domains like electrical engineering, electronics and optical 



engineering. This has often been a deterrent in retaining PhD students in my group even after 
providing them a good start to their PhD career with solid publications. Pinaki Sinha moved to a 
different group after spending two years in my lab even after having two top quality IEEE 
Visualization paper. Uddipan Mukherjee moved to a different advisor after spending one year in 
my lab even after having a good publication in IEEE Workshop in Projector Camera Systems in 
the very first year of PhD. On the other hand, I did get lucky to get students like Maxim Lazarov, 
Ray Huang, Ezekiel Bhasker, and Pablo Roman who had the required inclination to work with 
both software and hardware and spent two extremely productive years in my lab (all have 
multiple top quality publications in IEEE Transactions on Visualization and Computer Graphics 
and IEEE Visualization). However, at the end of these two years, these students gathered a set of 
complementary expertise which is rather unique and rare to find. Hence, exceptionally lucrative 
offers from the industry made them quit with an MS without staying for PhD program. Maxim 
Lazarov left with MS to Dreamworks, Ray Juang left with MS to Google, and Ezekiel Bhasker 
dropped out of the program and joined Qualcomm. The only exception to this has been Pablo 
Roman who left with MS and is pursuing PhD at Kyoto University instead of UCI due to 
personal reasons. 

 Other Pedagogical Activities: I have been active in educating the CG&V community at 
large via my book titled Practical Multi-Projector Display Design. I have been actively offering 
peer-reviewed courses in premium graphics/vision venues like ACM Siggraph (2003 and 2008), 
IEEE CVPR(2005), and Eurographics(2004). I have also been invited to be an invited 
speaker/author on Large Format Displays for the course on Projectors in Graphics in Siggraph 
2008 and as a panelist in the expert invited panel on The Future of Projector-Camera Systems at 
the IEEE/ACMWorkshop on Projector Camera Systems in 2008. I have also been actively 
involved in speaking assignments across the world to expose and educate professionals and 
students in the newest research on displays, cameras, virtual reality and augmented reality. 

Service  

Academic and research excellence alone is not sufficient to bring an institution to 
limelight or to make a dent in the map of CG&V. To make this happen, one has to serve the 
community in various leadership roles. I have been serving in such roles, both for ICS on campus 
and the CG&V community at large for the past few years. When I joined UCI in 2003, we had 
only two junior CG&V faculty with almost no presence in CG&V.  We believe that such service 
roles have helped us to put UCI in the CG&V map. 

In CG&V community: Fortunately, some prominent service opportunities came my way. 
I was asked to host IEEE Virtual Reality (VR) 2012, the top international virtual reality 
conference. With the help of my students, I was able to host one of the best IEEE VR 
conferences in recent years. We took advantage of our location and weather to spearhead a 
publicity campaign which resulted in 2012 conference being the most attended one in the history 
of IEEE VR and was featured in the IEEE Computer Society News in March 2012 titled 



Attendance Up at IEEE Computer Society VR Conference. Further, we used this opportunity to 
arrange for an Open House at our iGravi Lab which brought in more than 450 attendees from all 
over the world to UCI. The stage was already set by serving as the Program Co-Chair for IEEE 
VR the previous year (2011) and we believe that hosting the conference in 2012 provided us the 
perfect opportunity to showcase our high quality research to the computer graphics and 
visualization community at large.  Hosting VR 2012 provide me with the opportunity to serve as 
a guest co-editor for IEEE Transactions on Visualization and Computer Graphics (TVCG) 
Special Issue on Best Papers from IEEE VR 2011. Such publicity always serves the lab and 
campus positively and brought forth invitations for me to be keynote speaker in various reputed 
venues like International Conference on Visual Computing 2010 and Brazilian Symposium on 
Virtual Reality 2012.  

In Campus:  I have been an active and visible member of the Visualization Lab of Calit2 
since its inception running several demos for the many high profile visitors to CaliIt2. For the 
past three years, I have been the Director of the Visualization Lab at Calit2. During this time, my 
lab has received tremendous visibility on campus via the week-long feature panorama on UCI 
main website on our lab titled Visualizing the Future. This feature also made it to ACM Tech 
News providing a very positive image to UCI in the CG&V community at large. My work was 
also featured multiple times in the Calit2 Interface magazine, the most recent one being the one 
titled A Wave of Hand in its Spring 2012 issue which focuses on collaborative technologies. 
Finally, I took the opportunity given by the tremendous amount of GPU programming used in 
different programs in the school of ICS to give it adequate exposure at nVidia. This resulted in 
our school of ICS being recognized as one of the few CUDA Teaching Centers around the globe. 
As part of this process, we were donated around 50 latest nVidia GPUs ($16K) to equip the CS 
labs and some funding ($12K) to train personnel in aiding students with GPU programming.  

Summary 

I believe that the all-around academic, industrial and public impact of the research and 
other pedagogical activities conducted in my lab have been well appreciated by the academic 
community. The tremendous amount of hard work to maintain this excellence has expressed 
itself positively making UCI a strong name in CG&V.  This visibility and reputation was built 
from scratch, brick-by-brick, through consistent quality research and dedicated service over the 
past years. We are proud of our achivements and we will continue to make significant impact in 
academia and to the public.  
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Large Area 
Displays: The 
Changing 
Face of 
Visualization

Aditi Majumder, University of California, Irvine

Behzad Sajadi, D.E. Shaw & Co

Although very large immersive displays 
that can accommodate current data’s 
scale, resolution, and complexity have 
progressed rapidly in the past decade 
and are now accessible to lay consumers, 
installation and maintenance challenges 
remain.

V isualization is a large domain that encompasses 
the science that deals with massive data 
processing, display, and interaction. The term 
usually refers to a cyclic process in which 

interaction with the displayed visualization should trigger 
further processing and analyses. Thus, the quality of 
displays, particularly the large area displays so useful 
in collaborative projects, is critical to visualization’s 
successful practical application. In that sense, 
visualization is the body, and the display is the face for 
expression, communication, and interaction. Without a 
high-quality display, visualization has no more utility 
than a body without a face.

We underline this synergistic relationship to make 
an important point: the tremendous advances in data 
processing techniques for large-scale visualization would 
have been futile without the past decade’s commensurate 
progress in large area display technology and its 
breathtaking promise for the future. 

A survey of work from the early 1990s to the present 
reveals that the display community is at a golden moment 
in large area display development in which it is enjoying the 
fruit of recent phenomenal progress and identifying open 
problems and ambitious visions for the next generation 
to explore. 

A WIDER VIEW
In the early 1990s, single desktop monitors were 

the norm—the high end being a 19-inch diagonal with 
about a 250,000-pixel resolution. Data, in contrast, was 
entering the realm of petabytes and terabytes to meet the 
simulation and visualization demands of national projects 
in various scientific domains. Visualization, in particular, 
became an essential tool for most projects, which also 
depended on colocated multiuser collaboration. The data 
scale and resolution that these projects required along 
with their reliance on collaboration were way beyond what 
narrow field-of-view desktop displays could handle.

To meet the growing demand for visualization tools, 
in 1993 researchers at the Electronic Visualization 
Laboratory at the University of Illinois at Chicago 
introduced the first Cave Automatic Virtual Environment 
(CAVE), a display of three to five walls that resembled a 
room. As Figure 1a shows, each wall has one or more 
mono or stereoscopic projectors, enabling an unforeseen 
degree of immersion. Virtual reality systems incorporate 
versions of these CAVEs with interactive joysticks and 
head-tracking devices to facilitate view-dependent 
navigation and simulation tasks.
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By the late 1990s, engineers were synchronously 
shuttering CAVE projectors with active stereo glasses to 
provide a 3D stereoscopic experience. However, resolution 
was still limited to less than 1 megapixel per wall, thus not 
even coming close to the scale and resolution demands 
of scientific and information visualization applications. 
Moreover, CAVEs were focused on single-head tracking, 
which precluded multiuser applications. 

During this same time, very large planar display walls 
such as those shown in Figures 1b-1d were emerging. 
In these displays, multiple projectors overlapped their 
respective boundaries on a planar projection surface to 
create a large display wall. Table 1 lists the details of some 
of these displays. 

Figures 2a-2c show one of the projectors and some prob-
lems on the display walls. Setup was a major drawback to 
such displays. Overlapping high-gained rear projection 
screens alleviated the hot spot issue—brighter in the center 
than on the fringes—but overlapping imagery required 

sophisticated mounts with six degrees of freedom that en-
gineers had to manually adjust to align each projector with 
its neighbors or to align image content across projectors 
(geometric registration). Such tinkering took many work-
hours, even for setups with only two to four projectors, and 
still did not correct the hot spot issue. 

To alleviate this problem, engineers placed metal masks 
on the optical path between the projector and screen in an 
attempt to blend the two projectors’ contributions to the 
overlap in a complementary manner. However, as Figures 
2c and 2d show, this remedy did not allow a fine per-
pixel control, which resulted in a screen door effect—an 
image viewed as if through a screen door. The large color 
variations across projectors exacerbated the effect, even 
when projectors were the same brand. 

Traditional semiautomatic color management 
techniques, such as gamut transformation and matching, 
did not help because multiprojector displays produced 
unprecedented degrees of spatial brightness and color 

Figure 1. Early large area displays. (a) University of Illinois at Chicago’s CAVE and (b) Princeton University’s 18-megapixel 
display wall, which uses a 6 × 4 array of 24 projectors. (c) UCI’s 7-megapixel wall, which uses a 3 × 3 array of nine rear 
projectors, showing (d) a completely seamless image that looks like a single projector display, although it comes from 
nine projectors. The UCI projectors had severe color variations, which researchers alleviated by developing camera-based 
automatic registration software.

Figure 2. Obstacles in image and projection tuning. (a) A projector mount with six degrees of freedom, which required time-
consuming manual tinkering to adjust the projector’s position to align image content. (b) Error in geometric registration at the 
overlap of four projectors. (c) Images suffered from color variation and brightness hot spots at overlaps. (d) Correcting hot spots 
using metal attenuation masks often produced an image that resembled what the viewer might see through a screen door. 

Table 1. Very large planar display walls in the late 1990s.

Laboratory Projector array Display size (ft.) Resolution (megapixels)

Princeton 6 × 4 array of 24 rear projectors 18 × 18 ~18 (6,000 × 3,000)

Argonne National Lab 5 × 3 array of 15 rear projectors 16 × 8 ~10 (5,000 × 2,000)

Argonne National Lab 3 × 2 array of six rear projectors (mobile)   4 × 3 ~3 (2,000 × 1,500)

(a)

(a)

(b)

(b)

(d)

(d)

(c)

(c)
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variations. Thus, installing and maintaining such a system 
was labor intensive and expensive, requiring an in-house 
maintenance crew.1 

AUTOMATIC REGISTRATION
The obvious approach to a more sustainable solution 

was to use a camera to capture the display properties 
at a very high resolution and then correct the results 
automatically. By the late 1990s, computer vision research 
in panoramic image generation was making significant 
progress, producing techniques similar to the process for 
registering images from multiple projectors. As a result, 
the next decade saw a phenomenal amount of work in 
camera-based automatic geometric registration and color 
seamlessness—removing perceived spatial variations in 
color. 

In these automated solutions,2 one or more cameras 
provided feedback to a server that controlled the multiple 
projectors and applied the appropriate warps and 
attenuations at a per-pixel resolution to achieve a seamless 
display. The color seamlessness problem remained open 
until 2009, when UCI researchers developed a constrained 
gamut morphing approach3 that enabled the completely 
automatic deployment and maintenance of large planar 
display walls. 

Researchers at the University of North Carolina, Chapel 
Hill (UNC), subsequently used automatic deployment to 
create reconfigurable display walls by coupling front 
projection systems with mirrors mounted on pan-tilt units 
to direct the light on a planar wall.2 Figure 3 shows such 
a projector setup. These flexible units made it possible to 
change the display’s form factor, size, and resolution on 
demand, enabling the same six projectors to be in a 6 × 1 
array for a wide-format display and then in a 3 × 2 array 
for a display with 4:3 aspect ratio. Automatic registration 
after each reconfiguration made it possible to create a 
seamless display in minutes. At the same time, new 

distributed rendering paradigms were efficiently rendering 
large amounts of 3D data  in real time, which made these 
reconfigurable displays highly suitable for any large data 
visualization application.4,5

Around the same time, the advent of thin LCD panels 
enabled researchers to build display walls of multiple LCD 
panels. Figure 4a shows UCI’s HiperWall, the first 55-panel 
setup. Similarly, a 70-panel HiperSpace was built in the 
Immersive Visualization Lab at the University of California, 
San Diego (UCSD).

Because removing the seams in such LCD wall displays 
and economically mounting them are formidable 
engineering obstacles, vendors offered these displays, 
shown in Figure 4b, only as expensive turnkey solutions 
that lacked the flexibility of reconfiguration. Even so, 
because distributed rendering architectures like the 
Scalable, Adaptable Graphics Environment make it easy 
to port visualization applications on these walls, they are 
still a popular option for some visualization environments.

IMMERSIVE DISPLAYS
By 2007, display walls literally changed the face of 

visualization systems by becoming the most popular 
option for large-scale visualization. However, it soon 
became evident that complex multidimensional data 
demanded immersive environments as well as scale and 
resolution. For many applications, the user needed a sense 
of presence and immersion to effectively navigate, modify, 
and visualize data.

This dream of a completely immersive display was not 
new. Henry Fuchs of UNC first envisioned such immersion 
in his 1990s Office of the Future (OOTF),6 an environment 
with a sea of cameras for capture and multiple projectors 
for display. As Figure 5 shows, the idea was to provide 
a display for visualization within the user’s own office 
environment, as opposed to having the user walk into a 
special display area. 

Figure 3. Evolution of automatic registration techniques. (a) Automatic panning and tilting in UNC’s Pixel Flex project and (b) 
a PTU-mounted mirror that directed each projector’s light to different areas of the flat wall, enabling the display to operate in 
a different scale, form factor, and aspect ratio. Although these systems are no longer operating, their design inspired a new 
generation of systems that use automatic registration.

(a) (b)
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Meeting such an ambitious goal required both the 3D 
reconstruction of large scenes and 3D real-time gesture 
recognition, which were still open problems at the 
time. By the early 2000s, however, projects like blue-c7 

had made huge strides in this direction. The resulting 
novel projection-screen technology used layered LCD 
glass panels that could turn opaque for projection and 
transparent for scene acquisition through cameras behind 
the screen. With this technology, blue-c researchers built 
the first end-to-end system with multistream videocapture, 
3D scene reconstruction, and the projection of the 
reconstructed scene in an immersive CAVE system with 
three walls and active stereo. 

Nonplanar geometry
Even this novel technology was not ripe enough to 

realize OOTF’s vision of breaking away from specific 
display geometry toward an unrestricted environment, 
but a varied set of nonplanar display geometry seemed 
the perfect middle ground. Designers could choose 
surface geometries for immersive displays to suit 
the users’ needs, space, applications, and interaction 
modalities. Cylindrical, hemispherical, or other 
uncommon immersive shapes, such as a bowl or an 
eggshell, became popular for immersive visualization, 
training, simulation, and edutainment applications. 
In the mid-2000s, companies such as Elumens, Global 
Immersion, Fakespace, Christie, and Eon Reality began 
delivering such systems but only as expensive and rigid 
turnkey solutions.

Although some immersive displays also used the LCD 
panels shown in Figure 4, their piecewise-planar rigidity 
limited their use to a small range of curvature and a 
compromised sense of presence, as in the TourCAVE 
display at UCSD, shown in Figure 4b. Projectors offered 
a much better solution, since they can direct light over 
any kind of curved surface to achieve a display of any 
shape and size. However, immersive multiprojector 
displays had the same issues as the early display walls: 
registration on nonplanar shapes was much more 

challenging, and once again researchers had to resort to 
manual or semiautomatic registration techniques, which 
hindered the displays’ mass deployment.

Automatic registration revisited
Unlike automatic registration in previous years, 

the main challenge this time around was how to 
accommodate nonplanar surfaces. Reconstructing very 
large nonplanar surfaces requires recovering large 3D 
scenes from multiple stereo rigs, which is still unreliable 
and problematic.6 Unlike 3D modeling applications in 
computer vision, any small error in reconstruction 
can produce severe errors in the display’s geometric 
registration. 

The need for higher accuracy was only one 
obstacle. Another was the registration problem’s highly 
underconstrained nature: because it was not possible 
to know device parameters or surface geometry ahead 
of time, automatic registration techniques were largely 
impractical. Consequently, most early camera-based 

Figure 4. Multilayer LCD panel display walls. (a) UCI’s 110-megapixel HiperWall and (b) TourCAVE at UCSD. 

Figure 5. UNC’s Office of the Future vision in 1998. Nearly a 
decade before the technology became available, the OOTF 
imagined displays unfettered by a particular geometry 
such as a CAVE or other separate walk-in spaces for 
visualization.

(a) (b)
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registration techniques for nonplanar displays assumed 
that users would know the surface geometry or device 
parameters, such as pose, orientation, and focal length. 
However, most users do not have enough technical savvy 
to provide such information, and, not surprisingly, the 
mass deployment of such displays never occurred. 

In 2009, UCI researchers began to make significant 
progress in surmounting these obstacles,8-10 observing that 
most immersive displays are not arbitrarily nonplanar, 
but constrained nonplanar—their boundary curves follow 
some well-defined constraints, such as a cylinder falling in 
the general category of an object with a vertically extruded 
surface. This new perspective led to three broad categories 
of immersive display surfaces:

 • vertically extruded surfaces formed by extruding a 
planar curve along a vertical line, such as a cylinder;

•	 swept surfaces formed by sweeping a planar profile 
curve along a planar path, such as a truncated dome; 
and

 • partial or full spheres.

Figure 6 shows displays that use automatic optimization 
techniques developed by UCI researchers for constrained 
nonplanar surfaces. At the heart of these techniques is 
a novel paradigm of nonlinear optimizations that uses a 
single uncalibrated camera without any markers instead 
of calibrated stereo cameras. The paradigm identifies 
enough prior knowledge about the general properties of 
boundary curves to sufficiently constrain the problem 
and recover the unknown camera properties, surface 
geometry, and projector pose and orientation. For very 
large scale displays, a single uncalibrated camera on a 
nodal pan-tilt unit can easily achieve the registration with 
a higher accuracy than multiple stereo cameras, which 
tend to be a nonrobust setup. Complete automation and the 
simplicity of a single camera combine to make deployment 
easy for lay users. 

These techniques brought a new engineering flexibility, 

even to CAVEs, which for so long had been treated as 
segregated planes. With traditional registration methods, 
engineers not only had to register each plane separately, 
they also had to manually or semiautomatically register 
the projectors in each wall with ones in the adjacent wall. 
This wall-by-wall registration prohibited overlapping 
projectors across the corners, which in turn made color 
registration much more difficult. 

Designers can use automatic registration for nonplanar 
walls to treat a three- or five-wall CAVE as a vertically 
extruded or a swept surface, respectively. Treating the 
display as a 3D shape rather than as a collection of walls 
allows more casual projector placement and permits 
overlaps across corners, both of which make deployment 
much easier. 

With this implementation flexibility and resulting 
increased sense of presence, automatic registration 
technology is ripe for use in a variety of constrained 
nonplanar displays and could greatly impact edutainment, 
simulation, and training. 

NEW PATHS
As visualization moves from display walls to large 

immersive displays that provide a stronger sense of 
presence, researchers are looking ahead to important 
missing elements, such as the ability to interact naturally 
using very large displays in collaborative projects. Much 
work has focused on interaction through touch-sensitive 
sensors and embedded cameras, but we have yet to see 
people interacting with one another in a natural way 
by using face-to-face body language through very large 
immersive displays. This capability is essential to visionary 
academic projects like OOTF and the future envisioned in 
movies like Minority Report. 

The major roadblock to realizing this dream is the 
tightly controlled centralized architecture, in which 
a single server must somehow coordinate a group of 
disparate devices, such as cameras and projectors. This 
loosely coupled arrangement of devices limits scalability 

Figure 6. Nonplanar displays that use UCI’s automatic registration technique: (a) a 4 × 2 array of eight projectors on a 
cylindrical display with a 14-ft. radius and angular span of 90 degrees, (b) four projectors on a dome with a 5-ft. radius, and  
(c) a 30 × 22 × 13-ft. swept surface display at Disney Imagineering. 

(a) (b) (c)
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and easy deployment.
UCI researchers working on the ubiquitous displays 

project11,12 are looking at an entirely new architecture. 
As Figure 7 shows, a distributed network of active 
display units—each with a projector and embedded 
sensors, including a camera—and computation and 
communication units populate a workspace. The active 
displays run identical single-program, multiple-data 
algorithms that collectively and automatically achieve 
all the characteristics of a ubiquitous display: scalability, 
reconfigurability, flexibility, and interactivity. Users can 
move the displays; define display collections, or frescos, to 
work as a single display; achieve seamlessness on a surface 
that might not be entirely white or planar; and interact with 
the data on the display in a natural way.

UCI researchers have begun to explore this distributed 
paradigm, and our team has already built a planar display 
wall using active display units, each of which sees its own 
projection and a small part of its neighbors’ projections. 
Figure 8a shows the projection setup. The research team 
has also developed distributed registration techniques that 
use quick response (QR) codes to automatically reconfigure 
projectors whenever they are moved. Figure 8b shows a 
front view of self-registration, which such a move triggers. 
In minutes, the distributed registration process produces 
a seamless display, such as the one in Figure 8c.11

The cameras embedded in the projectors also capture 
gestures so that users can interact with the display. 
However, managing gestures and reacting to them is 
not trivial, since each camera sees only a part of the 
display, and a user’s gesture can cross multiple cameras. 
A distributed paradigm must ensure that the algorithm 
running on each active display hands gesture management 
control from one device to another when appropriate, 
reacts to gestures that a device has not seen, and maintains 
data consistency. 

Although UCI researchers have taken steps toward 
realizing these goals by developing the first distributed 
interaction paradigm for 2D applications on planar display 
walls,12 such work is nascent. Capturing the myriad 2D and 

3D interactions on surfaces that are not flat and white is still 
a challenge. Realizing that dream requires not only research 
intensely focused on distributed interaction paradigms but 
also significant improvement in robust vision techniques to 
reliably detect 2D and 3D gestures. The fruit of such efforts 
will drastically alter visualization, empowering users at all 
levels of expertise with a new efficiency in data exploration, 
visualization, and modification.

MERGING REAL AND VIRTUAL
Large, dynamic, complex datasets demand visualization 

overlaid on the artifact itself rather than through a separate 
display. In Figure 9, for example, projecting light onto a 
chipped and faded cultural artifact lets archeologists see 
its original shape and color. Such in situ visualization has 
endless possibilities. For example, lighting reliefs of the 
Colorado River at a very high resolution using projectors 
reveals river activity in different ages. Placing a physical 
artifact of a dam in this relief would automatically 
change the visualization, as projectors adapt and light the 
entire relief differently to show its effect on the physical 

Figure 7. How ubiquitous displays might work. Active 
displays created by augmenting a projector with 
sensors (including a camera) and a computation and 
communication unit form a distributed network, or fresco, 
that users can move and reconfigure as needed.

Figure 8. UCI’s planar display wall, which uses (a) a distributed network of nine active displays in a 3 x 3 x 3 array. (b) Using 
QR codes, the display undergoes distributed registration. (c) Minutes later, the display is ready for map visualization and 
navigation involving several users.

(a) (b) (c)
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phenomenon. 
Historians could annotate the same relief model with 

facts and figures, or urban planners and emergency 
management strategists could use it for their scenarios. 
In the entertainment industry, in situ visualization could 
add depth to architectural lighting or theatrical lighting.

Ramesh Raskar first demonstrated the power of this 
visualization in 1999 using four projectors to light a small 
white table-top model of the Taj Mahal as part of UNC’s 
Shader Lamps project.13 Raskar applied semiautomatic 
registration techniques to the projected content in Figure 
10a to simulate the appearance of the Taj Mahal on a 
moonlit night (Figure 10b). Since then, UCI researchers 
have collaborated with Dan Aliaga and his team at Purdue 
University to explore the use of superimposed projectors 
to completely automate the in situ visualization of such 
objects at a much higher resolution.14

Despite progress, in situ visualizations remain limited to 
small artifacts and setups in which projectors are mounted 

outside looking in. Achieving in situ visualizations on large 
reliefs and objects requires a distributed network of active 
displays lighting relatively arbitrary nonplanar surfaces. 
The registration challenges are many, since unknown 
devices and surface geometry result in an underconstrained 
system. Fortunately, multiple overlaps between devices 
allow them to see parts of the same surface geometry, 
which provides opportunities for validation across devices 
and thus offers enough constraints to solve the problem 
robustly. However, much work remains to be done to make 
in situ visualizations a commodity system accessible to 
users at all levels of expertise. 

BEYOND TWO DIMENSIONS
Researchers have recently directed much work toward 

moving 2D displays to multiview technology, producing 
autostereoscopic displays that are essentially 2.5D. 

About a decade ago, such displays were primarily 
stereoscopic, either active through synchronous switching 
of shuttered glasses with the projection-based display, 
or passive through the selective filtering of differently 
polarized light from the projectors through glasses. The 
relatively recent rejuvenation of parallax barrier technology 

Figure 9. Appearance editing for in situ visualization 
using three superimposed projectors lighting a cultural 
heritage artifact. (a) The original artifact, (b) visualization 
of the restored artifact with light projection; and (c) in 
situ visualization of aging and annotations. Projectors 
automatically direct light to achieve the desired 
visualization.

Figure 10. Using in situ visualization to add depth to 
architectural lighting. (a) Applying semiautomatic 
registration techniques to an image of the Taj Majal (b) 
simulates its appearance on a moonlit night. 

(a)

(a)

(b)

(b)

(c)
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has led to glasses-free autostereoscopic displays and their 
extensions to large-scale applications with multiple users.15 
Such advances have come at the cost of resolution, but work 
on tensor displays is addressing that problem.16 We have 
also begun to see small-scale 3D holographic displays from 
companies like Holografica and QinetiQ.

T he ultimate dream of work on very large area 
displays is to achieve an immersive, truly 3D 
experience on a massive scale with the highest 

resolution. Such displays have the potential not only to 
redefine visualization but also to shape different kinds of 
education and exploration modalities. When combined 
with breakthroughs like light field displays,16,17 the potential 
of visualization displays is limited only by imagination.

Open problems remain—from developing scalable 
distributed display architectures to deploying novel display 
technology and creating unified and scalable interaction to 
developing a data management and rendering paradigm. 
However, dedicated effort and resources have already 
resolved problems that once seemed insurmountable. 
Continued effort could bring similar results and ensure 
that the day of very large, truly interactive, immersive, and 
accessible displays is not far off. 
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Figure 1: Left: This illustrates the basic concept of decomposing a target high resolution image, I, to a high resolution edge image, Ie and a
complementary low resolution non-edge image, Ine. Ie and Ine are then displayed in a time sequential manner to create an image with spatially
varying resolution where edges are displayed at a higher pixel density than the rest of the image. We call this the edge-enhanced image, Iv.
Iv is perceptually close to I. Middle: The image from the enhanced-resolution projector compared with a target high-resolution image and
a low resolution image. Note that the edge-enhanced image is perceptually almost indistinguishable from the target high-resolution image.
Right: A side view of our prototype enhanced-resolution projector that achieves 1024× 768 edge-enhanced images by cascading two light
modulator panels of 512×384 resolution (animated illustrations in the video). The numbers in the image are in millimeters.

Abstract
Digital projection technology has improved significantly in recent
years. But, the relationship of cost with respect to available reso-
lution in projectors is still super-linear. In this paper, we present
a method that uses projector light modulator panels (e.g. LCD
or DMD panels) of resolution n× n to create a perceptually close
match to a target higher resolution cn×cn image, where c is a small
integer greater than 1. This is achieved by enhancing the resolution
using smaller pixels at specific regions of interest like edges.

A target high resolution image (cn×cn) is first decomposed into (a)
a high resolution (cn× cn) but sparse edge image, and (b) a com-
plementary lower resolution (n×n) non-edge image. These images
are then projected in a time sequential manner at a high frame rate
to create an edge-enhanced image – an image where the pixel den-
sity is not uniform but changes spatially. In 3D ready projectors
with readily available refresh rate of 120Hz, such a temporal mul-
tiplexing is imperceptible to the user and the edge-enhanced image
is perceptually almost identical to the target high resolution image.

To create the higher resolution edge image, we introduce the con-
cept of optical pixel sharing. This reduces the projected pixel size
by a factor of 1

c2 while increasing the pixel density by c2 at the
edges enabling true higher resolution edges. Due to the sparsity
of the edge pixels in an image we are able to choose a sufficiently
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‡e-mail: majumder@ics.uci.edu

large subset of these to be displayed at the higher resolution using
perceptual parameters. We present a statistical analysis quantifying
the expected number of pixels that will be reproduced at the higher
resolution and verify it for different types of images.

Keywords: computational photography, computational displays,
projection devices, high-resolution displays

1 Introduction
The recent years have seen a tremendous development in projector
image quality, in terms of brightness, contrast and resolution. But,
the relationship of cost with respect to available resolution in pro-
jectors is still super-linear. While a typical 2 Megapixel projector
(e.g. Epson Home Cinema 8500 UB HD projector) costs around
$2500 today, a 4 Megapixel projector (e.g. Projection Design Ci-
neo 35) costs around $35,000. Thus, cost increases by more than a
factor of 10 while resolution just doubles.

In this paper, we show that we can use two lower resolution light
modulator panels (e.g. LCD or DMD panels) of resolution n× n
(assuming square panels without loss of generality) to design a pro-
jector that can display images that provide a close perceptual match
to a higher resolution display of resolution cn× cn where c is a
small integer greater than 1. Our design uses a novel optical unit
that can provide spatially variable pixel density across an image by
realizing higher pixel density at specific areas of the image (Section
3). Since edges are known to be perceptually important [Valois and
Valois 1990], we enhance the resolution of the image at the edges
to create an edge-enhanced image (Figure 1).

We observe that a display with higher resolution targeted only at
pixels where the high frequency content is concentrated is sufficient
to create an image that is perceptually almost identical to one pro-
duced by a true higher resolution display (Figure 2). Typically, the
higher frequency content in an image is given by a small set of pix-
els at the edges. We decompose our target high resolution (cn×cn)
image into two images. We identify a set of edge pixels to create
a higher resolution (cn× cn) edge image (Section 3.1). The rest of
the image, complementary to the edge image, is called the non-edge
image and is reproduced at the lower resolution (n×n). These two



Figure 2: Columns 1 and 2 show the results on a BUILDING image, 3 and 4 show the results on a PEOPLE image (c = 2). Top row: target
high resolution image (I) and the chosen edge pixels. Bottom row: low resolution image Il; and its CIELAB ∆E difference from I. Middle
row: edge-enhanced image, Iv, i.e. the output of our system, created by superimposing Ie and Ine; and the CIELAB ∆E of Iv from I. Compare
the differences in the text ’PARK’ and the lampposts in BUILDING and faces in PEOPLE in Iv and Il . Please zoom in to see the differences.

are then projected in a time sequential manner to create the edge-
enhanced image. With current 3D-ready projectors with available
refresh rate of 120Hz or higher, such a temporal multiplexing is
imperceptible to the user. To generate the edge and non-edge im-
ages at interactive rates, we design algorithms that can exploit the
parallelism offered by the GPUs.

To display the edge image at a higher resolution, we present a novel
concept which we call optical pixel sharing (Section 3.2). This re-
duces the area of each projected pixel by a factor of 1

c2 while in-
creasing their density by c2 at the edges. Due to the sparsity of
edges in most images, our optical pixel sharing unit can choose ap-
propriate regions to be displayed at higher resolution that would
minimize visible artifacts while maximizing the number of pixels
reproduced at the higher resolution (Section 4). We present a sta-
tistical analysis to quantify the edge pixels rendered in higher res-
olution and validate the results using a large number of images of
various categories. Subsequently, we find that a relatively simple
optical unit consisting of an array of c× c lenses can implement
optical pixel sharing effectively.

We demonstrate our enhanced resolution display in a prototype sys-
tem and analyze the quality of the resulting images. Though theo-
retically c can be large, there are practical limits to the enhancement
possible from our design – typically c = 2 or c = 3 resulting in 4
or 9 times higher resolution. Finally, this enhanced resolution is
achieved by sacrificing the frame rate and the display brightness by
a factor of 2. This is independent of the value of c and is due to the
use of interleaved frames. However, our display can still be used
in the standard low-resolution form without such a change in frame
rate and brightness. We analyze several such issues in a detailed
cost-benefit analysis in Section 6.

Main Contributions: We explore, for the first time, the concept of
variable spatial resolution display – a display that does not provide
uniform density of pixels everywhere but allocates higher densities
at specific regions of interest based on the content. At a concep-
tual level, we seek to explore the fundamental question of content-
specific spatial non-uniformity of resolution across a display.

Further, achieving higher resolution images using lower resolution
light modulator panels is critically dependent on the ability to cre-
ate smaller pixels. Smaller pixels when displayed at a higher den-
sity achieve true higher resolution, i.e. ability to represent higher
frequency signals. Our work presents a system that uses compu-
tational optics designs to reduce the projected size of a pixel by a
factor of 1

c2 while increasing its density by c2 thereby enabling high
resolution imagery from low resolution display modules.

Finally, we demonstrate the aforementioned concepts by building
a laboratory prototype of enhanced-resolution gray scale projector
that uses two LCD panels of resolution 512×384 to create the per-
ception of a display of resolution 1024×768 (Figure 1). In order to
generate content-specific edge and non-edge images at interactive
rates we design parallel methodologies that can be easily imple-
mented in GPUs for real-time performance.

2 Related Work
Our work builds upon a large body of literature in different domains
and fills an important gap in multiple directions. Achieving higher
resolution images using lower resolution light modulator panels,
more commonly known as display super-resolution, has been the
dream that has illuded the display community so far [Damera-
Venkata and Chang 2009; Allen and Ulichney 2005; Aliaga et al.
2011; Jaynes and Ramakrishnan 2003; Majumder 2005]. This
problem may seem analogous to that of generating a higher reso-
lution image from multiple jittered lower resolution images, a well
studied problem in the computer vision domain (detailed survey in
[Babu and Murthy 2011]). However, a deeper analysis reveals them
to be significantly different [Majumder 2005]. The information at a
larger pixel captured at lower resolution can be thought of as encod-
ing of multiplexed data from multiple smaller pixels that are cap-
tured at higher resolution. Hence, generating a higher resolution
image from multiple jittered lower resolution images maps to a de-
multiplexing problem. Demultiplexing involves subtraction which
in the context of displays, unlike in cameras, indicates negative light
– a practical impossibility. Therefore, in displays, achieving higher
resolution is dependent on generating smaller sized pixels – a hard-
ware limitation that is impossible to overcome by software manip-



ulations alone. Hence, achieving true higher resolution, i.e. ability
to display higher frequency signals, is not possible without chang-
ing the pixel size of the display [Majumder 2005]. Such a reduc-
tion of pixel size becomes available in a very limited manner on
multi-projector planar displays due to projector key-stoning. The
reduction of pixel size is much more significant when projecting
on non-planar surfaces. Hence, recent work have proposed super-
imposing pixels from multiple projectors on planar or non-planar
displays [Damera-Venkata and Chang 2009; Jaynes and Ramakr-
ishnan 2003; Aliaga et al. 2011]. However, since the reduction is
very limited, dependent entirely on relative position and orientation
of projectors with respect to the surface, and cannot be controlled
precisely, the amount of super-resolution does not scale well with
the number of projectors. Even for non-planar surfaces, [Aliaga
et al. 2011] report a super-resolution of 1.33 when using 3 to 4 pro-
jectors. On the other hand, wobulation based techniques use tem-
poral multiplexing of multiple low-resolution frames, each shifted
by a fraction of a pixel (usually half a pixel) [Allen and Ulichney
2005]. In all these aforementioned techniques, since the pixel size
cannot be reduced much, they cannot display higher frequencies but
can only achieve a high frequency boost filter during image recon-
struction leading to lesser attenuation of the higher frequencies and
hence a more pleasing appearance (Figures 8 and 9). In contrast, we
can reduce the pixel size by a factor of c, typically c = 2 or c = 3,
and hence can produce 4 or 9 times higher resolution at the edges.

The current industry has been on a rampant fervor to create more
and more pixels. But the more fundamental question of how much
resolution (pixel density) is needed at any spatial location is yet to
be explored. Human perception studies have demonstrated our sen-
sitivities to edges and insensitivity to very high or low spatial fre-
quencies [Goldstein 2001; Valois and Valois 1990]. Consequently,
edge sharpness, that depends both on the edge contrast and reso-
lution [Dijk et al. 2003; Winkler 2001; Lin et al. 2006], has been
used as a non-content-related parameter for object detection [Ran
and Farvardin 1995] (content-related parameters being people, ac-
tions, facial expressions, etc). This has been exploited in many do-
mains of image processing before. Edge preserving image denois-
ing [C.Tomasi and Manduchi 1998; Durand and Dorsey 2002] com-
pensates the loss of resolution during image filtering by retaining
contrast near the edges. In image compression (e.g. JPEG compres-
sion) edge resolution is preserved by compressing those frequencies
humans are less sensitive to more than the others. Similarly, in im-
age upsampling [Kopf et al. 2007; Fattal 2007], edges have been
upsampled more faithfully to retain the overall appearance. In ren-
dering, analytically computed edges are used in combination with
sparse sampling of the shading effects to generate high-quality im-
ages at interactive rates [Bala et al. 2003]. Finally, many works in
non-photorealistic rendering, including silhouette and informative
edges, and suggestive contours [Raskar and Cohen 1999; DeCarlo
et al. 2004; Cole et al. 2009; Cole and Finkelstein 2010], have used
the perceptual importance of the edges to achieve the required ren-
dering effect. We supplement these by exploring the importance of
edges in the context of displays by introducing the notion of vari-
able spatial resolution display – a display that does not provide
uniform pixel density everywhere but produces higher pixel densi-
ties at specific regions of the edges. While selecting these regions,
our work exploits the sparsity of edges which supplements earlier
works in compressive sensing [Wakin et al. 2006; Veeraraghavan
et al. 2010; Sun and Kelly 2009].

The past decade has seen a tremendous activity in computational
optics for capture devices [Levin et al. 2007; Liang et al. 2008;
Raskar et al. 2006; Agrawal and Raskar 2007] that use optically
coded images followed by computational decoding to capture addi-
tional information beyond just pixels (such as edges [Raskar et al.
2004], global and local illumination [Nayar et al. 2006], light fields

[Wilburn et al. 2005; Baker and Nayar 1999; Kuthirummal and Na-
yar 2006; Veeraraghavan et al. 2007], motion [Levin et al. 2008],
and high dynamic range [Debevec and Malik 1997]). In the con-
text of displays, computational optics has been explored in different
contexts such as parallax barrier displays using stacked LCD pan-
els [Lanman et al. 2010; Lanman et al. 2011; Wetzstein et al. 2011]
and capture-cum-display devices [Hirsch et al. 2009]. We add to the
domain of computational displays by using computational optics to
impart additional capabilities to traditional displays.

3 Enhancement of Resolution
In this section, we describe our method to achieve an enhanced-
resolution projector by selectively increasing the pixel density at the
edges. First, we describe how to create the edge-enhanced image,
Iv, that has higher resolution only at the edges (Section 3.1). Iv is
formed by combining a high resolution (cn× cn) edge and a low
resolution (n× n) non-edge image, Ie and Ine, respectively. Thus,
Iv = Ie + Ine (Figure 1) and Ie and Ine are temporally multiplexed
to achieve this. The selected edge pixels are displayed at a higher
resolution using c2 pixels whose size is c2 times smaller than the
regular pixels. More importantly, these images are created using
spatial light modulator panels with only n× n pixels. To achieve
this, we present the new computational optics model of optical pixel
sharing (Section 3.2).

Subsequently, we show that a relatively simple optical design con-
sisting of a grid of c× c lenses provides a practical implementation
option for the optical pixel sharing unit and also follows a set of
optimality criteria that we derive for this unit (Section 3.2.2). How-
ever, there are other designs for the optical pixel sharing unit which
can be further investigated for different applications. Hence, we fist
present the general concept of optical pixel sharing and then fol-
low it with the exact optical design that we used in our prototype
(using a grid of lenses). Further, we propose an alternate optical de-
sign that can provide more freedom in the design but requires more
engineering efforts to implement.

3.1 Edge-Guided Variable Resolution
Let us consider a target high-resolution cn× cn image I to be dis-
played by a projector. Let the high resolution coordinate system
be (s, t) ∈ {1, . . . ,cn}×{1, . . . ,cn}, where × denotes the cartesian
product of two sets. Consider Il , an n× n image, created by low
pass filtering I using a filter of size c in each direction. Let the
low-resolution coordinate system be (i, j) ∈ {1, . . . ,n}×{1, . . . ,n}.
Also, each pixel (i, j) corresponds to c2 higher resolution pixels
given by Ci j = {c(i− 1)+ 1, . . . ,ci}×{c( j− 1)+ 1, . . . ,c j}. Let
E be the set of edge pixels in Il such that at every pixel e ∈ E we
would like to display c× c smaller pixels. Let E be complement of
E and hence the set of non-edge pixels. The edge image Ie consists
of all smaller pixels ∪(i, j)∈ECi j and the non-edge image Ine consists
of the set of larger pixels E . The sum of these two images provides
us the edge-enhanced image Iv = Ie + Ine (Figure 1). Ie and Ine are
complementary to each other in terms of the pixels they display.

In order to find E, we consider the maximum CIELAB ∆E differ-
ence h(i, j) between Il(i, j) and the corresponding c2 pixels in Ci j
which is a measure of the local variance within pixels Ci j in I. All
pixels (i, j)∈ Il such that h(i, j)> T denote a significant perceptual
difference between Il and I. Hence, they are added to E. Clearly,
the number of pixels in E, depends on the value of T . The value of
T can be set to 1, 2 or 3 units of just noticeable difference (JND),
where each unit of JND equals 2.3 units of ∆E difference. In the
context of the displays, up to 3 JND difference is imperceptible to
the human eye [Stupp and Brennesholtz 1999].

Table 1 provides a statistical analysis of the percentage of pixels in
Il that differ by more than a few JNDs from I for different categories
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Figure 3: Displaying a perceptually high resolution image with
low-resolution display modules. A, B, and C are each copied to
smaller pixel pairs (A1, A2), (B1, B2), and (C1, C2) respectively.
X and Y are in conflict due to A. Thus, Y is blocked (indicated
by black) because X is passed (indicated by white) by the second
light modulator. The simple jumbling function demonstrated here
creates two copies of each pixel separated by half the size of the
panel. We show in Section 3.2.2 how such a jumbling function can
be implemented using a c× c grid of lenses.

of images. We observe that for T = 3 JND this is a small number for
most images. Thus, if only a small number of pixels are displayed
at higher resolution (usually less than 15%), the resulting Iv would
provide a close perceptual match to I (Figure 2).

3.2 Optical Pixel Sharing

In a traditional projector, white light from the lamp illuminates a
light modulator panel that spatially modulates the light to produce
different pixels. A light modulator panel (either a transmissive LCD
or a reflective DMD) is a regular 2D array of modulation elements
or pixels, where each element can block or attenuate the light to
achieve a brightness between 0 (black) and 1 (white). When as-
suming a linear transfer function the relationship between the input
and the modulated output is linear. For single chip projectors, three
channels of colors are produced by temporally multiplexing R, G
and B filters placed in front of the lamp. For three-chip projectors,
multiple optical paths are used for the three channels that are then
combined to create the final image. We first explain our design
for a grayscale digital projector, which is then extended to multiple
channels in Section 3.2.3.

In order to display an edge-enhanced image, we use two cascaded
and aligned low-resolution (n×n) light modulator panels (e.g. LCD
or DMD panels) with the optical pixel sharing unit in between them
(refer to Figure 3).

Creating Smaller Pixels: The first aspect of creating higher resolu-
tion image involves creating pixels that are downsized by a factor of
c in each direction. However, if n2 pixels from the first light modu-
lator panel are made smaller by c2 (e.g. using a lens), there are still
only n2 pixels available at the second modulator panel filling only
1
c2 part of it. The second aspect of creating a high-resolution image
thus involves creating enough smaller pixels to fill the second light
modulator panel, i.e. c2n2 smaller pixels (e.g. using c2 lenses in-
stead of one). Thus, every pixel will have c2 smaller copies. How-
ever, note that if all the c2 copies land on the same pixel of the
second light modulator panel, they will not create higher resolution
when passed through it. So, the key to achieve higher resolution is
to have non-adjacent c2 smaller copies of each pixel. We define the
mapping between these non-adjacent copies on the second panel to
the pixels they are originating from on the first panel as the jumbling
function F . In our particular design, the optical pixel sharing unit is
achieved by a grid of c× c appropriately designed lenses (Section
3.2.2). This implements a specific jumbling function where each
pixel has c2 smaller copies separated by 1

c distance across the panel
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Figure 4: This figure shows the different images in the different
stages of the designed system. Note that the input images are at
half the resolution of the high resolution image so that they can be
input to the low resolution display modules.

in each direction. This design is motivated by a set of optimality
criteria discussed in Section 3.2.1. However, several other optical
design can exist (Figure 10) to define different jumbling functions.

Shared Control: Since copies of c2 pixel from the first panel fall
on each pixel of the second panel, they can be only attenuated to-
gether, but not individually, using the second panel. Conceptually,
each pixel in the first panel creates c2 smaller spatially non-adjacent
copies of the pixel with the same content (A controls A1 and A2 in
Figure 3) while each pixel in the second light modulator panel at-
tenuates c2 spatially adjacent smaller pixels of different content (X
controls A2 and C2). The smaller pixels from the first panel can be
used to focus a high density of pixels at the desired locations on
the second panel. However, there will be c2−1 unwanted copies of
each of these smaller pixels which are then blocked using the sec-
ond light modulator panel. This shared control is used effectively
to create the non-edge and edge image.

Creating the Non-Edge Image: Displaying the lower resolution
non-edge image, Ine, is relatively simple. For this, the first panel
is turned ON completely and passes the light from the lamp. In
this situation, the optical pixel sharing module does not have any
effect and Ine is used as the input to the second panel to create the
non-edge pixels at lower resolution.

Creating Edge Image: In order to display the higher resolution
edge image, Ie, the second panel blocks the pixels in E while pass-
ing those in E. Hence, the input to the second panel is a low reso-
lution binary edge-mask where only the pixels in E are ON.

For each edge pixel of the second panel, the first panel and the pixel
sharing unit together create c2 adjacent smaller pixels. However,
these smaller pixels get their input from c2 different pixels in the
first panel. Let pixel (i, j) in the first panel be routed to the smaller
pixel (s, t) in the second panel. Then the jumbling function F is
defined as F(s, t) = (i, j) (F(A2) = A in Figure 3). Note that F
only depends on how the hardware for the optical pixel sharing is
designed and not the image content. To display pixel (i′, j′) in the
second panel at high resolution, we consider the corresponding c2

smaller pixels in Ci′ j′ . For each (s, t) ∈Ci′ j′ , we input the value of
I(s, t) at the location F(s, t) in the first panel. Note that, due to the
jumbling, adjacent pixels in the first panel can create non-adjacent
pixels in the displayed image. Figure 4 illustrates the input image
to the first and second panels for generating Ie and Ine respectively
when using a c× c grid of lenses that provide a jumbling function
of F(s, t) = (s mod n, t mod n).

Conflicts for Edge Image: The jumbling function F is a many-to-
one function. In other words, a lower resolution pixel (i, j) in the
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Figure 5: Two different jumbling functions and the corresponding
conflict graphs. Each node denotes a low resolution pixel in the
second panel. An edge between two nodes denotes a conflict. The
edge is labeled with the pixel in the first panel due to which the
conflict occurs. For the jumbling function on top, every pixel is in
conflict with another. Hence, only one of the 4 pixels can be ON in
the edge image. The jumbling function in the bottom is achieved by
our optical design. This graph is a set of cliques and hence 2 of the
4 pixels can be ON in the edge image.

first modulator panel will feed many higher resolution pixels (s, t)
in the displayed image. Let us assume (i, j) feeds two such higher
resolution pixels: F−1(i, j) = {(s1, t1),(s2, t2)} (A feeds A1 and A2
in Figure 3). Since only one input can be given to the pixel (i, j) in
the first panel, it can either take the value of (s1, t1) or (s2, t2), but
not both. In other words, only one of these two higher resolution
pixels can be allowed to pass through the second panel to create the
final image, and the other pixel has to be blocked, e.g. in Figure 3,
A2 is passed while A1 is blocked. Let these higher resolution pixels
pass through two lower resolution pixels in the second panel (i′1, j′1)
and (i′2, j′2). In other words, (s1, t1) ∈Ci′1 j′1 and (s2, t2) ∈Ci′2 j′2 . Be-
cause of the above described scenario, only one of (i′1, j′1) or (i′2, j′2)
can be kept ON. This is what we call a conflict (X and Y are in
conflict due to A and C in Figure 3). Consequently, considering the
conflicts among the pixels, only a subset of edge pixels EM ⊂ E can
be displayed at a higher resolution. Fortunately, due to the sparsity
of the edge pixels E−EM is typically a small set. Also, to assure
that a pixel is not in conflict with itself, F is defined such that for
any two smaller pixels (s, t),(s′, t ′) ∈Ci′ j′ , F(s, t) 6= F(s′, t ′).
3.2.1 Conflict Resolution

In this section, we find the maximal EM such that there is no con-
flict between the pixels in EM . This fundamentally depends on the
jumbling function F and the content of I that dictates the position
of the edges. We define a conflict graph, G, that has n×n vertices,
each representing a pixel in the second light modulator panel. Let
us consider two vertices u and v in G. Let us define the jumbling
function for a set of pixels Q as F(Q) =

⋃
q∈Q F(q). u and v are

connected if and only if F(Cu)∩F(Cv) 6= φ . Thus, the connectivity
of G is not content-specific and depends only on F (Figure 5).

For each vertex v of G such that v ∈ E, we assign as weight, the
local variance h(v) (Section 3.1). For all v ∈ E, we assign weight 0.
Our goal is to resolve the conflicts while retaining the visual quality
as much as possible. Achieving this amounts to finding maximum
independent set or the maximum weighted independent set of G.

Since G is completely dependent on the jumbling function F , we
seek to design F such that it provides us with a conducive indepen-
dent set for our purpose. For this, let us consider a vertex u in G.
Note that the maximum cardinality of F(Cu) is c2. Further, for each
pixel w∈ F(Cu), there are c2−1 other pixels v such that w∈ F(Cv).
Thus, each pixel u in G can be in conflict with at most c2(c2− 1)
pixels. Hence, the maximum possible degree in G is c2(c2−1).

Let us now consider a G where for any two vertices u and v, ei-
ther F(Cu)∩F(Cv) = φ or F(Cu) = F(Cv), i.e. the pixels in the

first light modulator panel from which pixel u and v in the second
light modulator panel get their smaller pixels, overlap completely
or none at all (Figure 5). In such a G, every pixel u will be con-
nected to exactly c2 − 1 vertices which are all connected to each
other forming a clique of size c2. Thus, assuming n is divisible by
c, G would have n2

c2 cliques which is also the size of its maximum in-
dependent set (assuming one pixel being chosen from each clique).
Such a graph G is optimal for our purpose since (a) it minimizes
the number of edges in G and hence the number of conflicts; (b) it
maximizes the size of the independent set and hence the number of
edge pixels that can be displayed at a higher resolution; and (c) it
drastically simplifies the computation of the maximum independent
set which is given by picking from each clique the vertex with the
maximum h if at least one vertex of the clique belongs to E. In the
following section, we demonstrate that such an optimal G and the
corresponding F can be achieved using a simple optical design.
3.2.2 Optical Design

The previous section provides us the optimal connectivity or topo-
logical property for G. A desired geometric property of two con-
flicting pixels u and v in G is to be spatially far from each other to
minimize scenarios where adjacent pixels in an edge are displayed
at different resolutions. However, since this situation cannot be en-
tirely avoided we discuss ways to alleviate the artifacts resulting
from this in Section 4.2. In this section, we show that an optical
design using a grid of lenses can achieve the optimal F , and thus G,
respecting both the topological and geometric constraints.

Consider a c× c grid of lenses, each of focal length f . If placed
at distance d = f (1+ c) from the first panel, they create c2 copies
of the image of this panel focused on the second panel, each scaled
by a factor of 1

c in each direction. Thus, the jumbling function is
F(s, t) = (s mod n, t mod n) (Figure 5) and the resulting G satisfies
both the geometric and topological constraints.

The c2 copies of the first light modulator panel should be placed
contiguously without any gap or overlap. Let us assume the dis-
tance between the optical axes of two vertically adjacent lenses is r.
Let us consider a pixel at vertical distances y and r+y from the op-
tical axis of the top and bottom lenses respectively. The two copies
of this pixel will be at distance y

c and r+y
c from the optical axis of

the top and bottom lenses respectively. Therefore, considering the
distance r between the two axis, the distance between these two
copies is given by r+ r

c . Assuming a to be the height of the light
modulator panels, this distance should be same as a

c . Therefore,
r = a

1+c . Similarly, we can find the required horizontal distance
between the optical axis of the lenses. Note that f can be chosen
arbitrarily but needs to be positive to focus the image of the first
light modulator panel on the second one. More information on the
elements we used in practice is provided in Section 5.2.
3.2.3 Extension to Multiple Color Channels

To extend the aforementioned design to three channels, the algo-
rithm to generate Ie and Ine remains identical since we use ∆E
thresholding which is valid for RGB color. However, the optical
design can be extended in two different ways depending on the ex-
isting projector design architecture. For single chip architecture,
our optical design can be ported as it is, by introducing a color
wheel right before the first light modulator panel.

For 3-chip projector architecture [Stupp and Brennesholtz 1999],
mirrors and dichroic filters are used to divide the white light into
red, green and blue with three different optical paths. One panel is
used for each path which are then recombined via a color bi-prism
to be directed to the projection lens. The naive way to extend our
design to this architecture is to use two panels with the optical pixel
sharing unit in between for each of the three optical paths. This
requires six panels. However, we observe that the separation be-



tween the edge and non-edge images can happen after combining
the red, green, and blue images by adding the optical pixel shar-
ing unit and a fourth panel to a traditional projector. However, to be
able to project the low resolution frame, we need to bypass the opti-
cal pixel sharing unit (e.g. using moving or rotating mirrors). Since
the bypassing happens at a very high frame rate, certain engineering
efforts are indispensable in manufacturing such a projector.

4 Conflict Analysis
The fact that we can only display EM ⊂ E in high-resolution due to
conflicts has consequences in terms of image quality. First we ana-
lyze the percentage of edge pixels that gets dropped due to conflict
(Section 4.1). Next, even if this percentage is relatively low, the
location of the dropped edge pixels (E−EM) is important. If these
dropped edge pixels, which are displayed at a lower resolution due
to a conflict, are adjacent to a pixel in EM which is displayed at a
higher resolution, then it results in a visual artifact. We design a
smoothing algorithm to alleviate such artifacts (Section 4.2).

4.1 Probability of Conflicts
Let us assume that |E| constitutes a fraction f of the total pixels
in Il , i.e. f = |E|

n2 . Since the measure of local variance, h depends
on c, f also depends on c. Table 1 provides the mean percentage
f for a set of test images of different types for different values of
c. These images were downloaded from the internet, their category
assigned based on the search term used to find them. The threshold
T is chosen to be to be between 1 and 4 JNDs. We experiment with
values of c between 2 and 4 and use Il to be of size 3072×2304.

Let fM denote |E−EM |
|E| , the fraction of the total pixels that cannot be

displayed at a higher resolution due to conflicts. Our goal in this
section is to estimate the expected value of fM . For simplicity, we
assume the edge pixels to be distributed spatially uniformly over the
image. Let us consider the conflict graph G, a set of cliques each
of size c2, resulting from our design described in Section 3. Let us
consider a vertex v ∈ G. The probability of v to be an edge pixel,
i.e. v ∈ E, independent of the connectivity of G is f .

In practice, image sizes are almost always more than 1 megapixel.
So, it is reasonable to assume c2 << |E|. Now, let us consider the
clique to which v belongs. The probability of having exactly k edge
pixels in the c2− 1 neighbors of v in this clique is c2−1Ck f k(1−
f )c2−1−k. Further, given that v has k neighbors, the probability of
it being chosen to be displayed at higher resolution after conflict
resolution, i.e. v ∈ EM , is k

k+1 . Thus, the probability of v to be
displayed at high resolution when it is an edge pixel is given by

P(v ∈ EM |v ∈ E) = Σ
c2−1
k=1

c2−1Ck f k(1− f )c2−k−1k
k+1

(1)

In order to verify this result in practice, we analyze a set of images
that have different values of f and different distribution of edges.
The estimated value predicted by Equation 1 matches with fM when
considering a G generated by our optical design. This is shown in
Table 1. Further, to evaluate how this value changes with changes
in G, we do the same experiment by considering a G where random
set of pixels form the cliques instead of a structured pattern of pixels
forming them as in our design. Interestingly, fM resulting in such a
G is consistently higher than that of the G provided by our optical
design. We attribute this to the large spatial distance between the
vertices in each clique which minimizes the possibility of having
more than one v ∈ E in the same clique.

4.2 Smoothing to Alleviate Artifacts
Due to conflicts, two adjacent edge pixels might be displayed in
different resolutions. This drastic change in resolution can become
perceptible, creating a visual artifact. In order to alleviate this, we
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Figure 7: Design of our prototype (right) by changing a standard
3-chip projector (left). The green channel is used as the first panel.
The red panel is moved between the bi-prism and the projection
lens to be used as the second panel. The optical pixel sharing unit
is placed between these two. The blue and red optical paths are
blocked using light blockers. Note that the images generated by the
prototype are green. Please check the video for illustrations.

propose a smoothing algorithm. For every pixel (i, j) ∈ E , we as-
sign a binary weight W (i, j). A weight of 1 indicates that the pixel
will be displayed at high resolution and 0 indicates that the pixel
will be displayed at low resolution due to a conflict i.e. ∀(i, j) ∈
EM ,W (i, j) = 1 and ∀(i, j) ∈ E − EM ,W (i, j) = 0. ∀(i, j) ∈ E,
W (i, j) is not relevant and hence are initialized to a don’t care term.
The smoothing procedure smoothes the discontinuities in the rele-
vant portions of W to create a non-binary W ′, 0≤W ′(i, j)≤ 1 and
is described in the subsequent paragraph. W ′(i, j) provides a weight
for combining the high and low resolution content at pixel (i, j) to
avoid visual artifacts. Hence, to create the final Ie, we weight the
contribution from the higher resolution Ie by W ′(i, j) and get the
rest of the contribution from (1−W ′(i, j))IL. Note that for (i, j)
where W (i, j) = 0, W ′(i, j) has to be kept at 0 since these pixels
cannot be reproduced any better than the low resolution. Further,
for pixels where W (i, j) = 1 the goal is to reduce the weight mini-
mally so that high resolution content is retained maximally.

Such a smoothing cannot be achieved by a linear low pass filter-
ing(LPF) operation since LPF both lowers hills and lifts valleys.
In this case, the valleys (W (i, j) = 0) cannot be lifted. Interest-
ingly, the scenario is similar to smoothing of brightness in a multi-
projector display as faced in [Majumder and Stevens 2005] where
the brighter pixels have to be attenuated, but the dimmest pix-
els cannot be brightened. Hence, we use a similar method where
for each pixel (i, j) we apply W (i, j) = min(W (i, j),W (i+ 1, j)+
ε,W (i−1, j)+ ε,W (i, j+1)+ ε,W (i, j−1)+ ε,W (i+1, j−1)+√

2ε,W (i+1, j+1)+
√

2ε,W (i−1, j−1)+
√

2ε,W (i−1, j+1)+√
2ε). Multiple iterations, where all pixels perform the aforemen-

tioned operation in each iteration, provides the same result as pre-
sented by the sequential dynamic programming approach in [Ma-
jumder and Stevens 2005] to achieve an optimal W ′. However,
since in each iteration all pixels can be processed in parallel, this
version of the algorithm can be easily implemented on the GPU
(Section 5.3). The maximum number of steps required for conver-
gence would be 1

ε
. Typical ε used in our results is 0.125 which

indicates 8 steps to convergence. Figure 6 illustrates W and W ′ and
how it alleviates the visual artifacts due to conflicts.

5 Implementation and Results
We have performed two experiments to validate the feasibility of
our design. We first demonstrate an enhanced-resolution projector
using a 3D ready projector (Section 5.1). Next, we build a grayscale
prototype by modifying an existing LCD projector (Section 5.2).

5.1 Simulation using a 3D Ready Projector

We use a BenQ MX660 3D ready single-chip DLP projector that
provides 120Hz refresh rate. We consider a test image, I, at the
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3 7 10 10 10 4 5 6 6 11 13 14 14 3 4 4 4 6 11 8 8
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3 1 56 77 78 78 54 77 77 77 66 80 80 80 59 78 78 78 15 38 36 36
2 30 58 59 59 24 53 53 53 41 62 63 63 24 50 50 50 12 34 31 31
3 19 44 45 45 13 35 35 35 27 49 50 50 12 29 30 30 10 31 28 28
4 13 34 35 35 8 24 24 24 19 40 40 40 6 18 18 18 9 30 26 27

4 1 65 89 89 89 64 89 89 89 74 91 91 91 71 90 90 90 17 56 54 54
2 40 80 80 80 35 79 79 79 51 82 82 82 36 75 75 75 14 52 50 50
3 28 70 71 71 21 65 65 65 38 72 72 72 20 57 58 58 13 50 48 48
4 20 62 62 62 14 52 52 52 29 63 63 63 12 42 42 42 12 49 46 46

Table 1: We collect statistics from 5 different categories of images (100 images each): Architecture, People, Nature, Oil Paintings and Line
Drawings for c = 1,2,3 and T = 1,2,3,4JNDs. The resolution of each image is 3072×2304. We present the mean percentage (%) of edge
pixels ( f ), mean percentage (%) of pixels dropped due to conflicts for the lens array design ( f L

M) and a random jumbling function ( f R
M) and

the predicted value of f P
M using Equation 1 ( f P

M). Note that fM matches closely to the predicted f P
M and, except for the Line Drawings, the

number of pixels dropped is consistently higher when using f R
M than using f L

M , illustrating the superior quality of the lens array design.
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Figure 6: This illustrates the effect of our smoothing algorithm. From left to right: target high-resolution image; edge-mask before smoothing
(W) contains only binary values – black denoting the pixels dropped due to conflicts, white denoting the passed pixels and green denoting
the non-edge pixels that are irrelevant; edge-enhanced image before smoothing; edge mask after smoothing (W ′) – and the hence the gray
values; and the edge enhanced image after smoothing.
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Figure 8: Two sets of images, on left and right, captured from our simulation on a 3D ready projector. From top left in a scanline order: true
high resolution, edge-guided enhanced resolution, low resolution, and Wobulated image. The zoomed-in views in particular show the close
match of our variable resolution image with the true high-resolution image while the low-resolution and Wobulated images fail to show the
fine details. The yellow circle shows a spot where our method cannot reproduce the edge at a higher resolution due to a conflict. Please zoom
in to compare different regions of the image. The images are cropped to account for the reduction from their projected size.



native resolution of the projector of 1024×768 and create the edge
image, Ie, at the same resolution. We assume c = 2 and create the
non-edge image, Ine resolution 512× 384. Using this we simulate
a projector with resolution 512× 384 creating an enhanced reso-
lution of 1024× 768. The non-edge image is then upscaled to the
resolution of the edge image using the nearest neighbor method.
These images are then projected in a time sequential manner to
simulate Iv. Simulating 512× 384 resolution panels allowed us to
compare the result of our method with a target high-resolution im-
age. This was also instrumental in comparing our work with wob-
ulation [Allen and Ulichney 2005] and other similar techniques us-
ing superimposing multiple projectors [Damera-Venkata and Chang
2009; Jaynes and Ramakrishnan 2003]. Wobulation uses multi-
ple temporally multiplexed low-resolution frames, each mechani-
cally shifted by a fraction of a pixel (usually 0.5) to super-sample
each low-resolution pixel more densely. More recently, the e-shift
technology introduced by JVC achieves a fractional shift of pixels
similar to wobulation using electronic means instead of mechanical
ones 4. We simulate the half pixel shift of wobulation using a shift
of 1 physical pixel. We use two frames for wobulation – the usual
practical choice, though 4 or 8 is possible theoretically – to avoid
significant loss in frame rate and to provide a fair comparison with
our method which needs to multiplex only two frames.

We capture Iv with a Canon Rebel XSi camera (4272× 2848 pix-
els) at 1

30 second exposure and I, Il and Ine at 1
60 exposure. The

difference in the exposure compensates for the varying brightness
of these images in our design. We also capture the wobulated im-
age for comparison. As discussed in Section 2, we demonstrate that
wobulation cannot display higher frequencies (Figure 8). In con-
trast, our technique can produce true higher resolution (via smaller
pixels) to create the closest match to a target higher resolution im-
age (More results in the supplemental video and powerpoint slides).

5.2 Our Prototype
We also modified an Epson EMP-74 3-chip LCD projector of
resolution 1024× 768 to create a prototype grayscale enhanced-
resolution projector for c = 2 (Figure 7). For this, we use the LCD
panel for green channel as our first light modulator panel. Then we
remove the projector lens and move the panel for the red channel
outside the projector in front of the green panel to create our second
light modulator panel. This panel is then connected to the input of
the red panel of the projector using a ribbon cable. The blue and
red light paths are then blocked and the imaging lens is placed af-
ter the second panel. This provides us with the two cascaded light
modulator panels. We control the image of the first and second
LCD panels by using the green and red channels of the projector
respectively assuring that the two images are synchronized. An op-
tical pixel sharing unit based on our lens array design is then placed
in between the two panels. Finally, we place the projector lens in
front of the second LCD panel. The labeled prototpye is shown in
Figure 1 and illustrated with animation in the supplementary video.

For the optical pixel sharing unit, we had to slightly modify our
design since we were limited by the availability of COTS compo-
nents. First, we needed a 2× 2 lens array to make c2 = 4 copies
while commodity arrays usually provide larger grids. Therefore, we
blocked all the lenslets except for a 2× 2 grid in the middle. This
considerably lowered the light efficiency of our prototype. Second,
commodity lens arrays are not available in all different focal lengths
and sizes. We used a lens array 1 with focal length of f1 = 41.9mm
and lenslet size 7mm×5.4mm that was the closest to what we need.
Therefore, the position of the lenslet array is guided by the require-
ment that the multiple copies of the image of the first LCD panel

4http://www.engadget.com/2011/09/08/jvc-shows-off-projectors-with-
4k-precision-but-not-quite-4k-pix/

1http://www.edmundoptics.com/products/displayproduct.cfm?productid=3092

(of size 14mm×10.5mm) formed by this array should not have any
gap between them. In this position, the lenslet array provides a
magnification factor of 1.2 instead of the desired 0.5. Therefore,
we had to use an extra lens between the lens array and the second
LCD panel to scale down the pixel size appropriately. This is done
using an aspheric lens with focal length of f2 = 30mm 2. Then the
second LCD panel is placed where the output from this lens is fo-
cused. This is achieved when the lenslet array is placed 76.8mm in
front of the first LCD panel, the aspheric lens is placed 50.2mm in
front of the lenslet array, the second LCD panel is placed 17.5mm
in front of the aspheric lens, and finally the projection lens is placed
27mm in front of the second LCD panel. The commodity lens ar-
ray (less than $100) is designed to create a uniform illumination
and not for imaging purposes. Therefore, it does not provide a uni-
form focus across the entire image. In order to alleviate the effect of
the spatially varying defocus in our experiments, we grouped every
2× 2 pixels of the projector in both of the LCD panels to provide
larger pixels to alleviate the focusing issues. Thus, our projector
had two panels with effective resolution of 512× 384 and we cre-
ated an enhanced-resolution projector of 1024× 768 using these.
Note that the prototype generates a green image which is converted
to grayscale to generate the results in Figure 9.

In order to make sure all the elements are in focus, we use precision
metric stages 3 that allow us to move the elements with micron level
accuracy. Due to some small radial distortion from the inexpensive
lens array and rotational and translational misalignments between
the panels, each pixel in the second panel could not be perfectly
aligned with four smallers pixels coming from the optical pixel
sharing unit. Therefore, we used standard camera-based registra-
tion procedures used in planar multi-projector displays [Chen et al.
2002; Bhasker et al. 2007] to achieve the alignment by warping the
input images appropriately. Note that this registration procedure is
due to the limitations common to any inexpensive lab setup. The
radial distortion can be virtually removed using pairs of aspheric
lenses that provide a nearly abberation free system [Stupp and Bren-
nesholtz 1999]. Precision alignment, already standard in any 3-chip
projector during combination of light from the three channels, can
also be used for aligning pixels between the first and second panels.

Similar to our experiments with the 3D-ready projector, we can sim-
ulate the results of a true high resolution projector and wobulation.
For this, we allow the first modulator panel to pass all the white
light and input appropriate images to the second panel. Since the
lens array precedes the second modulator panel, we do not face any
focusing issues while projecting these images (More results in the
supplemental video and powerpoint slides).

5.3 GPU Implementation

Our method to generate Ie and Ine can be parallelized for efficient
GPU implementation. Evaluating h at every pixel can be done in
parallel. In order to compute the jumbled image, all the cliques in
the conflict graph G can be processed in parallel. These generate
the inputs for the two light modulator panels for Ie. To compute Ine,
we first low-pass-filter the image and then turn OFF the pixels be-
longing to E. Both these computations can be run in parallel in the
GPU. The smoothing method can also be implemented in the GPU
as explained in Section 4.2. We used such a GPU implementation
on nVidia GeForce GTX 560 Ti to generate Ie and Ine at 120fps.

6 Discussion
In this section we discuss several analysis and cost-benefit issues
related to our design.

2http://www.edmundoptics.com/products/displayproduct.cfm?productid=2953
3http://www.edmundoptics.com/products/displayproduct.cfm?productid=1577



Target Edge Enhanced

Low Res Wobulation

Target Edge Enhanced

Low Res Wobulation

Figure 9: Two sets of grayscale images on left and right captured from our optical prototype from comparison. From left to right: true
high-resolution; edge-guided enhanced resolution; low-resolution; Wobulation technique. The zoomed-in views in particular show the close
match of our variable resolution image with the true high-resolution image while the low-resolution image and the Wobulation technique fail
to show the fine details of the image. The images are cropped to account for the reduction from their actual projected size.
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Figure 10: The picture shows the optical pixel sharing unit using
the prism array design. Half of each pixel is covered by a prism.
On the right we show the conflict graph for this jumbling function.
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Figure 11: Modified input to the first and second light modulator
panel and the resulting different Ie and Ine to reduce flicker.

Alternative Optical Design: Unlike our optical design (Section
3.2.2) that provides a specific jumbling function F , here we present
an alternative optical design to implement a general F . Assuming a
collimated uniform light source, we use two prism arrays, one after
the first light modulator panel and another before the second one.
These arrays have a grid of c× c small prisms covering each pixel,
each with a different angular orientation. The former prism array
splits the pixels by applying different angular changes to the incom-
ing rays. The latter provides an inverse angular change making all
the light rays parallel again (Figure 10). To implement a general
F , the prisms should be custom cut. Figure 10 shows a simple yet
different jumbling function using this design. With this jumbling

function, pixels (s, t), (s+ 2, t), (s, t + 2) and (s+ 2, t + 2) will be
copies of the same pixel in the first light modulator panel. Though
the conflict graph G is topologically similar to the one achieved
by our optical design (creating cliques), the locations of the copies
are different. In our lens array based design, pixels (s, t),(s+ n

c , t),
(s, t + n

c ) and (s+ n
c , t +

n
c ) will be copies of each other.

However, this design is harder and more expensive to implement for
two reasons. (a) It is very difficult (and expensive) to create a per-
fectly collimated broadband light source while collimated narrow-
band light sources (e.g. LED light sources used in pico-projectors)
usually come at the cost of low light efficiency; and (b) it is hard to
custom manufacture all the small prisms and therefore, the prisms
should follow a regular pattern, as showed in Figure 10.

Extending to Video: In a projector of temporal frequency 120 fps,
our method produces an acceptable video rate of 60 fps. Our first
prototype using a 3D ready projector (Section 5.1) however, showed
a barely perceptible flicker when viewed from close quarters. This
is due to a temporal discontinuity caused by the significant differ-
ence in the global brightness of the alternating edge and non-edge
images. To alleviate this, we used the pixels in the edge image
which are not used to project any edges. Note that very few of
the pixels (often even less than 10%) in the second light modulator
panel are ON for the edge image. Since every pixel passed by the
second light modulator panel results in three blocked pixels, even
after considering three more conflicting pixels for each of these,
more than 60% of pixels are not used. At these pixels, we divide
the low resolution image between the edge and non-edge images
(Figure 11). This increases the global brightness of the edge im-
age while reducing the same for the non-edge image. Hence, the
discontinuity in brightness is reduced thus removing the flicker.
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Figure 12: This is the result of our method when enhancing resolution with c = 3 providing 9 times more pixels. For this we have to use a
higher T = 4 JND to assure a relatively sparse edge image. This results in slight blurriness in the center of the flower. Further, since conflicts
are greater in this scenario, we have marked a few of them with red. However, though our method could not reproduce all the desired edges
at high resolution, the quality of the edge enhanced image is still far superior to the low-resolution image. Please zoom in to compare.

Further, the locations of the conflicting pixels (pixels in E −EM)
can be temporally incoherent creating visual artifacts. Hence, an
extension of our smoothing algorithm (Section 4.2) to three dimen-
sions (two spatial and one time) is needed. Our smoothing algo-
rithm is based on the brightness smoothing algorithm presented in
[Majumder and Stevens 2005] for multi-projector displays, a vari-
ant of which has been used for contrast enhancement of images and
video [Majumder and Irani 2007]. We plan to explore the possibil-
ity of adapting this technique for our purpose in the future.

Image Quality Issues: In our enhanced-resolution projector, the
edge image displayed at 0.5 duty cycle, is sparse and hence reduced
in brightness. This leads to an overall reduction in brightness of the
image. Since the black offset due to the images do not change, this
reduction in the overall brightness results in a small reduction of
contrast in the display. For current projectors with contrast as high
as 50,000 : 1, this is a small price to pay for the increased resolution.

Limits on Enhancement of Resolution: c is a measure of the res-
olution enhancement achieved. Though theoretically any c is possi-
ble, the practical value of c depends on the content and the thresh-
old T (Table 1). For almost all types of images, we find f and f L

M
to be reasonably small for c = 2 and T = 3 JND assuring a close
perceptual match between a target high resolution image and our
edge-enhanced image. For c = 3, we need to raise the threshold to
be T = 4 JND or higher to get an acceptable value for f and f L

M .
We observe that T higher than 3 JNDs can also provide an ade-
quate perceptual match to the target high resolution image (Figure
12). Finally, f and fM are too high for c = 4 indicating that an
enhancement of more than c = 2 or c = 3 is impractical.

Light Efficiency: Our design would incur some light loss due to
the use of two modulators. This is a minor issue for DMDs which
are very light efficient. For LCD panels too, light efficiency has
improved considerably and more efforts are in progress [Lazarev
and Palto 2009]. Our prototype was designed using LCD based
projectors purely due to lesser difficulty in opening them up in a
non-production laboratory setting. Further, the loss of light due
to the alternation between the edge and non-edge frames can be
alleviated by assigning unequal time slots to these two frames at the
cost of a small contrast reduction for the very high contrast edges
(as in [Majumder et al. 2010] for color balancing).

Diffraction: A variable resolution projector using a lens array, re-
duces the effective aperture size by a factor of c. However, since
depth of focus is not as critical in projection as in photography
most projectors use lenses with relatively high f-numbers (F/2 is
typical in projection lenses). Further, most lenses, especially in
high-resolution projectors (e.g. 8K Sony and Projection Design Ci-
neo 35 projectors) are relatively large, resulting in a large effective
aperture. Thus, the resolution limit from diffraction is often con-
siderably higher than the projector resolution. However, this can
become a limiting factor of our design with the increasing resolu-
tion and decreasing size in projectors. In particular, it can limit the

use of our technique to increase the resolution of pico projectors.

7 Conclusion
In conclusion, we have presented the first projector that can use
n× n resolution light modulator panels to enhance the resolution
at selected regions providing a perceptually close match to a target
high resolution image of cn× cn where c is a small integer greater
than 1. This is made possible by the novel concept of optical pixel
sharing that allows selected regions of the image at the edges to be
reproduced using smaller pixels with size scaled by 1

c2 at a density
scaled by c2. Thus, we explore, for the first time, the concept of a
display where pixel density changes spatially based on the content.
Our prototype provides a convincing proof of concept and shows
the superior perceived resolution when compared to images from
standard projector with same-sized light modulator panels.

Achieving higher than HD resolution in commodity projectors to-
day is limited by the density of pixels that can be packed in small
light modulator panels. Hence, larger panels used for 4K or 8K
projectors justify their cost. Though our projector allows super HD
resolution in commodity projectors today, the technique is also scal-
able to higher resolutions of 4K and 8K projectors. More interest-
ingly, this work opens up the concept of “resolution at demand”
where resolution can be targeted at “important pixels”, like faces or
humans or boundaries of foreground and background. The possibil-
ities are numerous and can even be application specific. Thus, our
work can trigger new directions for application-specific resolution
retargeting in projection based displays.
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Figure 1: Left: The CMY mode of our camera provides a superior SNR over a RGB camera when capturing a dark scene (top) and the
RGB mode provides superior SNR over CMY camera when capturing a lighted scene. To demonstrate this, each image is marked with its
quantitative SNR on the top left. Right: The RGBCY mode of our camera provides better color fidelity than a RGB or CMY camera for
colorful scene (top). The ∆E deviation in CIELAB space of each of these images from a ground truth (captured using SOC-730 hyperspectral
camera) is encoded as grayscale images with error statistics (mean, maximum and standard deviation) provided at the bottom of each image.
Note the close match between the image captured with our camera and the ground truth.

Abstract

We present a camera with switchable primaries using shiftable lay-
ers of color filter arrays (CFAs). By layering a pair of CMY CFAs in
this novel manner we can switch between multiple sets of color pri-
maries (namely RGB, CMY and RGBCY) in the same camera. In
contrast to fixed color primaries (e.g. RGB or CMY), which cannot
provide optimal image quality for all scene conditions, our camera
with switchable primaries provides optimal color fidelity and signal
to noise ratio for multiple scene conditions.

Next, we show that the same concept can be used to layer two RGB
CFAs to design a camera with switchable low dynamic range (LDR)
and high dynamic range (HDR) modes. Further, we show that such
layering can be generalized as a constrained satisfaction problem
(CSP) allowing to constrain a large number of parameters (e.g. dif-
ferent operational modes, amount and direction of the shifts, place-
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ment of the primaries in the CFA) to provide an optimal solution.

We investigate practical design options for shiftable layering of the
CFAs. We demonstrate these by building prototype cameras for
both switchable primaries and switchable LDR/HDR modes.

To the best of our knowledge, we present, for the first time, the con-
cept of shiftable layers of CFAs that provides a new degree of free-
dom in photography where multiple operational modes are avail-
able to the user in a single camera for optimizing the picture quality
based on the nature of the scene geometry, color and illumination.

Keywords: computational photography, color filters, capture noise

1 Introduction

Camera consumers are forced to live with several trade-offs orig-
inating from conflicting demands on the quality. For example,
broad-band filters (e.g. CMY), being more light efficient than
narrow-band filters (e.g. RGB), are desired for low-illumination
scenes (e.g. night/dark scenes). But, they have lower color fidelity.
Further, demultiplexing RGB values from the captured CMY val-
ues can result in more noise in brighter scenes. Hence, narrow-band
filters are desired for high-illumination scenes (e.g. daylight/bright
scenes). However, since current cameras come with fixed RGB or
CMY CFAs, users have to accept sub-optimal image quality either
for dark or bright scenes. Similarly, faithful capture of colorful
scenes demand more than three primaries that trades off the spatial
resolution making it not suitable for architectural scenes with de-
tailed patterns and facades. However, since current cameras come
with a fixed number of primaries, users cannot change the spatial
and spectral resolution as demanded by the scene conditions.
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Figure 2: Two CMY CFAs before shifting(a), after shifting the top layer one tile to the right(b), and after shifting the top layer by another tile
in the vertical direction. The combinations of the layers, shown in the bottom, result in CMY(a), RGB(b), and RGBCMY(c) modes.

Main Contributions: We present a technique of layering of a pair
of CFAs with precise relative shifts between them to achieve cam-
eras with multiple operational modes where both the number and
transmittance of the primaries can be changed. The user will thus
have the liberty to cater the primaries towards specific scene condi-
tions. Following are our main contributions.
1. We present the first camera that can switch to three sets of color
primaries on demand. Using different relative shifts during the lay-
ering of the pair of CFAs, both the number and transmittance of the
primaries can be changed (Figure 2) to provide a camera with three
different capture modes: RGB, CMY and RGBCY (Section 2).
2. We extend the concept of shiftable layers of CFAs beyond
switchable primaries showing that when applied to a different kind
of CFA, it provides a camera that can switch between low dynamic
range (LDR) and high dynamic range (HDR) modes (Section 3).
3. We show that the problem of finding the desired patterns and
shifts of the CFAs to achieve switchable modes can be posed as
a constraint satisfaction problem (CSP)(Section 4). We show the
utility of this general framework to design an add-on device for
existing LDR cameras that provides an additional HDR mode.
4. We present a quantitative analysis to show the benefits of a cam-
era with switchable primaries: (a) significantly superior color fi-
delity than RGB or CMY cameras when operated in the RGBCY
mode (Section 5.1); (b) optimal SNR, for both dark and bright
scenes by switching between the CMY and RGB modes (Section
5.2). Though using two CFAs marginally trades off the transmit-
tance of each primary, the benefits far overweigh this shortcoming.
5. Finally, we propose several practical design options to embed
such shiftable layers of CFAs in real cameras for multiple switch-
able operational modes (Section 6). We demonstrate the feasibility
of such designs via rudimentary prototypes.

Related Work: Many different types of fixed CFAs have been in-
vented and manufactured for photography [Lukac 2008], the most
popular being the Bayer CFA [Bayer ]. [Yamagami et al. ; Gin-
dele and Gallagher ; Susanu et al. 2009; Kumar et al. 2009] use
RGBW CFAs with white filter elements to sense more light than
cameras with traditional Bayer CFAs. [Hirakawa and Wolfe 2008]
considered the more general case of a custom designed CFA based
on linear combinations of conventional RGB filters to achieve opti-
mal spatial-spectral reconstruction using a sensor with a fixed num-
ber of pixels. [Gu et al. 2010] introduced a universal demosaicing
framework that can be used to reconstruct the image for any gen-
eral CFA. Fixed CFAs with more than three colors have been pro-
posed to capture multispectral images [Shogenji et al. 2004; Baone
and Qi 2006] sacrificing the spatial resolution for higher spectral
resolution. These provide much higher color fidelity, but are still
less accurate than an order of magnitude more expensive hyper-
spectral cameras. In another line of work multi-spectral images
with a low spatial resolution are combined with high resolution
lightness images to achieve a high-resolution multi-spectral imag-
ing system [Imai et al. 2000]. This is done using a priori spectral
analysis, linear modeling techniques, and using the spatial proper-
ties of the human visual system. In contrast to all these works on
fixed color primaries, our work is the first one that presents switch-
able color primaries by shiftable layers of CFAs.

(a) (b)

(c) (d)

Figure 3: Spectral transmittance of our primaries in (a)CMY mode,
(b) RGB mode, and (c) RGBCY mode. In (c), the narrow band cyan
and yellow are computed from the broad band CMY filters in (a)
and the narrow band RGB filters in (b). (d) Spectral transmittance
of the RGB channels demultiplexed from the CMY mode.

On the other hand, our work supplements an earlier set of work
on computational color in photography. Dynamic modification of
spectral transmittance has been proposed in agile-spectrum imag-
ing [Mohan et al. 2008] by using of diffraction grating. In a com-
pletely orthogonal domain, limited flexibility in color primaries has
been explored via tunable sensors [Langfelder et al. 2009]. These
sensors do not require CFAs to capture color images. Instead, each
wavelength is captured at a different depth of the sensor. The ab-
sorbtion depth can be changed by applying an electrical voltage to
the sensor. Therefore, the spectral-bands that are sensed at each
depth can be tuned slightly. This allows for limited flexibility in the
amount of overlap between the spectral response of the eye (CIE
primaries for the standard observer) and that of the sensors, leading
to a little higher color fidelity. However, this only allows a small
shift in the spectral transmittance of the narrow band primaries, but
cannot achieve a completely different number of primaries with en-
tirely different spectral transmissivity as is possible in our camera.

2 Camera with Switchable Primaries

We achieve switchable color primaries by layering a pair of CFAs
that can be shifted precisely relative to each other. We use a pair
of CMY CFAs (Figure 2(a)) where each row repeats the C, M, and
Y tiles. But odd rows start with C while even rows with M. This
results in the repetition of a 3×2 pattern of CMY tiles (Figure 2(a)).

When two such CMY CFAs are superimposed with no shift, tiles
with similar spectral transmittance coincide and the combined ef-
fect is that of a CMY CFA, whose spectral transmittance is shown
in 3(a). However, if the top layer is shifted by one tile horizontally,
each C tile of the top layer superimposes a M tile of the bottom
layer resulting in a B tile. Similarly, M and Y tiles of the top layer



superimpose Y and C tiles of the bottom layer resulting in G and R
tiles respectively (Figure 3(b)). Therefore, with such a horizontal
shift, this layered CFA is similar to an RGB CFA except for the first
and last columns (Figure 2(b)). Finally, if the top layer is shifted by
another tile vertically, in the odd rows the C tiles superimpose Y
tiles, M with C, and Y with M, resulting in RGB tiles as before.
But, in the even rows the M tiles from the top layer superimpose
with M tiles from the bottom layer, Y with Y and C with C result-
ing in broad-band CMY tiles (Figure 2(c)). Using these, we can
compute narrow-band cyan and yellow primaries, Cn = C−B−G
and Yn = Y −R−G (Figure 3(c)). But, since M is very close to
R+B, we cannot similarly extract a sixth non-overlapping primary.
This results in a capture mode with five almost non-overlapping pri-
maries, namely R, G, B, Cn and Yn, leading to a five primary mode
– RGBCY. Thus, we achieve three different sets of color primaries
in the same camera: (a) RGB, (b)CMY, and (c) RGBCY.

Our camera with switchable color primaries has several advantages
over cameras with fixed RGB or CMY CFAs. Narrow-band fixed
RGB CFAs mimic the human eye but do not have the desired light
efficiency to provide a good signal-to-noise-ratio (SNR) for dark
scenes. Wide band CMY CFAs (Figure 3(a)), on the other hand,
provide better SNR for dark scenes. However, images need to be
converted to the more common RGB format using demultiplexing
computations of R = M+Y −C, G =Y +C−M, and B =C+M−
Y . These computations introduce higher noise for bright scenes.
Further, the effective spectral transmittance profiles of the R, G, B
channels following this computation (Figure 3(d)) can be negative
leading to lower color fidelity due to clamping artifacts [Cao and
Kot 2008]. Thus, while CMY CFAs are better for dark scenes, RGB
CFAs are preferred for bright scenes. In summary, our camera can
provide optimal SNR by capturing dark scenes in the CMY and
bright scenes in the RGB mode; and can also provide significantly
higher color fidelity for colorful scenes in the RGBCY mode.

We have demonstrated and evaluated the superior color fidelity and
SNR of our camera using empirical results (Section 5) obtained
from multiple prototypes designed and built in our lab (Section 6).

3 Camera with Switchable Dynamic Range

The concept of shiftable CFAs can be used to create different op-
erational modes, beyond just switchable primaries. When creating
switchable primaries, we considered layers of CMY CFAs. Now,
let us consider RGB filters that have a small transmittance over the
entire spectrum (Figure 4a) except for peaks in the R, G, and B re-
gions respectively. In this case, superimposition of unlike filters –
i.e. B and G, R and B, or R and G – result in very low transmittance
cyan, magenta and yellow filters, Ch, Mh and Yh, respectively.

Let us now consider two layers of RGB CFAs (Figure 5). Before
shifting, similar tiles superimpose (Figure 5a) resulting in a low dy-
namic range (LDR) capture mode. But, with a relative horizontal
shift of 2 tiles (Figure 5b) we get a column of RGB filters and an-
other column of CMY filters with very low transmittance that are
sensitive to a higher range of brightness. Hence, in this mode, we
can capture high dynamic range (HDR) image while trading off the
spatial resolution. Thus, we now get a camera which can switch be-
tween LDR and HDR capture modes. We describe prototypes for
such a camera and results thereof in Section 6 and 5.

4 A General Framework

In general, we can pose the problem of designing appropriate CFA
patterns and their relative shifts as a constraint satisfaction problem
(CSP). We impose constraints on the combinations of the primaries

(a) (b)

Figure 4: (a) Spectral transmittance of the R, G, B, Ch, Mh, Yh
channels. (b) Zoomed-in view of the spectral transmittance of the
Ch, Mh, and Yh channels. The zoomed-in view shows that the RGB
channels extracted from Ch, Mh, and Yh are similar to the LDR RGB
channels but are considerably less sensitive to light.

(a) (b)

X-Shift by 2

Figure 5: Left: Two Layers of RGB CFA superimposed on each
other. Right: The top layer is shifted 2 tiles to the right. After the
shift the tiles that overlap with similar tiles work as RGB filters and
the rest work as low transmittance CMY filters.

and their proportions in each capture mode which are then solved
by a CSP solver to return the patterns for both the CFAs.

Let us assume p different tiles/filters, Fk,1≤ k≤ p. For example, in
the context of Figure 2, there are 6 different tiles, (C,M,Y,R,G,B).
First, we define the set of valid combinations of the tiles that can be
used in the design. This is a set, V , of 3-tuples that define the tile
in the top layer, bottom layer, and their combination. For figure 2,
V = {(M,Y,R),(Y,C,G),(C,M,B),(C,C,C),(M,M,M),(Y,Y,Y )}.
In all the examples in this paper, switching the first two elements
of the 3-tuple also result in valid combinations, but we omit those
3-tuples for compact representation. Next, for each capture mode,
we define the desired proportion of each primary in the final com-
bination. We assume m capture modes. For each mode l,1≤ l ≤m,
we define as a p-tuple, Ml , which specifies the proportions of tile
Fk in mode l. For Figure 2, M1 = ( 1

3 ,
1
3 ,

1
3 ,0,0,0), and defines the

CMY mode; M2 = (0,0,0, 1
3 ,

1
3 ,

1
3 ) and defines the RGB mode; and

finally M3 = ( 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ) and defines the RGBCMY mode.

In order to find the CFA patterns, the CSP solver starts the search
from the smallest possible number of tiles that can fit all the desired
proportions defined by Mls. Among different sizes with the same
number of tiles, it starts the search from the one which is closest to
a square in shape. Lets assume the size of the pattern is (nx,ny).
Lets define the tiles of the top and bottom layers as T (i, j), and
B(i, j) respectively, where 0≤ i < nx,0≤ j < ny. The combination
of the layers, however, depends on the additional parameters of the
direction and magnitude of the relative shift between the two lay-
ers. Therefore the solver also iterates on the possible shifts starting
from the smallest one. Let us assume for mode l the shift is de-
fined by (xl ,yl) and the superposition of the two layers as Sl(i, j).
Consequently, we enforce the following combination constraints:

(T ((i+ xl) mod nx,( j+ yl) mod ny),B(i, j),Sl(i, j)) ∈V (1)
Further, we also impose proportion constraints for each filter Fk
assuring that its total number in the combined layer for mode l con-
firms to Ml . This constraint is as follows.

∑
i j
(Sl(i, j) == Fk) = Ml(k)nxny (2)

Since each of the above constraints only affects a few variables,
they can be efficiently solved by standard CSP solvers. Further, we
can impose constraints on the amount and direction of the shift. For



(a) (b) (c)

X-Shift by 1 X-Shift by 1 

(d) (e)

X-Shift by 1

Figure 6: Results from CSP solver. (a),(b),(c): Layering of two CMY layers to create a camera with switchable primaries with the shift
constrained to be in one direction – CMY before shifting (a), RGB after shifting the top layers one tile to right (b), and RGBCMY mode after
shifting 2 tiles to right. (d),(e): Layering of an add-on CFA by constraining one layer to be a Bayer CFA to create a camera with switchable
LDR/HDR modes – the add-on pattern does not considerably affect the transmittance when superimposed with a Bayer CFA without shifting
giving the LDR mode (d), when shifted to the right, some of the tiles are similar to RGB filters and the rest become low transmittance ICY
filters that capture HDR values (e). Note that unlike other CFAs in the paper, this has C, Y , R and B filters – not just CMY or RGB.

example, for a switchable CMY/RGB/RGBCMY camera, if we im-
pose an additional constraint to limit the shift only in the horizontal
direction, the CSP solver fails to find a pattern with only 6 tiles.
However, after increasing the size of the pattern, it finds the 4× 3
pattern in Figure 6 where the CMY, RGB and RGBCY modes are
achieved by 0, 1 and 2 tiles shift respectively.

Further, we can impose constraints on one of the layers to
have a specific pattern. For example, if we desire to build a
switchable LDR/HDR camera using a commodity camera with
an existing Bayer CFA, we can specify B(i, j) to form a Bayer
pattern and let the solver find T (i, j). In this case we have 6
tiles (R,G,B,Ch,Mh,Yh) and the valid combinations are V =
{(R,R,R),(G,G,G),(B,B,B),(G,B,Ch),(B,R,Mh),(R,G,Yd)}.
There are two capture modes. In the LDR mode, the Bayer pattern
dictates M1 = ( 1

4 ,
1
2 ,

1
4 ,0,0,0). However, note that it is difficult to

define specific proportions for the low transmittance tiles of Ch, Mh
and Yh since multiple combinations may all produce acceptable re-
sults. But we can define a range of proportions instead of a specific
one. For example, we can define M2 = ( 1

8 ,
1
4 ,

1
8 , [

1
8

1
4 ], [

1
8

1
4 ], [

1
8

1
4 ]).

Finally, one can impose constraints on the patterns to enforce
certain desired properties such as non-adjacency of similar filters,
or equal number of other filters in the neighborhood of each filter.

However, note that a CSP solver may not always return a solution.
For example, this is the case for the above set of constraints defined
for the switchable LDR/HDR camera. One way to alleviate the sit-
uation is to provide more sets of valid combinations. For example,
we can add constraints to denote that R, G and B can be gener-
ated differently than just superimposing two layers of R, G and B.
This can be achieved by adding {(Y,R,R),(C,G,G),(M,B,B)} to
V . Further, we can also experiment with different filters. For ex-
ample, instead of having Ch, Mh and Yh as the low transmittance
filters, we can have an equivalent set of Ch, Ih, and Yh where Ih is
an intensity filter and replaces Mh. Thus, in this case, we have a set
of six different filters (R,G,B,Ch, Ih,Yh) where the valid superposi-
tions for achieving Ih are given by {(C,R, Ih),(M,G, Ih),(Y,B, Ih)}.
By doing these changes, the CSP solver can provide a solution for
an add-on CFA to the Bayer CFA to achieve switchable LDR/HDR
modes as shown in Figure 6. Note that the top layer consists of C, Y ,
R and B tiles, instead of having just CMY or RGB tiles. We build a
sample prototype for this, as explained in Section 6. However, note
that in the LDR mode, R can be formed both by superimposing two
R tiles or a R and a Y . Similarly, G and B can also be generated
in two ways resulting in varying spectral transmittance of the same
primary in this mode. However, we find in our prototype that this
still produces acceptable results (Figure 14).

Another way to assure a solution from the CSP solver is to weigh
some constraints to be more important than the others. For example
uni-directional shift can be an important design constraint, while
non-adjacency of similar filter may not be as critical. Allowing such
weights in the CSP solver results in a Markov Random Field that
can be solved efficiently using AI techniques for bounded search.

5 Results

For the proof of concept of our
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Figure 7: Our first prototype
where color filters are tempo-
rally multiplexed.

camera with switchable opera-
tional modes, we used a time se-
quential capture of images using
different layers of color filters in
front of a monochrome camera
to simulate the shiftable layers of
CFAs (Figure 7). To demonstrate
switchable primaries, we cap-
tured the images by superimpos-
ing pairs of CMY filters, both like
(C and C, M and M, and Y and
Y ) and unlike (C and M, M and
Y , and C and Y ). To demonstrate
switchable LDR/HDR modes, we

captured images by superimposing RGB filters. Next, to simulate
the effect of capturing all these in a single shot, we pick the pix-
els from the appropriate images in this temporally multiplexed se-
quence. The image thus created, records only one primary at every
pixel simulating the effect of the layered CFAs. We demosaic the
image in software (Section 7) to achieve the final full-resolution
image. The setup of Figure 7 provides us with high quality and
high resolution results to prove the concept of shiftable layers of
CFAs. However, practical designs for such a camera without time
multiplexing are described in Section 6.

For the setup in Figure 7, we used a monochrome 2560× 1920
sensor (EO-5012BL 1) and dichroic filters from EdmundOptics 2.
The spectral transmittance of the filters (Figure 3) are obtained from
the manufacturers website 2. For the LDR/HDR camera, we create
RGB filters by exposing 35mm Kodak films to appropriate lighting.
To allow some amount of light (at least 4%) to pass through in the
HDR mode after the superposition of the shifted layers, we did not
fully expose the films. Figure 4 shows the transmittance profiles of
these filters captured using a SOC-730 hyperspectral camera.

Figure 8 shows the results for the switchable LDR/HDR modes. We
use an adaptive logarithmic tone mapping operator [Drago et al.
2003] to show the HDR image. Figures 9, 10 and 11 show the
results for the camera with switchable primaries. In the rest of the
section, we quantify the advantages of our switchable cameras.

5.1 Superior Color Fidelity

First, we show the superior color fidelity of our camera with switch-
able primaries in the RGBCY mode compared to the RGB or CMY
modes. We compared the images captured by each mode of our pro-
totype camera against those captured by a SOC-730 hyperspectral

1http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?
productID=1734

2http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?
productID=2947



Figure 8: Left: A scene captured with the HDR mode of our switch-
able LDR/HDR camera. Right: The same scene captured with the
LDR mode (saturated sky and dark trees). In the zoomed-in view the
resolution of the LDR image is higher than the HDR one, empha-
sizing the need for flexibility based on the scene and application.
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Figure 9: Three examples of comparison between the ground truth
images captured with a SOC-730 hyperspectral camera and images
captured with our prototype with RGB, CMY, and RGBCY modes.
The gray images show the CIELAB ∆E difference along with the
error statistics (mean, maximum and standard deviation). Note the
better color fidelity of the RGBCY mode especially in the red-purple
and cyan-green colors. Also, note that in general the color fidelity
of CMY mode is much lower than the RGB mode.

camera at a spatial resolution of 1024× 1024 and spectral resolu-
tion of around 9nm in the range of visible wavelengths from 420nm
to 700nm. We used a data set of 35 such images.

For comparison, we generate four images in the CIE XYZ space.
First, we compute a ground truth image from the captured hyper-
spectral image by finding the CIE XYZ values at each pixel via a
scalar dot product of the spectral response at that pixel, P(λ ), with
the standard human observer’s sensitivity, x(λ ), y(λ ) and z(λ ) re-
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Figure 10: Three examples of comparison between the ground truth
and simulated images for RGB, CMY, and RGBCY modes using the
CAVE database. The gray images show the CIELAB ∆E difference
along with the error statistics (mean, maximum and standard devi-
ation). Note the superior color fidelity of the RGBCY mode espe-
cially in near-saturated shades of blue, green, and red.

spectively. Next, we convert the images captured by the three dif-
ferent modes of our prototype to CIE XYZ space. The XYZ values
corresponding to the captured color are computed by a weighted
sum of the captured values, where the weights for X , Y and Z are
computed by finding the correlation of the known spectral trans-
mittance profiles of the primaries (Figure 3) with x(λ ), y(λ ) and
z(λ ). To quantify the perceptual difference of each of these camera
captured images from the ground truth, we compute their ∆E differ-
ences in the CIELAB space. Further, to provide a feel of how these
images would look on a standard sRGB display, we convert them to
the sRGB space. Since the ∆E images do not involve errors due to
clamping, they are better indicators of the differences. To align the
images captured by our camera and those from the hyperspectral
camera, we use standard rectification techniques.

Figure 9 shows a few examples from this set of 35 images along
with the statistics (mean, maximum, and standard deviation from
the mean) of the per-pixel ∆E error for each of these images. The
average ∆E difference, over all the 35 images, for RGBCY mode
was 1.95 units and 6.2 and 7.5 units for the RGB and CMY modes
respectively. This is a perceptible difference of more than 1JND (3
units of ∆E = 1 JND). Further, note that the RGBCY mode reduces
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Figure 11: Scenes captured with CMY (top) and RGB (bottom) modes of our camera is shown before (left) and after (right) applying the JBF
for a dark and a bright scene. The SNR are embedded on the top left of each image. For the dark scene, the CMY mode provides superior
SNR, particularly after applying the JBF. For the bright scene, the RGB mode provides superior SNR. The JBF reduces the noise but degrades
the overall perceptual quality of the image because of the reduced sharpness of the edges.

the maximum deviation from the ground truth tremendously, when
compared to the RGB and CMY modes – but some deviation still
remains since five primaries are not sufficient to achieve the color
fidelity of a hyperspectral camera with 30 spectral bands.

In order to confirm the same result for an existing database, we use
the CAVE multi-spectral image database [Yasuma et al. ] that in-
cludes 31 pictures sampling the range of the visible wavelengths
from 400nm to 700nm at 10nm increments at each pixel. We sim-
ulate the images captured by the camera in different modes using
the spectral transmittance profile of the primaries (Figure 3) of that
mode. Then, we compute the same ∆E difference as mentioned
above for the simulated camera images in different modes.

Figure 10 shows a few examples along with the error statistics of
the ∆E difference. The results are similar to the first set of exper-
iments with an average ∆E difference of 2.12, 6.5 and 7.6 units
for the RGBCY, RGB and CMY modes respectively confirming a
significantly improved color fidelity in the RGBCY mode.

5.2 Optimal Signal to Noise Ratio

The signal-to-noise-ratio (SNR) of an image is strongly related to
the spectral properties of the color filters and the overall brightness
of the scene. CMY CFAs are known to have higher SNR compared
to RGB CFAs in dark scenes due to their higher spectral transmit-
tance; but result in lower SNR for brighter scenes since the noise
adds up when demultiplexing the RGB values from the captured
CMY values. Our camera offers the best of both worlds by switch-
ing between RGB and CMY modes.

To demonstrate this, we present in the appendix a computational
method to analyze the SNR of our camera. We compute two ratios,
SNRCMY
SNRRGB

and SNRCMY
SNRRGBCY

(Equation 3), for both bright and dark scenes
(Table 1) for captured color vectors C and for the intensity value g,
obtained by summing the captured values across the channels.

To validate the model in practice, we measure the same ratios for
a set of images captured by our prototype (Section 6) and compare
them with those predicted using our SNR model in Equation 3. We
use images of 20 different scenes for each of the dark and bright
conditions, and we capture each scene 25 times under the same

SNRCMY (C)
SNRRGB(C)

SNRCMY (C)
SNRRGBCY (C)

SNRCMY (g)
SNRRGB(g)

SNRCMY (g)
SNRRGBCY (g)

M P M P M P M P
Dark 1.25 1.22 1.94 1.99 2.08 2.12 0.94 0.96

Bright 0.85 0.84 1.60 1.57 1.39 1.37 0.82 0.82

Table 1: Comparison of SNR ratios for C and g across CMY, RGB,
and RGBCY capture modes. M denotes measured and P denotes
predicted. Note that for all conditions, the measured ratios conform
closely to the predicted ones validating our SNR model.
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Figure 12: ∆E difference from ground truth for RGB and CMY
modes before and after the JBF. Longer exposure time is used for
lower luminance levels such that the amount of light that reaches
the sensor remains constant. The longest exposure is 2 seconds
and the shortest is 1 millisecond. We used ISO 400. The graph
demonstrates that for low luminance levels CMY capture mode is
superior particularly after applying the JBF. On the other hand, for
high luminance levels RGB capture mode without JBF results in
superior fidelity while the JBF degrades the quality of the image.

illumination. To achieve such a controlled illumination, for this ex-
periment, we use projector based illumination over a printed scene
to vary the scene conditions from dark to bright. We vary the expo-
sure time inversely proportional to the illumination intensity.

To find the SNR for each scene, we first find the mean and variance



estimators of the captured C and g at each pixel using the 25 images
captured under the same illumination. From this, we can compute
the per pixel noise-to-signal ratio which are then averaged across
the pixels and inverted to find the average SNR.

Table 1 shows the predicted and measured SNR ratios for both C
and g. The closeness of the predicted and measured values in this
table validates the accuracy of our noise model and shows that for
dark scenes the SNR is more than 20% higher in the CMY mode
than the RGB mode. But, for bright scenes, the RGB capture mode
shows similar SNR advantage over the CMY mode. Also, when
compared to the RGBCY mode, the CMY mode has almost double
the SNR for dark scenes. This is due to the very narrow band Cn and
Yn primaries in the RGBCY mode. Thus, the greater color fidelity
of the 5 color mode comes at the cost of reduced SNR.

Joint Bilateral Filtering: Table 1 shows that the SNR for g is much
superior than the SNR for C, especially in the CMY mode (almost
twice), for both dark and bright scenes. Hence, we propose using
the intensity image g, as a guidance image to apply joint bilateral
filtering (JBF) on each channel of the image to improve the SNR.
However, JBF can also degrade the image fidelity by blurring the
high-frequency details. Hence, there is a trade off involved in the
improvement in the SNR and the degradation in image fidelity.

To evaluate this, we find the SNR of a scene after applying JBF for
a particular mode using the aforementioned SNR analysis using the
same set of 20 scenes after applying JBF. We found that for dark
scenes, JBF improves the SNR of the CMY mode dramatically but
does not affect the SNR of the RGB mode as much. Hence, after
JBF, the CMY mode provides almost 70% better SNR than RGB
mode (as opposed to 20% improvement without JBF).

For bright scenes also, JBF improves the SNR. But this comes at
the cost of degraded image fidelity. We measure this degradation
using ∆E difference of the captured image, before and after apply-
ing the JBF, from a ground truth image. To find the ground truth for
each scene, we average the 25 images captured under the same illu-
mination. Finally, we average the ∆E difference over all the pixels
for each mode. From this metric, we find that the degradation in the
image fidelity due to the JBF, offsets the improvement in the SNR
in RGB mode much more than the CMY mode (Figure 12). Hence,
for bright scenes, the highest image fidelity is achieved in the RGB
mode without applying the JBF.

6 Design Options and Prototypes

In this section, we provide design options for embedding shiftable
layers of CFAs in a real camera. We build some prototypes based
on these designs and show some preliminary results from them.

6.1 Mechanical Shift

The easiest way to achieve shitable layers of CFA is to layer two
CFAs on the CCD sensor during manufacturing. However, one
of them should be equipped with a shift mechanism. This can be
achieved using inexpensive (less than $175) linear staging devices
devices (e.g. EdmundOptics Part Number NT56-416 3)) some of
which allow linear shifts with 1 µm accuracy.

To demonstrate the feasibility of this design, we used it to build
a rudimentary prototype of our camera with switchable primaries.
We opened up a monochrome 2560× 1920 camera (EO-5012BL
from EdmundOptics) to expose its sensor. We used printed 35mm

3http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?
productID=1844

digital slides for the CFAs. Such slides can be printed in profes-
sional photo labs such as Swan Photo Lab 4 and cost about $4 for
each slide. To implement the shifting, we used a Metric Bar-Type
Lens Holder 5 (price: $79). One of the CFA layers is mounted on
the static part of the holder and the other one on the moving part
(Figure 13). The screw on the moving part has 20 teeth each of
height 0.5mm. Therefore, one turn of this screw results in 0.5mm
shift of the moving CFA. Hence, by rotating the head of the screw
by one degree we can move the CFA about 1.39µm.

However, this setup has a tremendous scope of improvement. Our
cheap CFAs has neither the resolution nor the light efficacy of the
CFAs of standard cameras. The pixel size of our printed CFAs is
8.8µm×8.8µm resulting in 4 times bigger pixel size in each dimen-
sion than our sensor pixels (2.2µm×2.2µm). Further, the CFAs are
printed using light beams that do not produce rectangular pixels but
gaussian blurs. Therefore, we printed a pattern with 2 times larger
tiles and one black line between every two adjacent tiles to reduce
the color bleeding. Consequently, a CFA tile becomes 12 times big-
ger compared to a sensor pixel. To alleviate this mismatch, we sep-
arate the CFAs from the sensor. The image is focussed on the CFAs
and refocused on the sensor using an achromatic lens (25mm diam-
eter and 30mm effective focal length) that downsizes the CFA tiles
by a factor of 3 making the resolution mismatch 4 in each direc-
tion. Even when considering the 4×4 pixels on the sensor that are
considered as one pixel of the prototype, we observe considerable
color bleeding between the adjacent pixels. This is due to the glass
cover of the sensor that acts as a diffuser. We could not remove it
due to the fragility of the sensor. Hence, to nullify its effect we only
consider the 2×2 center pixels of the 4×4 groups of pixels on the
sensor and average their values to get the captured values. All these
result in degradation of the image quality and resolution (640×480
pixels). Figure 13 shows the picture of this prototype and some
images captured with it. Further, in terms of size, note that 16cm
length of our 19cm long prototype contributes to refocus the image
from the CFA to the sensor that is unnecessary when the CFAs are
mounted on the sensor. Finally, in terms of cost, the off-the-shelf
devices used in our setup are not custom tailored for our application
(for e.g. the Metric Bar-Type Holder can hold much heavier weight
than is required by a camera). Devices designed specifically and
mass produced for cameras can be considerably cheaper.

6.2 Optical Shift

We also designed an add-on device for DSLR cameras to achieve
switchable modes. In this setup, the image is formed on the first
CFA and then refocused on the second CFA, attached to the sensor,
using two lenses of the same power. However, by making one lens
slightly off-axis we can shift the image in the off-axis direction. A
precise shift can be obtained by controlling the placement of the
lenses between the CFA and the sensor (Figure 14).

Let us assume the first lens is α units off-axis and the desired shift
is β units. The magnification of the two lenses are s1 and s2 respec-
tively, where s1s2 = 1. Assuming the second lens is axis aligned,
the total shifting of the image is s2α = α

s1
. Hence, s1 = α

β
. Us-

ing the standard thin lens equation, we find that in order to achieve
this the first lens should be placed at distance d1 =

f (s1+1)
s1

from

the CFA. The resulting image will be at distance f (s1+1)2

s1
from the

CFA. In order to make s2 = 1
s1

, using thin lens equation, we find
that the second lens should be at distance f (s1−1) behind the im-
age of the first lens. Therefore the second lens should be placed at

4http://www.swanphotolabs.com/swan08/
5http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?

productID=2190/
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Figure 13: Left: Picture taken from our sample preliminary prototype. Middle: Zoomed-in view of the shifting mechanism from a different
angle. Right: Images taken with our prototype with RGB and CMY modes in different lighting conditions. Please note the better SNR of the
CMY mode for the dark scene (left) and the better SNR of the RGB mode for the lighted scene (right) in the zoomed-in views.
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Figure 14: Left: This figure shows the design of the add-on device that be added to a regular Bayer LDR camera to achieve a HDR mode. A
pair of lens, separated by a fixed distance, is put between the Bayer CFA on the camera sensor and the printed CFA. The lens which is close
to the CFA is slightly off-axis. The amount of shift is controlled moving this two-lens ensemble on a rail. Right: We show the LDR and HDR
images captured by this prototype. Note the saturated sky in the LDR mode is better captured in the HDR mode.

d2 =
f (s1+1)2

s1
− f (s1−1) = 2 f + x1 and the image of this lens will

be formed at x2 +
f (s1−1)

s1
= 4 f . Thus, irrespective of s1 and s2 the

distance between the CFA and sensor should be 4 f and the distance
between the lenses should be 2 f . β can be changed by moving the
lenses to different positions between the CFA and sensor.

The main advantage of this setup is that the shifting can be pre-
cisely controlled by a few orders of magnitude larger movement
of the lenses. For example, in our setup we used two lenses with
f = 3cm. The image is not shifted when placing the first lens
at distance f from the first CFA. In the shifted state, we chose
α = 10β = 264µm. Therefore, x1 =

f (s+1)
s = 3.3cm. Thus, we

can achieve 26.4µm shift by moving the lenses 3mm away from the
CFA. Further, the setup can added to any camera with a wide-band
CFA without changing any of the internal parts. However, the setup
is relatively large since the image is focused twice on the two CFAs.

We used this to design a prototype switchable LDR/HDR camera
using a Canon Rebel Xsi camera with a Bayer CFA on its sensor.
We use the CFA pattern in Figure 6 for the second layer. Finally,
we used two lenses with 25mm diameter and 30mm effective focal
length with the first lens moved 264µm off-axis to achieve the shift.
For CFA, we used 35mm digital slides. All the resolution and qual-
ity issues that exists in the previous prototype also exists here and
are handled similarly. However, since at least one CFA layer is a
high quality one, we achieve better results (Figure 14).

7 Discussion

Demosaicing: Our camera with switchable modes has novel CFA

Bilnear Gunturk Li Lu & Tan Minimum
Fig 2-RGB 1.07 1.03 1.01 0.92 0.92
Fig 2-CMY 1.11 0.98 0.92 1.00 0.92
Fig 2-RGBCY 1.40 1.28 1.18 1.16 1.16
Fig 6-RGB 0.80 0.78 0.76 0.71 0.71
Fig 6-CMY 1.08 0.98 0.89 0.88 0.88
Fig 6-RGBCY 1.39 1.28 1.17 1.16 1.16
Fig 5-LDR 0.84 0.83 0.75 0.70 0.70
Fig 5-HDR 1.63 1.48 1.39 1.41 1.39
Bayer 0.82 0.79 0.74 0.73 0.73

Table 2: Comparison of the performance of several demosaic-
ing methods for different capture modes of our camera. We used
CIELab difference from a non-mosaics image as the error metric.

patterns whose behavior to demosaicing is studied here. There are
several demosaicing methods in the literature, often suitable for par-
ticular CFA patterns. Freeman [1988] uses a median filter to pro-
cess the inter-channel differences of demosaiced images obtained
by bilinear interpolation. Some other methods investigate the spa-
tial and frequency characteristics of the image to achieve better de-
mosaicing. For example, edge classifiers are often used to identify
the best directions for interpolating the missing color values [Li
2005; Hamilton and Adams 1997]. [Gunturk et al. 2002] uses a
scheme to exploit spectral correlation by alternately projecting the
estimates of the missing colors onto constraint sets based on origi-
nal CFA samples and prior knowledge of spectral correlation.

In addition to bilinear interpolation, we experimented with several
more recent demosaicing methods [Gunturk et al. 2002; Li 2005;
Lu and Tan 2003] to evaluate their suitability for our particular



CFA patterns in Figures 2, and 6. To quantify this, we find the
average ∆E difference of the demosaiced image from the original
non-mosaiced image in the CIELAB space (Table 2). We also com-
pare this to the error due to demosaicing for a Bayer pattern.

Table 2 shows that though most methods work well for the different
modes, each mode favors some demosaicing methods over others.
Most importantly, demosaicing artifacts from the RGB mode of the
pattern in Figure 2 is comparable to the Bayer pattern and even
slightly better when considering the minimum error. However, the
pattern in Figure 6 shows higher error in the same mode primarily
due to adjacent tiling of similarly colored filters. Also, the CMY
mode of both our patterns show more error than the RGB mode. Fi-
nally, the RGBCY mode shows more error than the RGB or CMY
modes. This emphasizes the need for switchable primaries where
lesser noise and demosaicing artifacts can be traded over color fi-
delity when it is not of critical importance. Further, like any single
shot HDR camera, our switchable LDR/HDR camera compromises
spatial resolution in HDR mode (Figure 8). This manifests itself as
larger demosaicing errors for the HDR mode than the LDR mode.

Effects on Light Efficiency: Usually RGB CFAs are built using
layered combinations of CMY dyes [Gunturk et al. 2005] in a fash-
ion equivalent to our RGB mode. Hence, layering CFAs does not
compromise the spectral transmittance in the RGB mode of the
switchable camera. Since the current filters have light efficiency
close to 90%, even in the CMY mode, there is only a small loss
in the light efficiency (around 10%) that is outweighed by the 70%
improvement in the SNR in this mode.

In order to confirm this in practice we compared the performance of
our camera with the raw images (to avoid post-processing) from a
standard RGB camera with similar pixel size, Canon PowerShot S3
IS on the same set of test images used in Table 1 in similar lighting
conditions. We found the SNR of this camera to be about 0.95 of
the RGB mode of our camera for both dark and bright scenes. This
can be attributed to the lower transmittance of the pigments in the
Canon camera compared to the dichroic filters used in our prototype
and also the slightly smaller pixel size of the Canon camera.

Practicality of the layered CFAs: Spectral bleeding due to the
CFA misalignment is the main obstacle of our layered CFA design.
This can be alleviated by the use of microlenses. Proper design of
microlenses and photo-detectors, that consider the filter thickness,
will be the key. Further, use of high precision actuators can reduce
misalignment significantly. Certain recent SLR cameras already
have actuators to shift the sensors for anti-blur or dust-removal.
Also, in Sinar photography 6 the CCD sensor is shifted three times
laterally or vertically by exactly one pixel width from one exposure
to the next, so that every pixel is covered by every primary color.
Similar mechanism can be used for shiftable CFAs. Finally, since
CFAs are printed using precise machinery, some of the issues can
be alleviated during printing, for e.g. compensating for lens aberra-
tion in the second CFA layer in the optical shift setup. The micron
level shifts achieved from inexpensive COTS components in our
lab setting provides ample encouragement that manufacturers can
do much better with the facilities in their disposal.

8 Conclusion

In summary, we present the concept of shiftable layering of CFAs
to achieve multiple switchable operational modes within the same
camera. We demonstrate two different cameras using this concept:
a camera with switchable primaries that can operate in the RGB,
CMY and 5-color RGBCY modes; and a camera with switchable

6http://www.sinar.ch/en/products/digital-backs/241-sinarback-
evolution-86-h

LDR and HDR capture modes. The camera with switchable pri-
maries can provide superior color fidelity for colorful scenes and
the optimal SNR for both dark and bright scenes. The camera with
LDR and HDR modes can trade off resolution to capture a higher
dynamic range. Further, we show that the general idea of CFA
layering can be posed as a constraint satisfaction problem to find
CFA patterns based on the design constraints. Finally, we propose
some simple designs to explore the practical feasibility of embed-
ding such shifted layering of CFAs in real cameras in the future.
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Appendix

Our SNR analysis is inspired by prior work on illumination multi-
plexing [Schechner et al. 2007]. To capture the effect of illumina-
tion from a single light source in a scene lit by multiple lights, im-
ages can be captured by illuminating the scene with one source at a
time. However, this leads to considerable noise due to the low illu-
mination, especially in the shadow regions. [Schechner et al. 2007]
shows that acquiring images with multiplexed sources reduces the
noise. The effect of each light source can then be recovered by
demultiplexing the captured values. The scenario with cameras is
analogous. The primaries of a narrow band camera are designed to
capture each of the red, green or blue channels. Whereas, the pri-
maries of a broad band camera multiplex these bands to improve the
light efficiency. Hence, we propose a similar paradigm for analyz-
ing the SNR of the multiplexed or non-multiplexed capture modes.

Modeling SNR: Let us consider a color basis with n channels
whose spectral transmittances overlap minimally (e.g. RGB). Let
the total number of photons reaching the camera from a spatial point
before being filtered by the primaries be α . Hence, α changes spa-
tially with the scene content and also with the change in aperture or
shutter speed of the camera. For a general camera, let us assume m
physical color filters that multiplex these n channels by transmitting
or blocking each channel completely (e.g. a cyan primary transmits

B and G but blocks R). Let the transmittance of these m primaries be
T =(t1, t2, . . . , tm)T . If we assume that the light is evenly distributed
across all wavelengths, then the expected value of the amount of
light passing through any primary is given by αT . Let us consider
a m× n multiplexing matrix M such that M(i, j) is 1 if channel i,
1 ≤ i ≤ n, is passed and 0 otherwise. Hence, the expected values
computed for each channel i, ci, is given by E(ci) =αM−1

i T , where
M−1

i is the ith row of M−1. We define the expected value E(C) of
C = (c1, . . . ,cn) to be a vector given by E(C) = (E(c1), . . . ,E(cn)).

For the sake of simplicity we assume the noise level is always com-
puted for the same sensor gain, i.e. ISO number. The sources
of noise in an imaging pipeline can be categorized into signal-
dependent or signal-independent noise [Schechner et al. 2007; Al-
ter et al. 2006; Ratner and Schechner 2007]. The signal-dependent
noise can be expressed as a Poisson distribution of the photons
that reach the sensor, i.e. each pixel. Since this is dependent on
the number of photons, it is the dominant noise when the number
of photons is high, i.e. for lighted scenes. The variance of the
signal-dependent noise for each primary j is therefore proportional
to the expected captured values αt j. We assume the variance of this
signal-independent noise is the same across all the primaries, S.

Hence, the total variance for channel i is given by σ2
i =

∑
m
j=1(M

−1
i j )2(αt j + S). For dark scenes, the signal-independent

noise dominates and the above equation becomes σ2
i =

∑
m
j=1(M

−1
i j )2S. For bright scenes, the signal-dependent noise domi-

nates and the above equation becomes σ2
i =∑

m
j=1(M

−1
i j )2αt j. Now,

we define the total variance for C as a vector σC = (σi, . . . ,σn).
Hence, the signal to noise ratio for C is given by

SNR(C) =
|E(C)|
|σC|

(3)

However, note that defining the SNR for the intensity image g
is much simpler. In this case, E(g) = α ∑

m
i=1 ti and the σg =√

∑
m
i=1 S+αti. For dark scenes, σg =

√
∑

m
i=1 S, and for bright

scenes, σg =
√

∑
m
i=1 αti Hence, the SNR(g) = E(g)

σg
.

For any camera, we usually know the matrix M−1. For example,
the matrix M for an RGB camera is a 3×3 identity matrix since the
channels and the filters are identical. Hence, M−1 is also identity.
But, for CMY cameras with that capture multiplexed RGB chan-
nels, the matrix M and M−1 are as follows.

MCMY =

 0 1 1
1 0 1
1 1 0

 , M−1
CMY =

1
2

 −1 1 1
1 −1 1
1 1 −1

 (4)

Or, when considering the 5-primary mode of our camera, n = 5
since we can capture 5 almost non-overlapping color channels as
shown in Figure 3(d). However, m = 6. This means that M is not a
square matrix, but a 6×5 matrix and M−1 is a non-unique pseudo-
inverse. M and one such pseudo inverse are shown below.

M =



1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 1 1 1
1 0 0 0 1
1 1 1 0 0

 M−1 =


1 0 0 0 0 0
−1 −1 0 1 0 0
0 1 0 0 0 0
0 −1 −1 0 1 0
0 0 1 0 0 0

 (5)

Further, note that when computing the ratios of the SNRs (e.g.
RGB vs. CMY) for dark or bright scenes, we do not need to know
α or S since they cancel out. Hence, as long as we know the trans-
mittance of the primaries, Figure 3, we can predict the relative im-
provement or degradation of SNR. Since we know the transmittance
of the primaries in our camera, we use this to predict two ratios,
SNRCMY
SNRRGB

and SNRCMY
SNRRGBCY

, for both bright and dark scenes (Table 1).



A Scalable Distributed Paradigm for Multi-User Interaction with
Tiled Rear Projection Display Walls

Pablo Roman and Maxim Lazarov and Aditi Majumder, Member, IEEE

Fig. 1. This figure shows some of our applications in action. From left to right: Our collaborative map visualization application with two users visualizing
different parts of the map at the same time on our 3× 3 array of nine projectors; Our collaborative emergency management application with two users
trying to draw a path to hazardous location and dispatching teams of first responders on our 3×3 array of nine projectors; Digital graffiti drawn using our
collaborative graffiti application on only six of the projectors. We deliberately did not edge blend the projectors to show the six projectors clearly; Four
children working together on our digital graffiti application on a 3×3 array of nine projectors.

Abstract— We present the first distributed paradigm for multiple users to interact simultaneously with large tiled rear projection dis-
play walls. Unlike earlier works, our paradigm allows easy scalability across different applications, interaction modalities, displays and
users. The novelty of the design lies in its distributed nature allowing well-compartmented, application independent, and application
specific modules. This enables adapting to different 2D applications and interaction modalities easily by changing a few application
specific modules. We demonstrate four challenging 2D applications on a nine projector display to demonstrate the application scala-
bility of our method: map visualization, virtual graffiti, virtual bulletin board and an emergency management system. We demonstrate
the scalability of our method to multiple interaction modalities by showing both gesture-based and laser-based user interfaces.
Finally, we improve earlier distributed methods to register multiple projectors. Previous works need multiple patterns to identify the
neighbors, the configuration of the display and the registration across multiple projectors in logarithmic time with respect to the number
of projectors in the display. We propose a new approach that achieves this using a single pattern based on specially augmented QR
codes in constant time. Further, previous distributed registration algorithms are prone to large misregistrations. We propose a
novel radially cascading geometric registration technique that yields significantly better accuracy. Thus, our improvements allow a
significantly more efficient and accurate technique for distributed self-registration of multi-projector display walls.

Index Terms—Tiled Displays, Human-Computer Interaction, Gesture-Based Interaction, Multi-user interaction, Distributed algorithms

1 INTRODUCTION

Large multi-projector planar display walls are common in many vi-
sualization applications. We have seen a large amount of work on
camera-based registration of multiple projectors in such displays, both
for geometry and color [25, 8, 4, 21, 22, 2, 3, 28]. This has enabled
easy deployment and maintenance of such displays. However, a suit-
able interaction paradigm for these displays that can be scaled to mul-
tiple users for large number of display modules across different ap-
plications and interaction modalities is still not available. This has
brought in a belief in the visualization community that limited display
space and interactivity makes it difficult for application users to solve
issues of interactively understanding domain problems. This paper fo-
cuses on providing a new approach of scalable interactive multi-user
interaction for tiled display walls. The final roadblock in the adoption
of any technology is the ease with which users can interact with it.
Our scalable interaction paradigm brings in the hitherto unknown ease
in user interactivity and deployment of it on commodity projectors.
Hence, this work can have a significant impact on wider adoption of
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the seamless multi-projector display technology across the visualiza-
tion community.

Most work in the human computer interaction domain [6, 31, 30, 32,
36, 29, 20, 19, 17, 16, 37, 9, 7] is difficult to scale to multiple interac-
tion modalities, applications, users and displays. Central to this prob-
lem is the fact that almost all earlier works in the domain of interaction
with tiled displays have explored application specific centralized algo-
rithms and architectures which inherently cannot scale with respect to
the number of users and displays due to critical dependency on a sin-
gle server. Further, scalability to multiple applications and interaction
modalities demand careful algorithm design to compartmentalize the
application/interface specific modules from the application/interface
independent ones and has not been explored before.

This paper makes the first effort to design a scalable interaction
paradigm for rear-projected tiled displays that can scale with multiple
projectors, users, applications and even interaction modalities. We ob-
serve that such a general paradigm is only possible with a distributed
architecture that inherently provides mechanisms for scalability. Such
a distributed architecture for multi-projector display walls is presented
in [3] where the display is built by a distributed network of plug-and-
play projectors (PPPs). Each PPP consists of a projector, a camera
and a communication and computation unit, simulated by a computer.
The display is created by a rectangular array of these PPPs on a pla-
nar screen. Each PPP runs an SPMD (single program multiple data)
algorithm presented in [3] that starts by believing that it is the only
display in the environment. It can communicate with its neighbor us-
ing its camera which sees parts of its neighboring PPPs. Using such
visual communication via the cameras and a distributed configuration



Fig. 2. Left: Our prototype PPP with a projector, a camera and a computer; Right
bottom: The inexpensive RC servo that can be used to switch the IR filters back
and forth. Right top: The RS-232 8 servo controller.

discovery algorithm, the PPPs discover the total number of PPPs cre-
ating the tiled display, their array configuration (total number of rows
and columns) and its own coordinates (its own row and column) in
this array. Following this, the PPPs can align themselves to create a
seamless display using a distributed self-registration algorithm.

1.1 Main Contributions

We use the same distributed architecture based on PPPs presented in
[3] and build a new distributed registration algorithm and a distributed
interaction paradigm on top of it. For interaction, we design a SPMD
distributed interaction algorithm that runs on each PPP following the
registration to allow multiple users to interact with the display using
any kind of interaction modality. The highlights of our distributed
interaction algorithm are as follows.

1. Since we design an SPMD algorithm, it can easily scale to mul-
tiple projectors. Hence, adding and removing PPPs to reconfigure the
display does not necessitate any change in the interaction algorithm.

2. Most modules of our algorithm are application independent.
Hence, to adapt to different 2D applications, only a few application
specific modules need to be modified. This allows our algorithm to
scale to many 2D applications.

3. Similarly, changing the interaction modality requires modifying
a small number of interface dependent modules. This allows our al-
gorithm to scale to different interaction modalities as well (e.g. laser
pointers, gesture-based interface).

4. Unlike a centralized system where all the interaction from mul-
tiple users is handled by a single centralized server, a distributed algo-
rithm distributes the load of handling multiple users to multiple PPPs.
Hence, our algorithm can easily scale to multiple users.

We also propose a new distributed registration technique that
achieves much greater accuracy and is more efficient in terms of per-
formance and bandwidth load than the method presented in [3]. Below
are the highlights of our new registration technique as compared to [3].

1. First, while discovering the configuration of the PPP array, mul-
tiple rounds of visual communication were used via the cameras in
[3]. This required processing multiple patterns for each PPP and con-
verged in logarithmic time with respect to the number of projectors in
the display. The performance was also compromised due to compu-
tationally intensive image processing. In contrast, we design a novel
method in which each PPP uses a single pattern made of specially
augmented QR (Quick Response) codes to discover the display config-
uration and self-register simultaneously in constant time. More impor-
tantly, we achieve this without increasing the network communication
load across the PPPs.

2. Second, [3] uses a distributed homography tree algorithm for
self-registration of the PPPs. This can lead to large misregistrations
(even as large as 10-20 pixels), especially when the PPPs are further
away from the reference PPP. This impacts the scalability of the self-
registration algorithm to a large number of projectors. We present

Fig. 3. Our setup of a network of PPPs augmented by the IR illuminators and the
IR camera filters.

a novel radially cascading geometric registration method that can
achieve a much superior accuracy.

In summary, our work, for the first time, introduces an entirely dis-
tributed framework for user interaction with tiled displays. In addi-
tion, we improve the existing distributed framework for registering the
many PPPs in the display. We first discuss our system in detail in Sec-
tion 2, followed by the distributed interaction paradigm and the im-
proved distributed registration in Section 3 and Section 4 respectively,
concluding with future directions in Section 5.

2 SYSTEM OVERVIEW

Our system consists of N PPPs, each made of a projector, and a camera
connected to a computer. We assume that the projectors and cameras
are linear devices. The PPPs are arranged casually in a rectangular ar-
ray (Figure 3) and overlap with their neighbors (adjacent PPPs). The
PPPs are initially unaware of the configuration of the array that they
are arranged in. Using visual communication via the cameras, a PPP
starts detecting its neighbors whenever its associated camera perceives
some other PPP in its overlapping coverage area with the adjacent PPP.
Using our distributed registration technique (Section 4) each PPP can
discover its neighbor, the total number of projectors in the display and
their array configuration, its own coordinates in the array of PPPs and
finally self-register itself with other PPPs to create a seamless display.
The PPPs use an NTP (Network Time Protocol) clock synchroniza-
tion to achieve a synchronized clock across the multiple PPPs. The
importance of such a synchronization will be evident in the subse-
quent sections when we describe our distributed interaction paradigm.
We also assume that the PPPs use a constant IP multicast group to
communicate.

Once the PPPs are registered, we desire to interact with the dis-
play. We use two kinds of interaction modalities in this paper – 2D
hand gestures and laser based interaction. Though the lasers are bright
enough to be detected easily in the projected images, when using ges-
tures the camera cannot detect visible light gestures reliably because
the screen and projected image obstruct the hand. To handle this situ-
ation, as in [12, 19], we augment our PPP with an IR illuminator and
mount an IR bandpass filter on the camera. These filters are removed
during registration and then put back to resume interaction. The IR
illuminator and the IR filter on the camera allow us to detect gestures
when we touch the screen. We use a standard rear-projection screen
(from Jenmar), which acts as a good diffuser of IR light. In our setup,
we use monochrome cameras without IR cut filters, although we only
used one of the color channels. Figure 2 shows one of our IR sensitive
PPPs and Figure 3 shows our setup. Removing the IR filter during
registration can be achieved automatically by inexpensive RC servos



($10/unit) and can be controlled with serial (RS-232) servo controllers
($20 for controlling 8 RC servos), which are also simple and inex-
pensive. The IR emitter must also be switched off during registration
which could be done via a serial/USB-actuated relay. This can pre-
vent the sensor from getting saturated by both IR and projected visible
light.

3 THE DISTRIBUTED INTERACTION PARADIGM

In this section, we describe our distributed interaction paradigm in de-
tail. We start by describing the related work in the domain of various
interaction paradigms for large scale displays and comparing our work
with it (Section 3.1). Next we describe our distributed algorithm in
detail in Section 3.2. When describing this, we consider 2D gesture-
based interaction since restricting to a specific interaction modality
allows us to provide a simple explanation. However, we explain ways
to scale to different interaction modalities in the end of Section 3.2.1.
We present implementation details and results in Section 3.3 and 3.4.

3.1 Related Work
Large displays require interaction modalities that match their scale in-
stead of the more traditional mouse and keyboard. The most natu-
ral form of such an interaction is using gestures and several works
have explored it [1, 11, 29]. Since detecting a gesture unambigu-
ously is a difficult computer vision problem, touch sensitive surfaces
[19, 27, 37, 10, 12] have been explored for better localization of ges-
ture dependent features. New devices that can aid when gestures are
ambiguous have also been explored [34]. Parallely, we have seen
the development of interaction devices by which users can convey
their intentions much more precisely without the ambiguity of ges-
tures. These include devices like simple lasers [24], VisionWand [5],
a special touch pad [23], LEDs on tangible devices [20], a remote
control [18], objects with simple geometry like blocks or cylinders
[33], or even a handheld camera [17]. However, all these works focus
on interfaces and hence use a simple single display and single sensor
paradigm.

When using multiple projectors and sensors, new issues arise like
tracking the interaction across multiple projectors and cameras, decid-
ing on a reaction that is unanimous across the multiple projectors, and
reacting in minimal time using minimal network bandwidth. There
have been a few works that use multiple projectors, but they use a
single camera or a pair of stereo cameras. Hence, the interaction
tracking in these systems is centralized and handled by a single server
[18, 35, 36, 20]. Further, the same centralized server decides a suitable
reaction to the gesture and informs the different projectors on how to
react. Though this does not mean that all projectors react similarly,
a centralized server decides and communicates the different reaction
each projector should produce.

Few recent works address systems with multiple projectors and
cameras. [9] uses a laser based interaction paradigm where multi-
ple cameras can detect the location of multiple lasers used by multiple
users. [30] uses multiple cameras to detect gestures of multiple peo-
ple. Although in both these systems the processing of images from
the camera is done in a distributed manner by a computer connected
to each camera, the processed data is then handed to a server that finds
the 2D position of the gesture directly or by triangulation. The same
server is responsible for managing the projectors and hence it decides
the reaction for each projector and communicates it to them. Thus,
these works all have in common the centralized architecture where a
single server is responsible for tracking the gesture and then reacting
to it. Distributed rendering architectures [13, 14, 15] also follow a
similarly centralized architecture where the rendering takes place in a
distributed manner in computers attached to each projector, but they
are controlled by a centralized server that manages how the rendering
should be distributed.

Comparison with Our Work: In contrast, our work focuses on a
completely distributed paradigm where each PPP acts as self-sufficient
module. Unlike previous work, where the projectors and cameras are
treated as different devices, we view the display as a distributed net-
work of PPPs. Our goal is to develop a single program multiple data
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Fig. 5. This figure describes the action data type used in gesture manager and
the event data type used in reaction manager.

(SPMD) algorithm to be run on each PPP that would detect and track
the user action in a completely distributed manner affecting only the
PPPs that see the action. Further, an appropriate reaction should be
produced by the relevant PPPs in response to the gesture, even if the
gesture does not occur within them. This assures minimal network
bandwidth usage since all PPPs do not communicate to a single cen-
tralized server and minimal time since the processing is shared by mul-
tiple PPPs and is not the responsibility of a single centralized server.
Such a distributed paradigm allows easy scalability to multiple dis-
plays, applications, interaction modalities and users.

3.2 The Algorithm

We consider interaction to be a set of two operations that occur con-
secutively: (a) a 2D gesture made by the user; and (b) a consequent
reaction provided by the display. We assume that a gesture is a se-
quence of samples, also called actions, detected by the system. These
samples can be generated through a multitude of input systems includ-
ing touch – by placing the palm on the screen, or laser pointers. The
meanings of isolated or temporal sequences of actions are predefined
by applications for consistent interpretation. Note that since a gesture
occurs over an extended period of time, it can span across multiple
PPPs moving between the non-overlapping and overlapping areas of
the PPPs. Further, it is important that the reaction does not wait for the
gesture to complete. For example, if the user is moving his/her hands
from left to right, he/she is expecting the underlying image to move
from left to right even before he/she completes the gesture. Hence, the
goal is to identify the gesture even when it is not complete and start
reacting as soon as possible.

Our distributed interaction paradigm consists of two main compo-
nents: a distributed gesture management module (Section 3.2.1) and
a distributed reaction management module (Section 3.2.2). These are
run as two threads in a producer-consumer fashion in each PPP (Fig-
ure 4). The distributed gesture management module produces a queue
of actions that are then processed (or consumed) by the distributed
reaction manager in an FCFS manner. Note that though the user’s in-
tentions are interpreted per gesture (which is a series of actions), the
processing of these gestures is done per action. This difference in the
granularity of interpretation and processing allows the system to re-
spond to a gesture as soon as it commences without waiting for its
end. Finally, the distributed gesture management is application inde-
pendent. The application specific modules occur only during reaction
management.



Fig. 6. This figure shows a few different types of hand postures used for gesture-
based interaction. Each application can define its own interpretation for each pos-
ture. For example, in our map visualization application, touching the screen with
two fingers is used to change the displayed layer, touching it with one finger is
used to open and close individual working windows, sweeping with an open hand
is used to move the map around and twisting a closed hand is used for zooming
in and out. On the other hand, in our graffiti application, two fingers are used to
bring up a color palette, one finger to select a color from the palette and any other
postures to draw lines.

3.2.1 Distributed Gesture Management
In a distributed network of PPPs, there is no centralized server that
manages the observed actions of the user. Each PPP is responsible for
managing the actions that occur within its domain. When the gesture
spans across multiple PPPs, we design a mechanism to track it and
hand over its management from one PPP to another as it moves across
PPPs. This is achieved in a manner transparent to the user. Further, our
framework can handle multiple users each doing single hand gestures.

The distributed gesture management involves (a) a shared action
management mechanism to decide which PPP handles which part of
the gesture via their reaction managers, and (b) shared gesture tracking
to follow the path of the gesture as it moves across multiple PPPs and
is facilitated via an anticipatory action communication mechanism.

Action Data-Type: First we describe the action data structure (Fig-
ure 5) filled up by a PPP when it detects an action. This consists of
action specific attributes like position, orientation and size of the hand,
detecting PPP ID and timestamp (synchronized by NTP) in the detect-
ing PPP. The timestamp needs to be included in the attributes to handle
race conditions, described in detail in Section 3.2.2. The position is de-
noted in the global coordinates of the display. Note that since each PPP
knows the exact configuration of the entire display and its position in it
in the post-registration phase, it can easily calculate the global position
of the action. The action also contains some gesture specific attributes
like gesture ID, gesture type, speed, and acceleration. As soon as the
commencement of a new gesture is identified, a new gesture ID is gen-
erated. When detecting the ith gesture in the jth PPP, 0 ≤ j < N, the
PPP assigns a gesture ID of i ∗N + j. Hence, the identity of the PPP
where the gesture commenced can be deciphered from the gesture ID
field of the first action in that gesture. Gesture type refers to the type
of hand posture which when seen over a period of time constitutes the
gesture (Figure 6). The speed and acceleration of the gesture denote
its local speed and acceleration at the time when this component action
was made in the gesture. The speed and acceleration is computed by
finding the differences of the position and speed respectively in two
consecutive actions in a gesture.

To detect a gesture, the PPP first recognizes the first action of the
gesture in its camera frame. At the commencement of the gesture,
the gesture type is set to be undecided. To detect the gesture type
robustly and reliably, a few of the initial actions are examined. Each
of these actions votes for one particular gesture type. The gesture type
that receives the maximum votes is selected as the type of the gesture.

Shared Action Management: The shared action management
scheme enqueues the constituting actions of a gesture as it moves
across the display through multiple PPPs. When an action that does
not belong to any previous gesture is detected, it indicates the com-
mencement of a new gesture. If this new action or part of it occurs in
the non-overlapping region of a PPP, since no other PPP can see this
action completely, this PPP bears the responsibility to enqueue this
action to be processed by its reaction manager. However, when the
action occurs in the overlap region of multiple PPPs, it is desirable for
only one PPP to enqueue it for processing by the reaction manager.
This avoids inconsistent reaction from multiple PPPs. To assure this,
when in the overlap region of multiple PPPs, the gesture is only han-
dled by the PPP with the smallest ID. Figure 7 illustrates this process.
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Fig. 7. This figure shows how the gestures made across multiple PPPs are han-
dled in a shared manner by multiple PPPs in their lifespan. A and B denotes two
different gestures. The length of the gesture is divided and labeled to show which
PPPs handle which part of the gesture.

A and B denote two gestures. A starts in the non-overlapping area of
projector 2. As soon as it enters the overlapping region of 1 and 2, 1
picks up the gesture since it has the smaller ID of the two projectors.
After this, note that 1 continues to handle the gesture even though it
moves through the overlap of 1 and 2, overlap of 1 and 4, overlap of
all four projectors, overlap of 1, 3 and 4, and overlap of 1 and 3. Only
when the gesture moves to non-overlapping area of 3, it is handled by
3 since no one else can see it. Similarly, in gesture B, when it starts
in the overlap of 2 and 3, it is first picked up by 2. Then it is handled
by 4 in the non-overlapping area of 4. But as soon as it moves to the
overlapping area of 4 and 3, 3 starts to handle the gesture.

Shared Gesture Tracking: The gestures are tracked in a shared
manner by multiple PPPs when they span multiple PPPs. This is
achieved via the temporal and spatial proximity of consecutive actions
in a gesture. If an action is close temporally and spatially to another
action, it is assigned the same gesture ID and type. If an action is
temporally or spatially far away, it is considered the commencement
of a new gesture. This can happen when two users are interacting
simultaneously with the same PPP. For this purpose, a threshold has
been defined that tries to make a compromise between allowing fast
gestures and correctly separating different gestures.

When the gesture management migrates from one PPP to another,
we use an anticipatory action handover mechanism to handle it. When
a PPP is tracking the gesture within itself and finds it is to move into
the neighborhood of an adjacent PPP, it sends an anticipatory message
to notify the neighboring PPP about a gesture coming its way. This
message contains all the action data necessary to handle the continu-
ation of a gesture: position, PPP ID, gesture ID, gesture type, speed,
acceleration and timestamp. Using the position, speed and timestamp,
the receiving PPP can match it against future detected actions by as-
suming that the gesture continues at a similar speed and acceleration.
In a later instant in time, when the adjacent PPP detects an action in the
neighborhood of the location predicted by an anticipatory action mes-
sage, it identifies the action as part of a continuing gesture and hence
copies its gesture-specific attributes from this anticipation message.
Following this, the new PPP starts tracking and managing the actions
of this gesture. However, note that between a prediction and actual
detection of the action in the adjacent PPP, multiple actions can occur.
Hence, the adjacent PPP receives multiple anticipation messages from
the same neighbor. When processing them, it only needs to consider
the most recent anticipatory message. Also, if a PPP receives anticipa-
tion messages from multiple PPPs due to multiple gestures, they can
be easily identified by their PPP ID attribute. The end of a gesture is



Recognize In YesRecognize 
action

In 
overlap?

Am I the 
ll

No No
smallest 
ID?Process 

anticipation 
messages

Yes
g

Is this a 
predicted

Assign
action

Copy
actionNo Yes

predicted 
action?attributes attributes

Send 
anticipation 
messages

Enqueue
action

Close to 
adjacent 
PPPs?

No

Yes

No

Fig. 8. The Distributed Gesture Management Protocol: The gesture management
depends on the 2D application only on interpretation of recognized gestures and
hence is mostly an application independent module. The cyan boxes represent
the application specific modules and the purple boxes represents modules that
are involved in communications.
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Fig. 9. The Distributed Reaction Management Protocol. The cyan boxes repre-
sent the application specific modules and the purple boxes represents modules
that are involved in communications.

detected by a timeout mechanism. If the difference in timestamp of
two consecutive actions is beyond a certain threshold, the new action
is assumed to be the commencement of a new gesture.

Flow Chart: The entire gesture management module is summa-
rized in the flowchart in Figure 8. Each PPP starts with detecting an
action and deciding to pick up its management using the shared action
management protocol. If the gesture continues within itself, the PPP
tracks it. If the gesture moves close to an adjacent PPP, it communi-
cates it to the relevant neighbor via the anticipatory action message.
And if it receives an anticipatory action message, it picks up the ges-
ture tracking and handling from an adjacent PPP.

Scaling to Different Interaction Modalities: To use different in-
teraction modalities, only the cyan box in Figure 8 that recognizes the
actions need to change. Instead of gesture based action, this module
has to now detect different kinds of actions.

3.2.2 Distributed Reaction Management

The distributed reaction mechanism involves processing (consuming)
the actions in the queue generated by the distributed gesture manager
by reacting with a particular event. Note that the set of PPPs that need
to react to a gesture may be larger than the set of PPPs across which
the gesture spans. For example, in a map visualization application
one can move the map with a sweeping gesture that spans just a few
PPPs, but the map across all PPPs must move in response. Further,
the event may be associated with creation, movement, or deletion of
data across PPPs. Hence, the reaction manager is also responsible for
taking steps to assure data consistency across the PPPs. Finally, the
job of the event manager also involves informing the PPPs that will
be affected by the event so that reaction managers of the PPPs that
did not see any gestures can receive events they need to perform from
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other PPPs. The function of the reaction manager is summarized as
in Figure 9. It dequeues an action from the queue of actions produced
by the gesture manager and creates and processes the corresponding
event. Following that, it checks if it has received any events from
other PPPs and processes them. The details of the events processing is
described later in this section (Figure 10).

Event Data Type: Figure 5 shows the event data structure used
by the reaction manager. Processing every action invokes an event.
Hence, just as every gesture in the gesture manager is associated with a
set of actions, every gesture in the reaction manager is associated with
a set of events. The event attributes constitute of a gesture ID, a times-
tamp indicating when the event was invoked, and the PPP ID of where
it was invoked. These are all application independent attributes of an
event. The application specific attributes of the event are its type and
parameters. For example, the event type may be something as simple
as move or rotate or as complex as open a window or resize a window.
The event parameters can be the horizontal or vertical dimensions for
a move, an angle for rotation and so on. Event parameters also con-
tain a pointer to data which the event has created or is handling. For
example, for opening a window, the data is the window (that can be
defined by a top-left and bottom-right corner in global coordinates of
the display). Finally, the event also maintains a list of PPPs it affects
(e.g. for a global event like panning the imagery across the display,
this will be the set of all PPPs in the display).

Event and Action History: As soon as the reaction manager gets
an action from the queue, it creates an event. The reaction manager de-
ciphers this predefined application specific event type associated with
the action. The reaction manager can also receive events which it has
to execute from other PPPs. For processing the events, the reaction
manager maintains an event history and event pointer for every gesture
it encounters. The event history is the array of all the events invoked by
the actions in a gesture, sorted by their creation timestamp. The event
pointer marks an index in the event history after which the events have
still not been executed. This event history is instrumental in perform-
ing the events associated with a gesture in the same order in all the
affected PPPs. As detailed later, the PPP may sometimes encounter an
event out-of-order after it has executed some of the subsequent events.
In such scenarios, the event history will be used to trigger an event
’roll back’ procedure. This action history can be as large as the array
of all actions comprising a gesture or as small as the previous action
in the same gesture. The size of the action history depends entirely
on the events that the application needs to perform. Its purpose is to
enable the generation of different events depending on a sequence of
actions, like detecting hand-drawn letters.

Event Processing: In order to process the event (Figure 10), the
reaction manager first checks if the action belongs to a gesture that the
PPP has not seen before. This indicates a new gesture and the reaction
manager creates a new action history, an event history (each of them
containing one of the two data types in Figure 5) and initializes the
event pointer to the beginning of the event history. Next, the reaction
manager computes the event attributes of this new event associated



with this gesture. Note that for some events, like opening a window
by drawing a stroke from the top left to the bottom right corner of the
window, it may not be possible to find the list of all the affected PPPs
with the first action of the gesture. In this case, the PPPs will update
the data attributes in a shared manner and inform the relevant PPPs as
the gesture proceeds across the different PPPs. This would also mean
updating the event history, action history and the event pointer in an
appropriate manner. Finally, if some new data has been written, the
PPP will also commit this change to the data server so that when other
PPPs request the part of the data at a future time, they can see the up-
dated data. Note that since multiple PPPs are accessing and writing
data from and to a data server we assume all the different mechanisms
are in place to assure consistency in a distributed data management
application. Hence, our interaction paradigm is agnostic to the kind
of data server being used, either centralized or distributed. Following
this the reaction manager proceeds to execute the event. Executing the
event involves performing the function associated with the event (mov-
ing the imagery or showing a new window and so on) and advancing
the event pointer in the event history. Then it sends a message with
the event data structure to all the PPPs currently in the list of affected
PPPs that should perform a consistent event (e.g. moving the image
by an equal amount).

Race Conditions: Finally, there may be a situation when an action
is being processed by the reaction manager while an event related to
a prior action in the same gesture is waiting in the message buffer.
Hence, when the PPP gets to process the event message, it arrives out-
of-order with respect to the other events in the event history for the
particular gesture. Now, for certain events this may not be important
since the attributes may be changed in such a manner by the subse-
quent events that it is not inconsistent with respect to this PPP. But, if
this reveals a data inconsistency, then we need to execute an event ’roll
back’ procedure. In the ’roll back’ procedure, we undo the effects of
all the events in the event history that have a larger timestamp than the
timestamp of the received event and reverse the event pointer appropri-
ately to reflect this. Then the received event is inserted in the event his-
tory at the position of the reversed event pointer and executed. Finally,
all the subsequent events are executed again and the event pointer is
advanced accordingly. If there is more than one gesture affecting the
same data in a manner that can cause data inconsistency, all the events
with a bigger timestamp in the multiple gestures will have to be rolled
back in the same manner – undone in a reverse timestamp order and
executed again in the timestamp order. Old events can be removed
from the event history when newer packets have been received from
all the PPPs (TCP based communication ensure delivery in order) or
when the event is older than the connection timeout time. Though the
case of out-of-order event does not occur very often, this ’roll back’
operation is critical to ensures that the final logical order of event exe-
cution is consistent across the PPPs and hence the data. One example
of the occurrence of this is when a gesture is right on the division be-
tween PPPs and small registration errors result in both PPPs handling
the gesture. In this case, the gesture will be treated as rapidly going
from one PPP to another. The messages will be received out of order
but will be correctly reordered by the ’roll back’ procedure. Since our
registration is very accurate, this does not produce perceivable effects
in the application. Since this procedure modifies actual data, its ef-
fects can be sometimes perceived by the users. For example, in the
graffiti application described below and shown in the accompanying
video, when crossing the border between PPPs a line will sometimes
be drawn for a split second in the wrong order (as going back and forth
between PPPs) before quickly correcting itself. This will, however,
happen rarely and be quick enough to not be a nuisance.

Scaling to Different Applications: Note that only a few modules
of the reaction manager are application specific (highlighted in cyan
boxes in flowcharts in Figure 9 and Figure 10). The design of the
event attributes and types depends on the application and hence so does
their assignment during event creation. Further, the way events are
executed is also application specific. The rest of the reaction manager
is common for all kinds of 2D applications and is hence application
independent. The application specific modules for our test applications

Table 1. This table represents the network usage in amount of packets and bytes
per second for two cases: an application with a localized reaction (graffiti) and
an application with a global reaction (map). Calculations of network usage for a
possible binary protocol have also been included.

App Packets/s ASCII bytes/s Binary bytes/s
Graffiti 68.5 90 30
Map 26 23 8

are explained in detail in Section 3.4.

3.3 Implementation

The distributed interaction framework has been implemented using
Java SE 1.6. When the framework starts running, TCP connections are
established between all the PPPs. Each PPP either waits for the con-
nection or it establishes it depending on the relation between each pair
of PPP IDs. The applications have been written using the JOGL 1.1.1
library for OpenGL. This allows us to perform the geometric and pho-
tometric registrations (explained in Section 4) easily. But any library
that allows linear transformations and alpha masking would work.

The camera image processing and recognition is performed in Mat-
lab. For prototyping, Matlab is invoked to run the code, but for pur-
poses requiring a higher performance, native code should be used. For
the hand-based interaction, we use our home-grown simple Matlab-
based software that detects the hand, computes its location, size and
orientation, and determines its type by matching it to an existing hand
posture library. However any existing 2D gesture recognition software
can be used [38] for this purpose. For the laser-based interaction, a
simple image thresholding detects the bright laser spot.

3.4 Results

We have prototyped four different 2D collaborative applications using
this distributed interaction paradigm on our 8′×6′ display wall made
of a 3×3 array of nine projectors. The applications are (a) graffiti; (b)
map visualization; (c) emergency management; and (d) virtual bulletin
board. The graffiti application allows several users to draw at the same
time with their hands. Touching the screen with two fingers brings
up a palette, and the user can choose a color by tapping on it. That
creates a temporary color square that the user can use to start drawing
lines with that color. This window can be closed tapping on it again.
The map visualization allows individual working windows (that can
be moved or resized) for several users to work on different parts of
the map simultaneously. The background map and the working win-
dows can be panned and zoomed independently and the map type can
be changed. The emergency management application demonstrates a
possible interface that could be used to coordinate response teams in
which several emergency management officials can coordinate the first
responder efforts in different parts of the affected region. Markers can
be added to indicate a danger area, two associated numbers indicating
present and dispatched personnel can be updated, and routes can be
drawn and erased to indicate the safest/fastest routes to reach or avoid
danger areas. The virtual bulletin board allows the users to hang dig-
ital documents and manipulate them. Bulletins can be moved around,
resized, highlighted and removed.

We have tested multi-user interaction successfully with up to five
simultaneous users, but a display with more area should easily fit a
much larger number of users. To demonstrate the ease of interaction
we brought children ranging from ages 7 to 13 years old to draw on
the display in a collaborative manner. It took them only a few minutes
to get comfortable interacting with the display and its inherent scala-
bility allowed multiple children to simultaneously draw on the screen
without introducing additional latency. To demonstrate the scalabil-
ity of our paradigm to different interaction modalities, we also show
multi-user interaction with blue and green laser pointers with our ex-
isting interactive applications. We have shown a few static images of
our applications in action in Figure 1, but we strongly encourage the
readers to check the video for an accurate impression of functionality
and performance.



Network usage has been measured during interaction for the cases
of a gesture affecting only a few of the PPPs and for a gesture affecting
all of them (Table 1). These values represent the traffic for an effec-
tive recognition refresh rate of 8.12 times per second, but no time has
been spent optimizing the protocol for network usage. We have also
included calculation of how much traffic there would be if a binary
protocol were to be implemented.

Note that we have not explicitly assured synchronization of event
execution across multiple PPPs. However, in practice we found the la-
tency of execution of the same event across multiple PPPs to be small,
less than 15ms. However, the main contributor for delay was the ges-
ture recognition code since we used MATLAB for quick prototyping.
Though this did not seem to bother our users – even the over-active
children – we believe this delay should be greatly reduced using na-
tive code.

The application specific modules of the reaction manager, though
non-trivial, are relatively simple to design. Adapting an existing ap-
plication to our distributed interaction system took an an average grad-
uate student one to two days. To demonstrate this, we next describe
how we designed the application specific modules for the few applica-
tions we have prototyped in our lab.

To fill the Create Event module, the applications have to be able to
decide what kind of event should be generated and define the attributes
for each kind of event. For example, the Map application defines an
event to pan over the map (containing the moved distance), another
event to create a personal working area (containing the position and
size of the created area), etc. and the Graffiti application defines an
event to draw a line (containing the color and width of the line and the
position of the next point), another one to open a color palette (contain-
ing the position where it should be opened), etc. In the case the same
event can be applied to different objects, those attributes will contain a
reference to the affected data. For example, when dragging a bulletin
in the Virtual Bulletin Board application, the generated events will
contain a reference number to the affected bulletin that is consistent
among all the PPPs. In the Execute Events module, the applications
apply the event depending on its type and attributes. For example, the
Virtual Bulletin Board application loads a new bulletin from the data
server and displays it when the event to load a bulletin is executed and
the Emergency Management application displays a warning sign in the
position contained in the event generated when the user does a gesture
to mark a danger area.

For ’roll back’, the applications have to implement a way to undo
each of the events to ensure that the application returns to the exact
same state as before the execution of the event. When no data is in-
volved, this is simple and can be achieved by performing operations
in the reverse order. For example, to roll back an event in the Bulletin
Board application that highlighted a bulletin, the application just has
to de-highlight it. However, if data is involved, we have to keep the
original data before modification, since it may be impossible to get it
from the modified data. Hence, all data needs to persist for a while
even after it is removed from the application. The clearest example
of this is when the event execution removes an object from the display
and it has to be restored when undoing it (e.g., when closing a working
area in the Map application).

4 DISTRIBUTED REGISTRATION IMPROVEMENTS

In this section, we describe our new distributed registration technique
in detail. We discuss related work in Section 4.1 followed by the inno-
vations of our method in Section 4.2 and 4.3. Finally, we discuss the
implementation details and results in Section 4.4.

4.1 Related Work
[3] presents a distributed registration method when using a network
of m× n PPPs on a planar display. The method has three steps. (a)
First, in a neighbor detection step a pattern made of 4 disjoint grids of
5×5 blobs (Figure 12) is used to detect the neighbors of each PPP via
their cameras. (b) Next, in the configuration identification step binary
coded information is encoded in these grids of blobs and propagated in
multiple rounds via communication using the cameras to decipher the

Fig. 11. Left: A standard version 1 QR Code. Right: The same QR Code aug-
mented with our Gaussian blobs used in the registration phase.

total number of PPPs in the display, their configuration (total number
of rows and columns) and the coordinates of the PPP in this display. (c)
Finally, in the registration step, the pattern in the neighbor discovery
step is used to register the display using a distributed homography tree
technique (See video for the method in action).

This method has several shortcomings. First, the configuration
identification step requires O(ln(mn)) rounds. In each round, each
PPP projects its own coded pattern to communicate its belief about the
display configuration (total rows and columns in the display and its
own 2D coordinates in it), sees the projected coded pattern of the adja-
cent PPPs and changes its belief based on some rules. This continues
iteratively across the PPPs until all converge to the correct configura-
tion. However, multiple rounds of such camera based communication
need considerable image processing and hence impacts performance.
This also limits the scalability of the method across a larger number of
PPPs. Finally, since colored patterns are used, the image processing is
not robust when using commodity cameras with lower color fidelity.

Second, the homography tree technique [8] is inherently a central-
ized technique. A homography graph considers each projector as a
node and places an edge between adjacent projectors i and j. Each
of these edges is associated with the local homography between the
adjacent projectors Hi→ j recovered using the cameras. Hi→ j is the
transformation that takes pixels in the coordinate system of projector
i to that of projector j. The homography tree technique identifies a
projector PR as the reference and finds for each projector Pi, a path to
PR. This results in a spanning tree in the homography graph, called
homography tree, whose root is the reference projector (Figure 14).
The homography that relates the projector Pi to PR is given by the con-
catenation (multiplication) of the local homographies on the path from
Pi to PR in the homography tree.

The homography graph should ideally have some invariants: (a)
the concatenation of homographies across a cycle in the homogra-
phy graph should be identity; (b) Hi→ j should be the inverse of H j→i.
But this is seldom the case due to several estimation errors and small
projector non-linearities resulting in significant misregistrations, espe-
cially along the edges which are not part of the homography tree. To
alleviate this problem, the homography tree is usually followed by a
global alignment method via non-linear optimization techniques like
bundle adjustments [8]. Since any global optimization technique is
hard to achieve in a distributed manner, [3] avoids this step when de-
signing a distributed homography tree method to achieve the registra-
tion. In this distributed variant, the tree is formed in a distributed man-
ner by communicating the homography to the reference to neighbors
who choose one of the many communicated homographies and multi-
ply it with the local homography to the neighbor to find a PPP’s own
homography to the reference. The process starts from the reference
whose homography to itself is identity.

Comparison with our work: In our new registration technique, we
introduce the following innovations. We use a single pattern based on
specially augmented QR Codes to simultaneously achieve neighbor
detection, configuration identification and registration. This allows
us to eliminate the O(ln(mn)) rounds of camera based communica-
tion in the configuration identification round in [3] and achieve this in



Fig. 12. We show the patterns for our work (left) compared against [3] (right).
Top: The pattern projected by each PPP. Middle: The image seen by a PPP when
all neighbors and itself are projecting their patterns. Bottom: The image of a 3×3
array of nine projectors projecting their patterns.

O(1) time. Also, this significantly reduces visual communication iter-
ations and image processing time thus improving performance. This
faster convergence is possible by supplementing the single camera-
based communication with network based communications. Hence,
as opposed to a multi-second registration of [3], our registration is al-
most instantaneous. However, the network overhead is still at most
the same as [3]. Finally, since we use monochrome patterns instead of
color patterns as in [3], our image processing is much more robust and
allows inexpensive cameras with much lower color fidelity.

Second, we propose a new radially cascading registration method
(Section 4.3) that is amenable to a distributed implementation and
achieves much superior registration. This method can also be used for
any centralized tiled display and performs better than the homography
based global alignment technique proposed by [26]. The homography
based global alignment seeks to find a global homography Gi for each
projector Pi constrained by the fact that when considering any other
projector Pj, i 6= j, G jHi→ j should provide Gi. Hence Gi = G jHi→ j.
These provide a set of over-determined linear equations which when
solved provides a transformation Gi for each projector that aligns all
projectors with a common global coordinate system. This method
tends to distribute the errors in the local homography across the en-
tire display and hence, cannot remove pixel misregistration entirely.
Unlike the homography tree where the misregistrations are concen-
trated at a few edges not included in the tree, the global alignment
technique has small errors across all the overlap regions. However, the
worst misregistration is significantly reduced from the homography
tree technique. Our radially cascading registration method provides
much superior results when compared with this global alignment tech-
nique and the distributed homography tree technique (Figure 14). The
slight global distortion visible in the results of our method is due to
small non-linearities in our commodity cameras.

4.2 Minimizing Camera Based Communication
QR (Quick Response) code is a 2D barcode which can embed a certain
number of bits of data. The number of bits that can be encoded in
the QR Code changes with its size. We encode in a QR Code the
IP address and the port of the PPP, the location of the QR Code (2D
coordinates of its top left corner in the projector coordinate system),
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Fig. 13. Explanation of addition of PPPs to the pool of registered PPP for the
radially cascading geometric registration method. Left: The middle PPP is the
reference. Right: The top-left PPP is the reference.

and the size of the QR Code. The QR Code has a surrounding large
’quiet zone’. We augment the QR Code with some blobs embedded
in this quiet zone which are used to detect correspondences across the
projectors and the cameras for registration purposes (Figure 11. The
blobs are embedded in a manner so that the quiet zone is retained after
the binarization of the QR Code in the decoding phase. Hence, we can
still use standard QR Code decoders without any change.

The pattern projected by each PPP as they are turned ON has four
of these augmented QR Codes placed in an offset manner around the
center such that each of the left, right, top and bottom neighbors can
see at least one of these completely. The placement of the pattern and
the overlaps required to assure no conflicts with neighboring projector
are decided as in [3]. Since the camera of each PPP sees more than
their own display, they see the neighbors’ patterns along with their
own. Figure 12 shows the pattern projected by each PPP, the image
seen by each PPP and the display when all PPPs are projecting their
own QR based patterns.

Each PPP detects the patterns from its neighbors to find out which
of the left, right, bottom and top neighbors exist and creates the local
connectivity graph of itself with its neighbors. Next, they decode this
pattern to find out the exact IP-address of each of their neighbors. Fi-
nally they broadcast the location of each of their neighbors (left, right,
top or bottom) along with the associated IP-address to all the PPPs in a
single UDP packet. When each PPP receives this information, it aug-
ments its local connectivity graph using this information. Thus, each
PPP now builds the connectivity graph for the entire display and as-
sociates a unique IP address with each node. Thus, it knows the total
number of projectors in the display and their configuration. Follow-
ing this, each node performs the same row-major naming convention
to detect its own coordinates in the display. Unlike [3] which builds
the connectivity over multiple rounds of camera based communication
and broadcasts the IP addresses only following configuration identifi-
cation, we achieve the same result with the same amount of network
communication but with no computation overhead.

4.3 Radially Cascading Geometric Registration

Once the QR Codes are deciphered, each PPP i performs a blob de-
tection in the quiet zone of the codes to decipher all the blobs. These
blobs provide correspondences between the PPP’s own projector and
camera and hence allows it to recover the self-homography between
its projector and camera. Next it detects the homographies with its ad-
jacent projector j using the blobs detected in its QR Codes. Finally, it
concatenates its self-homography with the homography of its camera
with the adjacent projector to create the local homography Hi→ j.

The radially cascading geometric registration method starts from a
reference projector which is considered as the only registered PPP ini-
tially. In each subsequent step S, PPPs with Manhattan distance S from
the reference join the set of registered PPPs by aligning themselves
with the PPPs who joined the registered display in step S− 1. The
process stops when all the projectors belong to the set of registered
projectors. Figure 13 shows the PPPs that join the set of registered
PPPs for different steps S for two reference projectors in the display,
the center one and the top left one respectively. Note that for a rectan-
gular array of PPPs, all the PPPs that join the set of registered PPPs in
step S share at most two boundaries with the set of registered PPPs.



Fig. 14. Here we compare our method (top) with the homography tree (center) and the global optimization (bottom) technique on a 3×3 array of nine projectors for two
different images on left and right. The homography tree (center) is shown superimposed in white – note that the misregistrations are mostly along the links which are
not used in the tree. Please zoom in to see details.

In step S, all the PPPs that joined the set of registered PPPs in step
S− 1 send their homography with respect to the reference PPP to all
their neighbors whose Manhattan distance is S from the reference PPP.
Thus, the PPP at a Manhattan distance S recieves a homography from
all the registered PPPs with Manhattan distance S− 1 that share a
boundary with it. Let us assume a PPP i in step S is receiving two
such homographies from two neighbors j and k, denoted by G j and
Gk respectively. This PPP first converts the correspondences in the
overlap with j to the coordinate system of the reference projector us-
ing G j. Similarly, it converts the correspondences in the overlap with k
using Gk. This gives PPP i a set of correspondences with the reference
PPP via multiple possible paths through the registered projectors. PPP
i then computes its own homography with the reference, Gi, using all
these correspondences. This method can be summarized by a SPMD
algorithm running on each PPP i as follows.
if center PPP {

Send I to PPPs with d = 1;}
else {

d = Manhattan distance to center;
forall neighbors j with dist=d-1 {

Receive G j from j;
Multiply all correspondences in overlap with j using G j; }

Estimate Gi using all correspondences with all neighbors;
Send Gi to all neighbors j with dist=d+1; }

The total number of steps required for this algorithm to register
will be the maximum Manhattan distance of any PPP from the ref-
erence. For a display of m× n PPPs, if the top left PPP is chosen
as the reference, the PPP with the maximum Manhattan distance of
(m−1)+(n−1) from the reference is the bottom right. If the central
PPP is chosen as the reference, the number of steps will be m−1

2 + n−1
2 .

Figure 14 compares our superior registration with that achieved by the
homography tree and the global alignment technique.

4.4 Implementation and Practical Improvements
We demonstrate our distributed calibration system on a grid of nine
PPPs in a 3× 3 array. Since this method does not rely on color pat-
terns, each PPP is equipped with a monochrome VGA webcam. Due
to noisy and low-resolution cameras we use the lowest resolution QR

Code (203× 203 pixels embedding a 29× 29 grid) which can embed
at most 152 bits of information. We embed a 32-bit IP address, 16-bit
port, the top left corner of the code in the projector coordinate repre-
sented as two 16-bit numbers, and the 8-bit size of the code (using only
88 of the 152 bits). We embed 24 Gaussian blobs in the quiet zones
of the QR Codes. Gaussian blobs allow us to robustly determine blob
positions with subpixel accuracy and improve the quality of homog-
raphy estimation. We use the ZBar barcode library to quickly decode
QR Codes seen by our cameras as well as provide a rough estimate of
the QR Code corners.

Since each PPP independently builds the complete graph of the dis-
play, our radially cascading geometric registration technique can be
performed either via message passing (Section 4.3) or independently
on each PPP after it forms the adjacency graph for the entire display
reducing the network overhead significantly. Hence, we include the
PPP’s local homographies with all its neighbors in the message broad-
cast during the configuration identification stage. Each PPP i sees only
one of the four QR Codes for its neighbor j completely. The four cor-
ners of the QR Code are used to estimate a coarse local homography,
which is used to initialize the blob detector. The detected blob posi-
tions in this QR Code are then used to produce a more accurate local
homography estimate. For each projector i, we find the two homo-
graphies with each of its neighboring PPP j, H i

i→ j and H i
j→i, where

the superscript denotes the PPP which computes these homographies.
Note that the same homographies can be computed by j as well, H j

i→ j

and H j
j→i respectively. Ideally, H i

i→ j = H j
i→ j. But, due to the distri-

bution of the blobs only around the QR Codes instead of the entire
overlap, especially in the face of mild non-linearities in either the pro-
jector or camera, this results in a situation where there can be a slight
deviation from this constraint. So, we design a method to compute a
more accurate homography Hi→ j from i to j, as follows. We generate
a set of points uniformly over the overlap of i with j and find their
corresponding points in j using H i

i→ j. Similarly, we generate a set of
points uniformly over the overlap of j with i and find their correspond-
ing points in i using H j

i→ j. Then we use this combined set of corre-
spondences to generate a more robust estimate of Hi→ j using a linear
least squares technique. In our system this computation of the radially



cascading registration on each PPP did not exceed the network latency
and time to sequentially compute and propagate this information.

To achieve photometric seamlessness, we use the recovered homog-
raphy of each PPP i with its neighbor j to detect the exact shape of the
overlap. Finally, each PPP independently applies a blending function
in each of its overlap.

5 CONCLUSION

In conclusion, we present the first distributed interaction paradigm for
large rear projected display walls. We demonstrate the scalability of
our method to multiple displays, users, applications and interaction
modalities by showing a working prototype of multiple 2D applica-
tions using both gestures and laser based interaction modality. We also
propose a new distributed registration technique that is more accurate
and efficient than prior methods. This technique is deterministic, can
be easily implemented for a centralized system, and does not involve
time-consuming global optimizations.

In the future we would like to extend our work for front projection
systems where occlusion is an issue. We would like to extend it be-
yond 2D applications. We believe that our paradigm can extend to 3D
applications, however we would like to explore the different issues in
detail. We would also explore designing distributed versions of the
more rigorous photometric calibration methods like [22, 28].
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Markerless View-Independent Registration of Multiple Distorted
Projectors on Extruded Surfaces Using Uncalibrated Camera

Behzad Sajadi and Aditi Majumder, Member, IEEE

Fig. 1. Left: A 2×4 array of eight projectors on a cylindrical display surface showing a weather map visualization; Right: A 2×3 array
of six projectors on a more general extruded surface showing a medical visualization.

Abstract— In this paper, we present the first algorithm to geometrically register multiple projectors in a view-independent manner
(i.e. wallpapered) on a common type of curved surface, vertically extruded surface, using an uncalibrated camera without attaching
any obtrusive markers to the display screen. Further, it can also tolerate large non-linear geometric distortions in the projectors as
is common when mounting short throw lenses to allow a compact set-up. Our registration achieves sub-pixel accuracy on a large
number of different vertically extruded surfaces and the image correction to achieve this registration can be run in real time on the
GPU. This simple markerless registration has the potential to have a large impact on easy set-up and maintenance of large curved
multi-projector displays, common for visualization, edutainment, training and simulation applications.

Index Terms—Registration, Calibration, Multi-Projector Displays, Tiled Displays

1 INTRODUCTION

Tiled multi-projector displays on curved screens (e.g. cylindrical or
spherical screens) are becoming more popular for visualization, educa-
tion, entertainment, training and simulation applications. Their appeal
lies in the greater sense of immersion and presence they can create,
and at times, the superior aesthetics they provide. Displays are tools
used by these application users who are not expected to be experts in
setting them up or maintaining them. Unfortunately, most registration
algorithms designed for curved displays expect them to be one. Reg-
istering multiple projectors on such a display has been a challenge,
primarily due to the fact that recovering the 3D shape of the display
quickly almost always requires attaching fiducials (physical markers)
on the display screen for providing robust correspondence between the
screen and the camera, which is especially obtrusive. Using structured
light patterns to achieve the same results is a time consuming process.
Finally, both these methods are complex requiring a complex camera
calibration, all of which are too difficult for a layman user to execute
in a successful manner.

We seek a simple procedure to register multiple projectors on a
curved display that can be used even by a layman user like a doctor
in a medical facility, teacher in a school or a worker in a theme park.
We observe that most of the time, geometrically simple surfaces, like
partial cylinders (e.g. pillars or surround immersive environments),
are used as the display screen. So we impose two simple priors on
the screen. First, the screen is a vertically extruded surface - a surface
made by sweeping a 2D curve, called the profile curve, along a direc-
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tion perpendicular to it. This covers a large number of shapes that can
be built by soft folding of a rectangular sheet in one direction (Figure
2) – a cylinder is an important special case. Second, we assume the
aspect ratio of the planar rectangle formed by the four corners of the
extruded surface is known. Such a measurement is easy to provide,
even for a layman user. Having these priors allows us to prevent the
use of any markers on the display screen and still recover the shape of
the display using a single image from an uncalibrated camera. This al-
lows easy set-up and maintenance of such multi-projector displays by
the user, even in the face of changes in the display surface or projector
configurations and severe non-linearities.

1.1 Main Contributions
In this paper we present a new efficient algorithm to register images
from multiple projectors on a vertically extruded surface. Using the
priors of an extruded shape and the known aspect ratio, we use a single
image of the display surface from an uncalibrated camera to recover
both the camera parameters and the 3D shape of the surface. The
display surface is then arc length parameterized in both dimensions.
Then we capture a few images of patterns from the projectors to relate
the projector coordinates with the display surface points, and represent
this relationship using a rational Bezier patch. This relationship is then
used to segment the appropriate parts of the image for each projector
to register them and create a seamlessly wall-papered projection on the
display screen.

To the best of our knowledge, this is the first work that can achieve
the following many desirable qualities of geometric registration on
these non-planar surfaces. All prior work can only address one or a
few of these desired qualities, however our work addresses all simul-
taneously for the first time.

1. Markerless: Using some simple priors on the display surface,
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Fig. 2. Some examples of vertically extruded surfaces.

we can register images from multiple projectors on a vertically
extruded screen without using any correspondence between the
3D display and the camera.

2. Uncalibrated Camera: We show that with some simplifying as-
sumptions on the intrinsic parameters of the camera, we can
achieve this registration using an uncalibrated camera.

3. View Independent: Unlike registering with respect to a camera
where the registration is correct from a single sweet spot, we
paste the image like a wallpaper on the display. A wallpapered
image does not look perspectively correct from any single view-
point. Yet, human observers can easily correct for the existing
distortions irrespective of their viewpoint since we are used to
seeing wallpapered images commonly. Hence, by wallpapering
we assure that multiple viewers can observe our display at the
same time, making our method view independent.

4. Allowing Low-Resolution Sensor: Since we use a rational Bezier
patch to relate the projector to the display parameters, we can
achieve a good fit even if we sample the function sparsely. As a
result, we can use a relatively low-resolution camera (e.g. VGA
camera) to register a much higher resolution display.

5. Allowing Non-Linearities: Further, since our registration de-
pends on a 2D parametrization of the display generated from the
recovered 3D surface rather than auto-calibrating projectors on
the 3D surface itself, we can handle severe non-linearities in the
projectors (like radial distortion). Thus, we can allow a com-
pact set-up with inexpensive short-throw lenses mounted on the
projectors that usually have non-linear distortions. Non-linear
distortions have been addressed when using planar displays [4].
When using non-planar displays, non-linear lens distortions has
been addressed in a limited manner by using a high-resolution
camera to sample the function relating the projector to the dis-
play parameters densely [18, 7]. However, we can correct such
distortions even with a low-resolution camera using a sparse
sampling of the function relating the projector and display pa-
rameters.

6. Allowing Display Imprecision: The 2D parametrization addition-
ally assures that a moderate deviation of the screen from being
a perfectly extruded surface will not affect the accuracy of the
geometric registration. Thus, we can handle manufacturing im-
precision in the vertically extruded display surface.

7. Accuracy: Our method assures subpixel accuracy even in the
presence of projector non-linearities.

8. Efficiency: Finally, our method can be run in real-time on the
GPU making it ideal for interactive video applications.

2 PREVIOUS WORK

Camera-based geometric registration of multi-projector displays can
be either view-dependent or view-independent. View-dependent reg-
istration yields an image on the display that is correct from only one
sweet view-point, usually the view of the camera. Deviation of the
viewer from this location shows view-dependent distortions. Hence,
view-dependent registration is usually appropriate for static single-
user applications. On the other hand, view-independent registration
pastes or wall-papers the images on the display surface. Since wall-
papering is a common way to accommodate multiple viewers, such
registration can cater to more than one viewer easily. Such a registra-
tion not only requires registering the projectors in a common camera
frame but also the (conformal) parameterization of the shape of the
display surface.

There has been a large amount of work on registering images on
planar multi-projector displays in a view-independent fashion using
linear homographies enabled by the planar screen [11, 5, 14, 10, 18,
19, 9, 3]. Such registration can be achieved in the presence of projector
non-linearities using rational Bezier patches [4].

View-dependent registration on a non-planar display has been
achieved by using special 3D fiducials and a large number of struc-
tured light patterns for a complete device (camera and projector) cali-
bration and 3D reconstruction of the display surfaces, which are then
used to achieve the registration [13]. Aliaga et al. in [2, 1] use a similar
3D reconstruction method to achieve a similar registration on complex
3D shapes, but without using any physical fiducials. To constrain the
system sufficiently, this method uses completely superimposed pro-
jectors and validates results from photometric and geometric stereo,
resulting in a self-calibrating system. Raskar et al. in [12] use a stereo
camera pair to reconstruct special non-planar surfaces called quadric
surfaces (spheres, cylinders, ellipsoids and paraboloids) and propose
conformal mapping and quadric transfer to minimize pixel stretching
of the projected images in a view-dependent registration.

More recently, there have been works on view-independent registra-
tion for the special case of a cylindrical surface rather than a general
non-planar surface [7, 17]. Using the fact that cylindrical surfaces are
developable, they have achieved a ‘wall-paper’ registration on such
surfaces. However, these works do not recover the shape of the sur-
face in 3D, but attempt to find its 2D parametrization in the camera
space. Hence, they need precise correspondences between the phys-
ical display and the observing camera. To achieve this, a precisely
calibrated physical pattern is pasted along the top and bottom curves
of the cylinder. Using these correspondences, a piecewise linear 2D
parametrization of the display is computed and linked to a piecewise
linear representation of the projector coordinates via the camera that
observes both. This allows segmenting the appropriate parts of the im-
age for each projector using linear/non-linear interpolations to create
a wall-papered display. However, to avoid fiducials at a high spatial
density, the physical pattern only samples the rims of the display. This
insufficient sampling results in distortions or stretching, especially to-
wards the middle of the display surface.

2.1 Comparison of Our Method
Unlike earlier methods for view-independent registration of cylindri-
cal displays that assume a piecewise linear representation of the sur-
face to parametrize it in the 2D camera space [7, 17], we recover the
3D geometry of the display. Hence, we can parametrize the display
directly in 3D rather than in the camera image space, resulting in a ge-
ometric registration of the projected imagery without any stretching or
distortions. Use of a perspective projection invariant function, e.g. a
rational Bezier function, for interpolation instead of a simple linear in-
terpolation allows us to maintain registration in the presence of severe
projector distortions and considerable imprecision in manufacturing of
the extruded surface. Further, as shown in [4], unlike a piecewise lin-
ear function, a rational Bezier function can be interpolated accurately
even from a sparse set of samples. This allows our method to use a
low resolution camera while registering a much higher resolution dis-
play. Unlike earlier methods for non-planar displays that recover the
3D shape using complex stereo or structured light based procedures

2



To appear in an IEEE VGTC sponsored conference proceedings

Focal
Aspect 
ratio

Focal 
Length

(EXIF tag )
Screen
Image

Recover Camera Properties

C i t i i d t i i t

Recover Display Properties

Camera intrinsic and extrinsic parameters

Geometric Registration

2D display parametrization in 3D

Blob Images from 
Projectors 1 n

Registered
Display

Projectors 1..n

Fig. 3. The flowchart of our algorithm.

Y=1(-a/2,1,0)
(a/2,1,0)

(a/2,0,0)Bt

Z=
0

Y=0
Bb

X

Y

Z

Y=0

(-a/2,0,0)
Image 
Plane

It

Z
B

Camera

Fig. 4. This illustrates the world coordinate systems and the display surface and
camera set-up with respect to it. The sampled points on the 2D top curve in the
camera (blue) is reprojected in 3D to estimate the 3D top curve (black), and trans-
lated down to estimate of the 3D bottom curve (purple), and finally projected back
on the camera (red). The distance between these points and the orange curve on
the camera image plane, B, is minimized in the extrusion based optimization step.

Fig. 5. The image used for calibrating a cylindrical display with 2× 4 array of
eight projectors. This image of the screen, with no projectors turned on, used for
recovering the camera and the display properties.

[13, 12, 2, 1], we simplify the process using a single image from a sin-
gle camera position by imposing the prior that the surface is vertically
extruded. Finally, we avoid calibrating the camera to recover the 3D
shape by using some simplifying assumptions on the intrinsic param-
eters of the camera and the aspect ratio of the display surface that is
provided by the user.

3 ALGORITHM

Let the display surface, the image planes of the camera and the pro-
jector be parametrized by (s, t), (u,v) and (x,y) respectively. We
denote the 3D coordinates of the point at (s, t) in the display by
(X(s, t),Y (s, t),Z(s, t)). Since the display is a vertically extruded sur-
face, the four corners of the display lie on a planar rectangle, whose
aspect ratio a is known. We define the world 3D coordinate with Z axis
perpendicular to this plane and X and Y defined as the two orthogonal
basis of this planar rectangle. We also consider this planar rectangle
to be at Z = 0. Considering these 3D coordinates, the top and bot-
tom curves of the surface lie respectively on Y = 1 and Y = 0 planes
in 3D. Hence, Y (s,0) = 0 and Y (s,1) = 1. Further, these two curves
are identical except for a translation in the Y direction. Therefore,
∀s, (X(s,0),Z(s,0)) = (X(s,1),Z(s,1)). This is illustrated in Figure
4. We assume that our camera is a linear device without any radial
distortion. Note that a distorted camera will still provide good regis-
tration but the wallpapering will be imperfect. Limitations that will be
imposed by this assumption are discussed in further detail in Section
5.3. However, our projectors need not be linear devices.

A view-independent geometric registration essentially requires us
to define a function from (x,y) projector coordinates to the (s, t) dis-
play coordinates. Our method follows three steps to achieve this (Fig-
ure 3). First we use a single image of the display from the uncalibrated
camera and the known aspect ratio of the display to recover the camera
properties (intrinsic and extrinsic parameters) using a non-linear op-
timization. Using the estimated camera parameters, we next recover
the 3D shape of the display. Then, we use the profile curves of the
vertically extruded surface to define 2D parametrization of the display
surface based on the arc length of the profile curves flanking the dis-
play. After calibrating the camera and reconstructing the display, in
the next phase, we capture an image of a blob-based pattern from each
projector and use these to find samples of the mapping from the pro-
jector (x,y) to the display (s, t). Then we approximate this mapping
from these samples by fitting a rational Bezier patch to the correspon-
dences. Assuming that an image pasted on the display results in the
image coordinates being identical to the display coordinates (s, t), this
automatically achieves the geometric registration by defining the part
of the image to be projected by each projector so that the resulting
display is seamlessly wallpapered. Each of the above four steps are
described in detail in the following sections.

3.1 Recovering Camera Properties
In this step, we use a single image of the display surface (Figure 5)
to recover the intrinsic and extrinsic parameters of the observing un-
calibrated camera using a non-linear optimization. A large number of
image formats like jpg or tiff store EXIF tags for images which pro-
vide some of the camera parameters used during the capture. One of
these is the focal length of the camera, the critical component for the
intrinsic parameter matrix of the camera. As in [16], we use this fo-
cal length to initialize the intrinsic parameter matrix in our non-linear
optimization. To convert the focal length to the unit of pixels, we di-
vide resolution of the camera by the CCD sensor size and multiply it
with the focal length specified in the EXIF tags. The sensor size of the
camera is available in its specifications.

In most cameras today, it is common to have the principal center at
the center of the image, no skew between the image axes and square
pixels. Using these assumptions, we express the intrinsic parameter
matrix of a camera, Kc, as

Kc =

 f 0 0
0 f 0
0 0 1

 (1)
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Fig. 6. The images used for calibrating a cylindrical display with 2×4 array of eight projectors. Four different images of blobs from non-overlapping projectors used to
find the projector to display correspondences. Please zoom in to the image to see blobs.

The camera calibration matrix that relates the 3D coordinates with the
2D camera image coordinates (u,v) is given by M = Kc[R|RT ] where
R and T are the rotation and translation of the camera with respect to
the world coordinate system. In this step, we use the initial estimate
of f and the aspect ratio a as input and use a non-linear optimization
to estimate seven parameters of the camera calibration matrix – these
include the focal length f , the three rotations that comprise R and the
three coordinates of the center of projection of the camera T .

Our non-linear optimization has two phases. In the first phase,
plane based optimization (Section 3.1.1), the seven camera parame-
ters are estimated using just the projection of the corners of the display
surface on the camera image. These estimates are used to initialize the
extrusion based optimization (Section 3.1.2) with a more expensive
error function to refine the camera parameters.

3.1.1 Plane Based Optimization
We estimate the seven parameters in this step based on the image
of the plane formed by the four corners of the screen whose 3D co-
ordinates are given by: (− a

2 ,1,0), ( a
2 ,1,0), ( a

2 ,0,0) and (− a
2 ,0,0).

Consequently, the (u,v) coordinates in the camera of any 3D point
(X(s, t),Y (s, t),Z(s, t)) on the display are given by

(uw,vw,w)T = M(X(s, t),Y (s, t),Z(s, t),1)T (2)

where (uw,vw,w)T are the 3D homogeneous coordinates correspond-
ing to the camera coordinate (u,v) and M is the 3×4 camera calibra-
tion matrix defined by the seven camera parameters. We estimate the
seven camera parameters in this step by using a non-linear optimiza-
tion method that minimizes the reprojection error Er, (i.e. the sum
of the distances of the projection of these 3D corners on the camera
image plane from the detected corners). We initialize the angle of ro-
tations about the X, Y and Z axes that comprise R to be zero and T
to be roughly at the center of the planar rectangle formed by the four
corners of the display at a depth of a similar order of magnitude as the
size of the display i.e. (0,0,a).

3.1.2 Extrusion Based Optimization
The seven estimated camera parameters in the plane based optimiza-
tion are used to initialize the extrusion based optimization that at-
tempts to refine these parameters further. This also uses a non-linear
optimization method that minimizes the error E = wrEr +wcEc, where
Er is the error function from the plane based optimization step, and Ec
is an error function based on the reprojection error in the similarity of
the flanking curves of the display as described next, and wr and wc are
the weights to combine them.

The vertically extruded display surface is constrained by the fact
that the points on the top curve of the vertically extruded surface when
translated by Y = −1 should lie on the bottom curve. We use the
deviation from this constraint to define Ec. Let the image of the top
and bottom boundaries of the vertically extruded display in the camera
be It and Ib respectively. We first use image processing to segment the
image and sample the curves It and Ib. We fit a parametric curve to the
samples on Ib. Let us denote it with B. We use the current estimate
of M to reproject It in 3D. This is achieved by ray casting through
the sampled points on It and intersecting it with Y = 1 plane. The 3D
curve thus obtained is Bt . Then we translate the samples on Bt along
Y direction by 1 to get the samples on the 3D bottom curve, Bb. Then
we project these samples back on to the camera using M, denoted by
M(Bb). Sum of the square of the distances of these samples from the
curve B provides the reprojection error of the estimated bottom curve
from the detected bottom curve. In case of perfect estimation, this
error should be zero. Hence, we seek to minimize Ec in addition to Er.

To solve both the plane and extrusion based optimizations, we use
standard gradient descent methods. To assure faster convergence we
(a) apply a pre-conditioning to the variables so that the range of values
that can be assigned to them is normalized; and (b) use decaying step
size.

3.2 Recovering 3D Display Parameters

After convergence of the optimization process, we use the estimated
M to reproject samples on It and Ib in 3D and intersect them with
Y = 1 and Y = 0 planes to find Bt and Bb respectively. Due to accu-
mulated errors, Bt and Bb may not be identical. So, we translate both
the curves on Y = 0 plane and find their average to define Bb. This
is then translated to Y = 1 to define Bt . This assures that both Bt and
Bb are identical except for a translation along Y. We use a polynomial
curve fitting to find a parametric representation of Bt and Bb.

Next, we seek a 2D parametrization of the display D with (s, t).
The profile curve Bb on the XZ plane is arc length parametrized using
the parameter s. Considering the 3D point (X ,Y,Z) on the display
surface, X = X(s, t) = X(s) and Z = Z(s, t) = Z(s). Since extrusion
is along the Y direction, Y = Y (s, t) = t. Using the vertical extrusion
assumption we can conclude that X and Z are independent of t and Y
is independent of s.

3.3 Geometric Registration

Geometric registration entails defining, for each projector, a function
that maps the projector coordinates (x,y) to the display coordinates
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Fig. 7. Our geometric registration on a cylindrical display using 2× 4 array of 8
projectors. Please zoom in to see registration.

(s, t) via the camera coordinates (u,v). Mathematically,

(s, t) = MD←C(MC←P(x,y)) (3)

where MC←P maps the (x,y) to (u,v) and MD←C maps (u,v) to (s, t).
As in [4], we use a rational Bezier patch to define MC←P. To find
MC←P we project a number of blobs and use the camera to capture
them (Figure 6). The center of these blobs are known in the projector
coordinate space (x,y). When these centers are detected in the camera
space (u,v), they provide direct correspondences between (x,y) and
(u,v). We fit a rational Bezier patch using a non-linear least squares
fitting solved efficiently by the Levenberg-Marquardt gradient descent
optimization technique. To compute MD←C, we do the following. For
every mapped (u,v) coordinate in the camera, we cast a ray through
this point and find the point of intersection with the recovered 3D dis-
play. Then we find the 2D parameter corresponding to this 3D point.

Using a rational Bezier for representing MC←P provides two im-
portant capabilities to our algorithm, as in [4]. First, we can achieve
accurate registration in the face of severe non-linear distortions like
lens distortion (barrel, pin-cushion, tangetial and so on). Such dis-
tortions are common when using inexpensive short throw lenses on
projectors to allow a compact setup. The rational Bezier in this case
can represent the non-linearities both due to the curved nature of the
display and projector non-linearities. Second, unlike previous method
[18] that uses a piecewise linear function to represent MC←P and hence
requires a dense sampling of the correspondences to estimate it, the ra-
tional Bezier can be estimated accurately even from a sparse sampling
of the correspondences. This allows the use of the low resolution cam-
era to calibrate a much higher resolution display. For example, we
can achieve calibration on a 3000×1500 display using a VGA camera
(640×480). Though these two capabilities were demonstrated for pla-
nar displays in [4], we demonstrate them for the first time for a class
of non-planar displays.

3.4 Implementation
We have implemented our method in MATLAB for two types of dis-
plays. First, we have used a large rigid cylindrical display - an extruded
surface with a radius of about 14 feet and an angle of 90 degrees. Since
a cylinder is an extruded surface, our method is applicable. We tiled
eight projectors in a casually aligned 2×4 array to create the display.
Second, in order to demonstrate the success of our method on a large
number of vertically extruded shapes, we made a flexible display us-
ing a rectangular sheet of flexible white styrene. This was supported
by five poles to which the styrene sheet was attached (Figures 9 and
10). The shape of the profile curve of this extruded display can be
changed by simply changing the position of the poles. Thus, we can
create a large number of extruded shapes. We use six projectors on
this display in a casually aligned 2×3 array to create the tiled display.
For all the setups, we use Epson 1825p projectors ($600). We show re-
sults by using two types of sensors: (a) a high-end high-resolution (13
Megapixel) Canon Rebel Xsi SLR camera ($800); and (b) a low-end
low-resolution (0.25 Megapixel) Unibrain camera ($200). We achieve
color seamlessness by using the constrained gamut morphing method
presented in [15].

Figure 5 shows the single image used to recover the camera and
display properties. To find the projector to camera correspondences,
we display a rectangular grid of Gaussian blobs whose projector coor-
dinates are known. These are then captured by the camera. We use a
2D stepping procedure where the user identifies the top-left blob and
its immediate right and bottom neighbors in camera space. Following
this, the method (a) estimates the rough position of the next blob in
scan-line order, and (b) searches for the correct blob position using
the nearest windowed center-of-mass technique [6]. If this is not pos-
sible for extreme projector/screen distortions, one can binary-encode
the blobs and project them in a time sequential manner to recover the
exact ids of the detected blobs and find the correspondences [13, 18]
(Figure 6).

Our projectors have relatively large throw-ratios and hence do not
reveal major lens distortions. To demonstrate the capability of our
method to handle non-linearities, we chose to simulate the distortion
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Fig. 8. Top: A barrel distortion of degree 2; Bottom: A combination of a pincush-
ioning of degree two and a first order tangential distortion.

digitally by distorting the input images to the projectors. Such distor-
tions will be common when mounting inexpensive short throw lens on
the projector to create a compact setup.

Real time image correction using GPU: The registration is done
offline and takes about five minutes. This generates the rational Bezier
patches, (u,v) = B(x,y), for each projector, which are then used for im-
age correction. We have implemented a real-time image correction al-
gorithm using modern GPUs through Chromium - an open-source dis-
tributed rendering engine for PC clusters [8]. A module for Chromium
is written that first precomputes the coordinate-mappings of all pix-
els using the rational Bezier parameters. This per-pixel projector to
screen lookup table is used by a fragment shader to map pixels from
the projector coordinate space to the screen coordinate space during
rendering.

4 RESULTS

Figures 1, 7 and 9 show the results of our method on different extruded
surfaces including the most common case of a cylindrical surface. We
demonstrate our results on particularly challenging contents like text,
especially common for visualization applications, and show accurate
geometric registration. Figure 10 demonstrates that our method can
handle severe projector non-linearities enabling mounting inexpensive
short throw lens for compact set-up. Figure 8 shows the two distortions
we used in our experiments. Our supplementary video demonstrates
the interactive rates which we achieve in all these renderings using our
GPU implementation.

The degree of the rational Bezier used to achieve geometric reg-
istration depends on the amount of non-linearities present due to the
curved screen and the distortions in the projectors. In our set-ups, we
used a bicubic rational Bezier representation for the cylindrical sur-
face. For our flexible display, we use a rational Bezier of degree 5 and
3 in horizontal and vertical directions respectively. With large projec-
tor distortions and larger curvature of the display, higher order rational
Beziers will be more appropriate.

In Figure 11 we compare our method with three different methods.
Since our work is the only work that can achieve a markerless and
view-independent registration, probably the only fair comparison is
with using a homography-based registration that assumes a piecewise
planar display surface and uses a homography tree to register all the
projectors [5]. However, in Figure 11 we also show comparisons with
the view-dependent method presented in [18]. View-dependent regis-
tration defines a mapping from the projector coordinates (x,y) to the
camera coordinates (u,v), as opposed to the display coordinates (s, t)
and Equation 3 becomes

(u,v) = (MC←P(x,y)). (4)

Hence, the distortions of the camera (like the perspective projec-
tion) embeds itself in the registered display. Further, this method
uses a piecewise linear mapping for MC←P(x,y) that requires a much
denser sampling of projector-camera correspondences compared to
our method. Hence, in the face of severe distortion, even with an
order of magnitude higher number of samples, it cannot achieve the
accuracy of registration achieved by our method. Finally, the ability to
reconstruct the rational Bezier patches from a sparse sampling of the
function allows us to use a very lower resolution camera (e.g. 640x480

Table 1. Percentage Errors of the estimated camera and display param-
eters over a large number of simulations with different configuration of
the devices and the 3D display.

Parameter Max Mean Std
Camera Orientation (deg) 0.494 0.192 0.167
Camera Position (%) 0.432 0.186 0.150
Focal Length (%) 3.82 2.26 0.98
Top and bottom curves (%) 0.547 0.217 0.153

VGA camera) to accurately calibrate a much higher resolution dis-
play (e.g. 3500x1200). Figure 12 compares the geometric registration
achieved using a high-resolution vs a low resolution camera.

5 DISCUSSIONS

In this section, we discuss the dependency of our method on various
parameters like the camera position, precision in the display surface,
and the degree of the rational Bezier.

5.1 Camera Placement
Our method achieves markerless registration on extruded surfaces us-
ing an uncalibrated camera. Even in the presence of the priors on the
display surface, there is a set of camera positions that will lead to de-
generacy for one or both phases of our non-linear optimization. Con-
sider the plane based optimization stage where the goal is to find the
focal length f and the extrinsic parameters. Let us assume the camera
calibration matrix C to be

C =

 f 0 0
0 f 0
0 0 1

 r1 r2 r3 tx
r4 r5 r6 ty
r7 r8 r9 tz

 . (5)

Note that in the plane based optimization we are using four points
that have Z = 0 and Y = 0 or Y = 1. Now, consider the case where
r7 = r8 = 0 and r9 = 1. This is equivalent to placing the camera on the
Z-axis with the normal to the image plane being parallel to the Z-axis.
In this case, the homogeneous coordinates of the images of the four
corners of the plane are given by ( f × (ar1 + tx), f × (ar5 + ty), tz)T

when Y = 0 and ( f ×(ar1 +r2 + tx), f ×(ar5 +r6 + ty), tz)T when Y =
1. Note that these points have a scale factor ambiguity, i.e. multiplying
tz and f with the same scale factor would result in the same image
coordinates. Intuitively, if the camera is placed with the image plane
parallel to the planar rectangle defined by the extruded surface on the
Z-axis, moving the camera on the Z-axis can create the similar change
as scaling its focal length and we cannot find a unique solution to the
camera parameters. Hence, this camera placement should be avoided.

Second, let us consider the two 3D curves Bt and Bb, where Bt =
Bb +(0,1,0). If the camera placement is such that the images of these
two curves, It and Ib respectively, are related by It = Ib +(0,k) where k
is a translation in the vertical image direction, then the extrusion based
optimization will be redundant. This camera placement occurs when
the normal to the camera image plane lies on a plane parallel to the XZ
plane i.e. is perpendicular to the Y-axis. Hence, this camera placement
should also be avoided. Note that the former placement that resulted in
the scale factor ambiguity is contained in this latter condition since Z-
axis is on the XZ plane. Hence, as long as a camera placement where
the normal to the image plane is parallel to the XZ plane is avoided,
our optimization will yield an accurate solution.

5.2 Accuracy and Sensitivity
Our system estimates the camera and display parameters and makes
assumptions on the type of the display surface. Hence, it is important
to answer two questions: (a) How accurate are the estimated camera
and display parameters in the non-linear optimization stage?; and (b)
how sensitive is the geometric registration to the inaccuracies of these
estimates or the priors imposed on the display surface? It is difficult to
analyze all the above issues in real systems, hence we have conducted
extensive analysis in simulation and real systems (whenever possible)
to answer these questions.
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Fig. 9. Our geometric registration on two different extruded surfaces (top and bottom) created using our flexible display set-up when using 2×3 array of 6 projectors-
left column shows the casually aligned set-up and the right column shows the wall papering of images after our registration is used. Please zoom in to see the quality
of results.

Fig. 10. Our geometric registration handling severe non-linear distortion on an general extruded surface when using 2×3 array of 6 projectors - left column shows the
casually aligned set-up and the right column shows the wall papering of images after our registration is used. Top: Using severe barrel distortion; Bottom: Using severe
pin-cushioning and tangential distortion. Please zoom in to see the quality of results.
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Radial distortion (Barrel):Radial distortion (Barrel):
Homography
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Fig. 11. Comparison of our method with other methods - Without projector non-linearities on the left and with severe radial distortion on the right. From top to bottom:
(a) Using simple homography; (b) Using view dependent piecewise linear method with a sparse 4×5 = 20 projector to camera correspondences - note the perspective
projection of the camera embedded in the display shown by the more stretching on the left side than on the right; (c) Using view dependent piecewise linear method
with a dense 10× 12 = 120 projector to camera correspondences; (d) Our method using a sparse 4× 5 = 20 projector to camera correspondences - note the perfect
wall papering and the equal or higher quality of registration than the piecewise linear method despite the sparse sampling, especially in the presence of projector
non-linearities. Please zoom in to check quality of results.

First, we study the accuracy of the estimated camera extrinsic pa-
rameters following our non-linear optimization process. Our simula-
tion of many different camera and display parameters shows that when
an accurate intrinsic parameter matrix is given, our estimated extrinsic
parameter matrix is very accurate. The error analysis of the deviation
of the estimated parameters from the actual parameters is provided in
Table 1. For the orientation of the camera, we provide the deviation
in degrees from the actual orientation. For translation, we provide the
ratio of the error in estimation with the distance from the screen. We
also study the accuracy of the estimated 3D profile curves of the dis-
play in this situation. To compare the estimated curves with the actual
ones, we first sample the estimated curves densely. Then, for each
sample, we find the minimum distance to the original curve. The ratio
of the maximum of these distances to the length of the original curve is
considered to be the measure of the accuracy of the display geometric
reconstruction and is reported in Table 1.

We analyzed the validity of our simplifying assumption for the cam-
era intrinsic matrix by running some experiments. For each of our
camera set-up, we used standard algorithms and toolboxes to accu-
rately estimate the camera’s intrinsic matrix [20]. The skew estimated
by Zhang’s method was always zero and the principal center deviated
from the center of the image by a percentage error that is within the er-
ror tolerance of Zhang’s method. These two confirm the validity of our
use of a simpler intrinsic matrix. Further, we compared the estimated
focal length from this method to the focal length estimated by our non-
linear optimization to analyze the accuracy of the estimated intrinsic
camera parameters. We found that when provided with a good initial
estimate as is available from the EXIF tags, the focal length estimated
by our method is very close to that recovered by Zhang’s method as
indicated in Table 1.

We analyze the sensitivity of our registration to imprecision in the
display surface or errors in the estimation of the display shape, both
of which would result from a deviation of the real surface from a per-

fect extruded surface. However, our rational Bezier function provides
a particularly robust framework for handling deviation from extruded
surfaces. This is due to the fact that a small deviation from extrusion
will lead to an erroneous 2D parametrization of the display surface,
but the overlapping pixels from the multiple projectors will still map
to the same (s, t). Hence, an imprecision in the extrusion can cre-
ate small image distortions but will not lead to any misregistration.
This is one of the strengths of our algorithm and is well-demonstrated
by our flexible display which shows considerable imprecision due to
its make-shift flexible prototype nature, but almost no misregistration
of the projected images is visible even on this display. We quantita-
tively evaluate the effect of deviation of a surface from an extruded
surface on the accuracy of the estimated camera parameters in Figure
13. Deviation from extrusion is measured by the maximum difference
of the top and bottom curves with respect to the curve length. This plot
shows even in presence of large deviation of the screen from being an
extruded surface our method can achieve a reasonable estimation of
camera pose and focal length.

5.3 Camera Non-Linearity and Resolution
We assume the camera to be a linear device devoid of any non-linear
distortion in Section 3. However, even if this is not true when using
commodity cameras, our method will not result in any pixel misreg-
istration since the camera non-linearity will be accounted for by the
fitted rational Bezier patches. However, the camera non-linearity will
affect the accuracy of the reconstruction of the 3D shape of the screen
and hence, the final result may not be perfectly wall papered. Fortu-
nately, human visual system can tolerate such minor deviation from
wall papering. For verification, we performed our registration using
an uncalibrated Unibrain Fire-i webcam with 640x480 resolution (one
tenth of our display resolution) which had significant non-linear lens
distortion (with quadratic coefficient of 0.01 and quartic coefficient of
-0.009). We compare the achieved result with the ones achieved by

8



To appear in an IEEE VGTC sponsored conference proceedings

Fig. 12. Geometric registration, Top: with our low resolution webcam (0.25 Megapixels), Bottom: with our high-end SLR camera (13 Megapixels).

our high resolution camera in Figure 12. Note that the deviation from
wall-papering is hardly detectable and the registration is comparable.
In case of more severe camera non-linearities one can use standard
camera calibration techniques to undistort the captured images.

5.4 User Assistance
Our method needs to detect the four corners and the top and bottom
curves of the extruded surface. Since the screen is usually the most dis-
tinct white object in the environment, segmenting it is relatively easy if
the background is of reasonable contrast. Further, more often than not,
a display environment is designed to have relatively diffused illumina-
tion, which does not affect the segmentation adversely. Even in the
worst case of a low contrast between the screen and the background
color, one can always use user interaction to improve the segmenta-
tion. All other steps of our method are completely automated as long
as the projection area of the projectors are entirely within the screen
and the screen is entirely within the camera’s field-of-view.

6 CONCLUSION

In summary, we have presented the first work for markerless view-
independent registration of tiled projection-based displays on extruded
surfaces using an uncalibrated camera. We have shown that by impos-
ing practical priors on the display surface, the registration technique
can be simplified to be easily used by layman users. Our method
provides a very user-friendly and cost-effective way to sustain such
displays in large establishments like visualization centers, museums,
theme-parks. Further, our method also offers the ability of recalibra-
tion and reconfiguration at a very short notice. These can be especially
useful for applications like digital signage and aesthetic projections in
malls, airports and other public places.

In the future, we would like to explore the similar concept of prac-
tical priors leading to easier registration for a different kind of widely-
used non-planar surfaces, the domes. In the recent years, the number
of domes have surpassed the number of IMAX theater installations
(Figure 14). However, there still does not exist an easy way to cali-
brate these displays. Our goal is to extend our fundamental concept in

Fig. 13. Accuracy of camera parameter estimation in presence of deviation of the
screen from being an extruded surface.

this direction.
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ABSTRACT

In this paper we present a novel technique to calibrate multiple ca-
sually aligned projectors on a fiducial-free cylindrical curved sur-
face using a single camera. We impose two priors to the cylindrical
display: (a) cylinder is a vertically extruded surface; and (b) the as-
pect ratio of the rectangle formed by the four corners of the screen
is known. Using these priors, we can estimate the display’s 3D
surface geometry and camera extrinsic parameters using a single
image without any explicit display to camera correspondences. Us-
ing the estimated camera and display properties, we design a novel
deterministic algorithm to recover the intrinsic and extrinsic param-
eters of each projector using a single projected pattern seen by the
camera which is then used to register the images on the display
from any arbitrary viewpoint making it appropriate for virtual real-
ity systems. Finally, our method can be extended easily to handle
sharp corners - making it suitable for the common CAVE like VR
setup. To the best of our knowledge, this is the first method that
can achieve accurate geometric auto-calibration of multiple projec-
tors on a cylindrical display without performing an extensive stereo
reconstruction.

Keywords: Multi-Projector Displays, Tiled Displays, Calibration,
Registration

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality

1 INTRODUCTION

Cylindrical virtual reality systems are very common for large num-
ber of applications like gaming, entertainment, and 3D visualiza-
tion. An inexpensive and popular way to increase the resolution of
such displays is to tile multiple projectors on the cylindrical display
surface. The challenge lies in automatic registration of the multi-
ple projected imagery on the display surface to create one seamless
image. The problem is further complicated when this needs to be
achieved quickly without involving a time-consuming complete 3D
reconstruction via structured light or attaching any special fiducials
to the display surface.

Registering images from multiple projectors on non-planar dis-
plays requires 3D reconstruction of the display surface which in
turn requires multiple cameras. Though there is a large body
of literature that addresses such a reconstruction and registration
[19, 8, 9, 12, 27, 13, 11, 22], these are complex procedures requir-
ing camera calibration and multiple physical fiducials on the display
surface. Hence, many methods try to avoid the complexity of us-
ing multiple cameras when using non-planar screens. Brown et al.
[25] register multiple projectors with respect to the single point of
view of a calibrating camera. This still achieves a seamless regis-
tration of the multiple projectors, but avoids the 3D reconstruction
of the display surface entirely. Though widely adopted by com-
mercial multi-projector display auto-calibration vendors, this reg-
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istration is correct only from one view, the view of the calibrating
camera. Hence, when viewed from a different point, distortions re-
flecting the camera perspective and the display surface geometry
are visible. So, this registration is particularly unsuitable for VR
applications where the user moves around deviating considerably
from the position of the calibrating camera. [11, 22] try to avoid
the view-dependency for cylindrical surfaces by relating the cam-
era coordinates to the physical coordinates of the display by pasting
special fiducials on the two rims of the display surface. Though this
‘wall-papers’ the imagery on the display, lack of a 3D display re-
construction does not allow registration from arbitrary viewpoints.

1.1 Main Contributions

In this paper, we present a new method that can register images
from multiple projectors on a cylindrically non-planar display us-
ing a single uncalibrated camera and without using any fiducials
in a view-independent manner – i.e. the registration does not de-
pend on the view (pose and orientation) of the calibrating camera,
hence, we can compute the correct image for any arbitrary view
point. Contrary to multi-frame structured light patterns, we avoid
using explicit correspondences between the display surface and the
observing camera by imposing two priors: (a) a cylindrical display
is a vertically extruded surface; and (b) we know the aspect ratio
of the planar rectangle formed by the four corners of the display.
With these priors, we can use a single image of the cylindrical sur-
face from the camera to recover the camera pose and orientation
and the 3D display geometry via a non-linear optimization. We
design a deterministic geometric algorithm which uses these recov-
ered properties to auto-calibrate (i.e. find both the intrinsic and
extrinsic parameters) each projector from a single pattern captured
by the camera. Once auto-calibrated, we achieve geometric regis-
tration on the display surface via a ray-casting method.

Unlike any existing method that use a single camera to regis-
ter multiple projectors on a non-planar display [25, 11, 22], we
can reconstruct the shape of the 3D display. This enables us to
parametrize the display directly in a 3D coordinate system, rather
than in the camera image space, to achieve a view-independent
geometric registration. Finally, unlike the above methods which
achieve registration without completely calibrating the projectors,
we achieve a complete auto-calibration of the projectors. This re-
sults in a simple and accurate method to compute correspondences
between the display and the projector. Hence, for static display
surfaces, once the 3D display geometry is recovered, our auto-
calibration method can be used for quickly changing the projector
position and orientation to create displays of different scale, resolu-
tion and aspect ratio.

Our method can handle any smooth vertically extruded surface
which can be interesting for entertainment purposes. More impor-
tantly, it can be easily extended to handle extruded surfaces with
sharp edges. This opens up the possibility of using our algorithm
in a CAVE like setup. Finally, the image correction required to reg-
ister the images can be achieved in real-time on GPUs making our
method especially suitable for real-time VR applications. To the
best of our knowledge, this is the first method that can achieve com-
plete auto-calibration and consequently a view-independent regis-
tration on specialized non-planar displays - vertically extruded sur-
faces like cylinders - without using any physical fiducials on the



display surface.
Organization: We present a survey of related work in Section

2. We present our auto-calibration algorithm followed by two dif-
ferent view-independent registration techniques, suited for different
applications, in Section 3. Next, we provide a proof of concept that
our method can be extended to handle the common CAVE like VR
systems in Section 4. We present our results in Section 5. Finally,
we conclude the with future work in Section 6.

2 RELATED WORK

Our work is related to a large body of literature that deals with
various aspects of calibration in projection-based displays. Con-
sidering planar surfaces and single cameras, Raij and Pollefeys
[17] and Raskar et al. [20] describe techniques to automatically
calibrate multiple projectors on planar display surfaces. PixelFlex
[16, 23] provided a multi-projector display on planar surfaces where
each projector image can be easily and quickly repositioned to cre-
ate new display configurations that can be calibrated within min-
utes. Bhasker et al. [4] achieve the same in presence of projector
non-linearities (i.e. radial and tangential distortions) using rational
Bezier patches.

Chen et al. [7] used multiple cameras on planar displays
to achieve a homography-tree based registration across multiple
projectors. Moving away from a centralized architecture where
the multiple cameras and projectors are controlled from a central
server, Bhasket et al. [5] present a distributed framework where
each projector is augmented by a single camera and has the respon-
sibility of registering itself with the rest of the display. An asyn-
chronous distributed calibration algorithm runs on each augmented
projector in a SIMD fashion to create a seamless display.

When considering non-planar displays, especially arbitrary
ones, using multiple cameras becomes necessary for 3D reconstruc-
tion of the non-planar surface. Raskar et al. in [19] use special 3D
fiducials to achieve a complete device (camera and projector) cal-
ibration and 3D reconstruction of the display surface using a large
number of structured light patterns, which are then used to achieve
the geometric registration. Aliaga et al. in [2, 1] also achieve a 3D
reconstruction to register multiple images on complex 3D shapes,
but without using any physical fiducials. To constrain the system
sufficiently, this method uses completely superimposed projectors
and cross-validates calibration parameters and display surface esti-
mates using both photometric and geometric stereo, resulting in a
self-calibrating system. Raskar et al. in [18] use a stereo camera
pair to reconstruct special non-planar surfaces called quadric sur-
faces (spheres, cylinders, ellipsoids and paraboloids) and propose
conformal mapping and quadric transfer to minimize pixel stretch-
ing of projected pixels after the geometric registration.

All of the above methods achieve a pre-calibration, sometimes
in a few minutes. A complementary set of techniques exist that can
focus on continuous image registration during the display time for
change in the display shape and movement in the projectors. Yang
and Welch [24] use the projected content (as opposed to special pat-
terns) at the display time to automatically estimate the shape of the
display surface and account for the changes in its shape over time.
Using a projector augmented by two stereo cameras, Cotting et al.
[8, 9, 12] estimate the shape of the display surface and the pose of
a single projector continuously over time by embedding impercep-
tible calibration patterns into projected imagery. Zhou et al. [27]
achieve the same by tracking displayed image features. Johnson et
al. [13] show that multiple such units can be used in a distributed
framework to achieve continuous geometric calibration in a multi-
projector setup. Zollman et al. [28] present a hybrid technique
that can compensate for small changes in display configuration us-
ing optical flow, and will resort to active structured light projection
when the optical flow becomes unreliable.

Our work belongs to the body of literature that tries to avoid

the complexity of using multiple cameras when using non-planar
screens. Brown et al. [25, 6] avoid reconstructing the display ge-
ometry by registering multiple projectors with respect to the single
point of view of a calibrating camera. More recently, [11, 22] tried
to avoid this view-dependency in registration for the special case of
cylindrical surfaces by finding a way to relate the 2D parametriza-
tion of the cylindrical display with that of the camera image space
without reconstructing the 3D display surface. A precisely cali-
brated physical pattern is pasted along the top and bottom curves
of the cylinder to provide a physical 2D display parametrization.
By identifying the corresponding images of these fiducials in the
observing camera, a piecewise planar representation of the display
is achieved in the camera space. The projectors can then be reg-
istered directly in the display space rather than the camera space
resulting in a ’wall-papered’ registration. However, since it is not
possible to have fiducials at a high spatial density on a display and
the fiducials only samples the rims of the display, these methods
result in distortions or stretching, especially towards the middle of
the display surface. The more important point to note here is that in
both these methods, since the display surface in not reconstructed,
registering images from an arbitrary viewpoint as is required in a
virtual reality system, is not possible. Our work uses a single un-
calibrated camera, does not need to use physical fiducials, and can
still achieve a calibration from any arbitrary viewpoint.

Technically, our work is close to [17] that achieves a similar goal
of auto-calibration of projectors for planar screens, but our method
is entirely different catered towards cylindrical screens. In partic-
ular, unlike [17] where the projector auto-calibration results from
an involved optimization process, our projector auto-calibration is
achieved by an efficient and fast deterministic algorithm allowing
quick recalibration in the event of change in pose and orientation of
the projectors. Further, we do not make restrictive assumptions like
square projector pixels and identical vertical shift for all projectors.

3 AUTO-CALIBRATION ALGORITHM

Let the display surface, the image planes of the camera, and the pro-
jector be parametrized by (s, t), (u,v), and (x,y) respectively. We
denote the 3D coordinates of the point at (s, t) on the display by
(X(s, t),Y (s, t),Z(s, t)). Using the fact that a cylinder is a vertically
extruded surface we impose the following constraints on the display
surface. The four corners of the display lie on a planar rectangle,
whose aspect ratio a is known. We define the world 3D coordinate
system with Z axis perpendicular to this plane and X and Y defined
as the two orthogonal basis of this planar rectangle. We also con-
sider this planar rectangle to be at Z = 0 and the top and bottom
curves of the cylinder to lie respectively on Y = 1 and Y = 0 planes
in this coordinate system. Hence, Y (s,0) = 0 and Y (s,1) = 1. Fur-
ther, these two curves are identical except for a translation in the Y
direction. Consequently, ∀s, (X(s,0),Z(s,0)) = (X(s,1),Z(s,1)).
These are illustrated in Figure 3.

We make the following practical assumptions to simplify the
problem:

• Our camera and the projectors are linear devices with no radial
distortion.

• Projectors are considered dual of a pin-hole camera.
• The camera intrinsic parameters are known, but not its pose

and orientation.

For an n projector system, our auto-calibration takes n+ 1 im-
ages as input. The first image, I0, is that of the display surface with
no projectors turned on. Next, for each projector i, 1 ≤ i ≤ n, we
take a picture Ii of the same display surface with projector i project-
ing a special line pattern (Figure 1).

Our algorithm consists of three steps:
1. With I0 as input we estimate the camera and display surface

properties using a non-linear optimization (Section 3.1).



Figure 1: Left: The image I0 used for estimating camera and display proper-
ties. Right: The zoomed in view of I1 and I2 for one of our setups, where the
projector 1 and 2 are projecting the single pattern used for auto-calibration.

Figure 2: The pipeline of our algorithm.

2. Using the recovered camera and display properties and the
image Ii, we find the intrinsic and extrinsic parameters of pro-
jector Ii, thus auto-calibrating the projectors. For this we use
a deterministic algorithm which is fast and efficient enabling
quick changes in projector properties (position, orientation,
and zoom) (Section 3.2).

3. We use the recovered projector properties to register im-
ages seamlessly on the cylindrical display (Section 3.3). We
present two ways to register the images. (a) The first kind
of registration provides seamless imagery that looks correct
from an arbitrary view point which can change without re-
quiring a recalibration. This is suitable for a VR application
with a head-tracked single user. (b) The second type of regis-
tration wall-papers the image seamlessly on the display. This
is suitable for multi-user visualization applications.

The complete pipeline of our method is illustrated in Figure 2.

3.1 Camera and Display Property Estimation
The input to this step is the image I0, the 3x3 intrinsic parameter
matrix of the camera, and the aspect ratio a. The output is an esti-
mation of the 3x4 extrinsic parameter matrix (defining position and
orientation) of the camera and the 3D geometry of the display de-
fined by the top and bottom 3D curves. The novelty of this step
is to estimate the camera parameters and the 3D display geometry
from a single image without using any correspondences. The cor-
respondences are avoided by exploiting the fact that the top and the
bottom curves of the display are identical except for being in two
different XZ planes in 3D.

To estimate the camera parameters, we use a two phase non-
linear optimization method. In the first step we gather a rough esti-
mate of the camera extrinsic parameters (pose and orientation) us-
ing the projection of just the corners of the display surface on the

Figure 3: A curve is fitted through the sampled points on the 2D bottom curve
(purple line). The sampled points on the 2D top curve in the camera (black)
are reprojected in 3D to estimate the 3D top curve (red), and translated down
to estimate of the 3D bottom curve (blue), and finally projected back on the
camera (green). The distance between these points and the purple curve is
minimized in the curve based optimization step.

camera image. These rough estimates are then used to initialize the
second optimization step with a more expensive error function that
refines these camera extrinsic parameters to provide an accurate es-
timate. The recovered extrinsic camera parameters are then used to
estimate the 3D display geometry.

Rough Estimation of Camera Parameters: The camera coor-
dinates, (u,v), of any 3D point (X(s, t),Y (s, t),Z(s, t)) on the dis-
play are given by,

(uw,vw,w)T = M(X(s, t),Y (s, t),Z(s, t),1)T (1)

where (uw,vw,w)T is the 2D homogeneous coordinate correspond-
ing to the camera coordinate (u,v) and M = K (R|RT ) is the camera
calibration matrix comprising of the 3× 3 intrinsic parameter ma-
trix K and the 3×4 extrinsic parameter matrix (R|RT ). We assume
that K is known or estimated using standard camera calibration te-
chiniques [26]. We estimate the (R|RT ) matrix that provides the
pose and orientation of the camera. (R|RT ) comprises of six pa-
rameters including three rotations to define the orientation and a
3D center of projection (COP) of the camera to define the position.
Given our 3D world coordinate system, the 3D locations of the four
corners of the cylindrical display in a counter-clockwise manner
starting from top left are given by: (− a

2 ,1,0), (
a
2 ,1,0), (

a
2 ,0,0),

and (− a
2 ,0,0). In this step, we estimate the six camera extrinsic

parameters by minimizing the reprojection error Er, (i.e. sum of
the distances of the projection of these corners on the image plane
from the camera captured positions) of the 3D corners from the de-
tected corners in the image.

To initialize this optimization, we use the following. The angles
of rotations about the X, Y, and Z axes that comprise R are initial-
ized to zero. T , the COP of the camera is initialized roughly at the
center of the planar rectangle formed by the four corners of the dis-
play at a depth of a similar order of magnitude as the size of the
display. This is achieved by initializing T to (0,0,a).

Accurate Estimation of Camera Parameters: These rough es-
timates of the camera extrinsic parameters achieved in the previous
step are used to initialize a second optimization that attempts to re-
fine these parameters. Here, we augment the error function from
the previous optimization step, Er, with another error function, Ec,
which is the reprojection error of the estimated 3D top and bottom
curves of the cylindrical display (Figure 3). We seek to minimize
the weighted combined error, wrEr +wcEc.

Let CT and CB be the 3D top and bottom curves of the display.
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We first use segmentation and contour detection techniques to sam-
ple the 2D projected coordinates of CT and CB in the camera space,
denoted by the set of samples ST

1 ,S
T
2 , . . .S

T
N and SB

1 ,S
B
2 , . . .S

B
N re-

spectively. Prior to the optimization, we fit a curve C′B through
SB

1 ,S
B
2 , . . .S

B
N . During the optimization, we reproject ST

1 ,S
T
2 , . . .S

T
N

to the 3D coordinate system. To reproject the kth sample ST
k ,

1 ≤ k ≤ N in 3D, we cast a ray from the center of projection of
the camera through M−1(ST

k ,1)
T . We intersect this ray with the

Y = 1 plane to find the corresponding reprojected 3D coordinate,
r(ST

k ), where r denotes this reprojection function. We know that
r(ST

k ) when translated -1 unit in the y direction, i.e. r(ST
k ) + h,

where h = (0,−1,0), should lie on CB since the cylinder is a verti-
cally extruded surface. We then project these translated 3D points,
r(ST

k )+h, back on to the camera image plane to generate a new set
of points QB

k = M(r(ST
k )+h) where M is the 3D to 2D perspective

projection of the camera. If the estimated camera calibration pa-
rameters are accurate, then all the samples QB

1 ,Q
B
2 , . . .Q

B
N would lie

exactly on C′B. So, Ec is defined as the sum of the distances between
QB

1 ,Q
B
2 , . . .Q

B
N and C′B in a least squares sense.

To solve both the above optimizations, we use standard gradient
descent methods. To assure faster convergence we (a) apply a pre-
conditioning to the variables so that the range of the values that can
be assigned to them is normalized; and (b) use decaying step size.

Estimation of the Display Geometry: After convergence of the
non-linear optimization process, we use the estimated camera cal-
ibration parameters to reproject ST

1 ,S
T
2 , . . .S

T
N and SB

1 ,S
B
2 , . . .S

B
N in

3D to find CT and CB respectively. Due to accumulated errors, CT
and CB may not be identical. So, we project both the curves on
Y = 0 plane and find their average to define CB. This is then trans-
lated to Y = 1 to define CT . We then use a polynomial curve fitting
to find a parametric representation of CT and CB.

3.2 Projector Calibration

In this step, we project a pattern from each projector comprising of
four corner blobs and a top and bottom line. An image Ii of this pat-
tern is captured by the camera. Using Ii and the estimated camera
calibration parameters and 3D display geometry, we estimate the
intrinsic and extrinsic parameters of each projector.

Let the image of the top and bottom lines for the projector in Ii
be denoted by lT and lB respectively. Let the blobs be denoted by
bA, bB, bC and bD from the top left corner in a clockwise manner
(Figure 1). Note that though these lines are straight in the projector
space, they look curved in 3D due to projection on a curved surface.
The auto-calibration of each projector consists of two steps. First,
we find the view frustum of the projector defined by its center and
five planes (top, bottom, left, right and the image plane) that de-
fine the extrinsic parameters of the projector. Next we use this view
frustum and the known projector resolution (W ×H) to recover its
intrinsic parameters. Most projectors have a vertical principle cen-
ter offset to avoid occlusion with the table or the ceiling where the

Figure 5: The estimated setup (camera, 3D display and projectors) using our
algorithm for the 2×2 array (top) and 1×4 array of four projectors.

projector is mounted. This results in an offset in the y-direction for
the principle center. We assume that the x-coordinate of the princi-
ple center coincides with the center of the x-direction. Additionally
we do not consider any skew. This results in a simplified intrinsic
parameter matrix Kp for the projectors given by

Kp =

 fx 0 0
0 fy oy
0 0 1

 (2)

Hence, to recover the projector intrinsic parameters, we determine
three parameters for each projector: the focal lengths in the two
image coordinate directions ( fx and fy) and the offset in the y di-
rection (oy). Our method is absolutely deterministic without using
any optimizations and hence is accurate and efficient.

Estimation of the Extrinsic Parameters: Let us consider a 3D
local coordinate frame for each projector defined by the COP, O,
(position) and axes Xp, Yp, and Zp (orientation). We use a three
step procedure to reconstruct the view-frustum of the projector. (a)
First, we find a line that is parallel to Xp and passes through O. (b)
Second, we find the position of O on Xp. (c) Finally, we recover the
other two local coordinate axes Yp and Zp.

Finding Xp: We first sample lT and lB in the 2D camera space
and reproject these samples in 3D using the estimated camera pose
and orientation. Each sample defines a 3D ray. We find the inter-
section of these rays with the display via a line-curve intersection.
This gives us the corresponding samples on the 3D curves l′T and
l′B. Note that the samples of l′T and l′B lie respectively on the top and
bottom planes of the projector view frustum, T and B. So, first we
fit a plane to the samples of l′T and l′B in a linear least squares sense
to estimate T and B. Then we find the intersection of T and B to
find Xp.

Finding O: The center of projection, O, is on Xp. Since the
projector view-frustum is symmetric in the horizontal direction, the
center O is a point on the line Xp constrained by the fact that the
two vertical planes formed by the view frustum, L and R, should
make the same angle with the line Xp (Figure 4). We first reproject
the blobs bA, bB, bC, and bD in 3D using the camera calibration ma-
trix. This generates the four points A, B, C, and D where the four
rays of the projector view frustum meet the display surface. For



Figure 6: Left: In the real system, red and blue are the estimated 3D top and bottom curves of the display. Middle: In simulation, the blue curve is the original
display surface curve and the red curve is the estimation provided by our method. Right: The plot shows the pixel misregistration as the surface deviates from being
an extruded surface. This shows that if we assume a roughly tiled configuration and can tolerate 1 or 2 pixel misregistration, we can allow 4% and 6% deviation from
an extruded surface respectively.

each of these, let A′, B′, C′, and D′ be the projection of A, B, C and
D respectively on Xp. Due to equal angle constraint, the triangles
OCC′ and ODD′ will be similar to each other and so will be OBB′
and OAA′. Thus, the position of O on D′C′ will be given by the
weighted average of D′ and C′ where the weights are inversely pro-
portional to the lengths CC′ and DD′. This yields to two estimates
of O, one from the similar triangle constraint on OCC′ and ODD′
and another from the similar triangle constraint on OBB′ and OAA′.
A mean of these two estimates results in a robust estimate of O.

Finding Yp and Zp: We have thus found the four lateral planes of
the projector view frustum. Now, we want to find the view direction
Zp. Note that for any plane P perpendicular to Zp, the length of the
intersections of P with OAB and ODC are equal (Figure 4). We
use this constraint of equal length to find Zp. We first consider two
lines on OAB and ODC, gT and gB respectively. Both are parallel
to Xp. gT lies at unit distance from O on OAB. Similarly, gB lies
at unit distance from O on OCD. Note that gT and gB will not
have equal length. Assuming |gT | > |gB|, if we move gB along B
keeping it parallel to Xp such that the distance from O becomes gT

gB
,

the new line g′B thus formed is equal in length to gT . Hence, the
plane passing through gT and g′B satisfies the constraint of equal
length (Figure 4). Zp is the normal to this plane and Yp = Zp×Xp.

Estimation of the Intrinsic Parameters: Let the resolution of
the projector between the four blobs in the pattern be P×Q. To find
fx and fy, we first project the 3D points A, B, C, and D on a plane
perpendicular to Zp and at unit distance from O. Let these points
be A′′, B′′, C′′, and D′′ respectively. Then, fx is given by P

|A′′B′′| .

Similarly, fy is given by P
|A′′C′′| . To find oy, we consider the center

of the 3D line AB. Since we know the 3D coordinate of this point
and fx and fy, we can find the projector y-coordinate for this point
assuming oy = 0 and subtract Q

2 from it to obtain oy.

3.3 Geometric Registration
Geometric registration from an arbitrary viewpoint is achieved
when an image rendered from the viewpoint is projectively mapped
on the 3D display. This kind of registration is especially suitable
for virtual reality applications like virtual walkthroughs. However,
for other applications like visualization, collaboration, or telecon-
ferencing that tend to have multiple users, correcting for a single
viewpoint presents distortions for others. An image wallpapered on
a surface has been time tested for multi-viewing purposes (e.g. in
museums, airports, and other public places). For such scenarios, the
images from the projectors are pasted or seamlessly ‘wall-papered’
on the display surface. In this section, we describe both these reg-
istrations.

Registration from Arbitrary Viewpoint: After extracting the
geometry of the screen we can choose any arbitrary viewpoint and
define an image plane for that viewpoint. Afterwards, we can find a
mapping between the image plane coordinate system and the screen
coordinate system by shooting rays from the viewpoint to the de-

sired image plane coordinates and intersecting these rays with the
screen. This mapping can be used then to correct any image for
the defined coordinate system. The corrected image will show per-
spective distortion from other viewpoints and therefore it can be
used only for a single user. This is well suited for single-user VR
applications which use head tracking to find the proper viewpoint.

Wallpapered Registration: Following auto-calibration of the
projectors, we use the projector and the display parameters to reg-
ister the images from the multiple projectors on the display in a
’wallpaper’ fashion. To wallpaper the image on the display, we
seek a 2D length preserving parametrization of the 3D display sur-
face with (s, t). As per our setup, t is automatically parametrized
since Y = t. Also, Z = f (X). Hence, we find a curve length based
parametrization given by s =

∫ X
0
√

1+ f ′(x)dx.
The geometric registration involves finding the function that

relates the projector coordinates (x,y) to the display parameters
(s, t). Assuming the image to be wall-papered to have the same
parametrization of the display, we first cast a ray through each pixel
(x,y) using the auto-calibrated projector coordinates and find the
3D coordinates of its intersection with the cylindrical surface. Then
we find the corresponding (s, t) values and bilinearly interpolate the
color in the image to generate the color at the projector pixel (x,y).

4 EXTENSION TO PIECEWISE PLANAR CAVES

Our algorithm assumes a vertically extruded surface. Since we as-
sume that the top and bottom boundaries of the surface are smooth
curves, the algorithm implicitly assumes a smooth vertically ex-
truded surface. However, the basic algorithm remains unchanged
even if we have a piecewise linear curve, instead of a smooth one.
CAVE like VR setups are built on vertically extruded surfaces with
piecewise linear boundaries, and hence our method can be easily
extended to such situations. Currently, since it is difficult to cali-
brate multiple projectors on such surfaces, most CAVE setups use
multiple projectors on each of the planar faces, but does not allow
overlap of projectors across different faces. This does not allow
blending regions for good color calibration [15, 14] and also makes
it difficult to achieve automatic geometric calibration across the dif-
ferent planar faces. Our method removes this restriction by allow-
ing the projectors to overlap even across the edges of the planar
surfaces (Figure 10).

Our algorithm needs a few small changes to accommodate a
CAVE kind of setup. When detecting the top and bottom curves
in the camera image, we have to fit a piecewise linear function,
instead of a smooth curve. Automatic piecewise linear regression
(also referred to as segmented regression) pose ill-conditioned opti-
mization problems for completely unconstrained data sets, but can
be solved automatically if constrained sufficiently by providing the
breakpoints between the number of segments [10]. Such inputs can
easily be provided manually in the image I0. For the particular case
of displays, where the points on the detected display boundary are
extremely structured (very little noise), it is very easy to manually



Figure 7: These two sets of images show our geometric registration for the
panoramic configuration. The top three images for Persepolis from top to bot-
tom show a naive method, homography, and our method. The bottom four im-
ages for a grid from top to bottom show homography, piece-wise linear method
with a sparse set of correspondences, piece-wise linear method with a dense
set of correspondences, and our method. Please note that the piecewise linear
images are only correct from a single view-point and shod perspective distor-
tion from any other viewpoint.

identify the piecewise linear line segments in the image I0. Hence,
we take this route of manual detection of the piecewise linear curve
in the image I0. Following this manual step, the rest of the process
remains unchanged and still automatic.

5 RESULTS

We have implemented our method on a cylindrical display using
four projectors. We used Epson 1825p LCD projectors (about $600
each). Our display has a radius of about 14 feet and an angle of
90 degrees. We arranged the projectors in two different configura-
tions: a panoramic configuration where projectors are arranged in
a 1×4 array (projectors in a row) and a second one where they are
arranged in a 2×2 array. Our unoptimized matlab implementation
of the algoritm takes about 6 minutes. The non-linear optimization
for estimating the camera parameters and display geometry takes
about 5 minutes. Auto-calibration of the projectors takes about 10
seconds per projector. In the curve-based optimization step, we use
wr = 3 and wc = 1.

Figure 5 provides a visualization of the estimated camera, dis-
play, and projector locations and orientaions in 3D using our algo-

Figure 8: Top two: Geometric registration on our 2× 2 projector display us-
ing our algorithm. Bottom: A registered and wall papered panorama of the
himalayas in the panoramic setup.

rithm for the two different setups. Figure 6 shows the error between
the reconstructed top and bottom curves of the display. They coin-
cide demonstrating the accuracy of our method.

The accuracy of our method is demonstrated by a robust geo-
metric registration. Empirically, we have seen a maximum misreg-
istration of less than a pixel. Figure 7, and 8 show the results on
our displays. Since all prior methods can achieve geometric regis-
tration only with precise physical fiducials or complete 3D recon-
struction, it is difficult to find a fair comparison to our method that
does not use either of them. In the absence of fiducials, we compare
our method with a naive homography-based registration [3, 7] and
the registration with respect to a single view-point of the calibrat-
ing camera [25]. In addition to the obvious misregistrations, the
shape of the display shows that wall-papering cannot be achieved
on the curved surface without recovering the 3D geometry of the
screen. Please zoom in to see the quality of registration. To reduce
the higher brightness in the overlap region, we use a simple cosine
blending function [19, 23]. Photometric seams can be further re-
moved by using [15].

To demonstrate that our method is not limited to just cylinders,
but can handle any smooth vertically extruded surface, we made
an inexpensive flexible display using a rectangular sheet of flexible
white styrene. This was supported by five poles to which the styrene
sheet was attached (Figure 9). The shape of the profile curve of this
extruded display can be changed by simply changing the position of
the poles. Figure 9 illustrates the accuracy of our auto-calibration
on such a display.

When a projector is moved after auto-calibration, we only need
to find the change in the parameters of the moved projector. Since
we use a deterministic method, we can achieve this in less than 10
seconds. Thus, we can achieve quick recalibration in the event of a
projector movement.

We also demonstrate the extension of our algorithm to CAVEs.



Figure 9: On the left: Our flexible screen. On the right: Geometric registration on our flexible screen with two different shapes.

Table 1: Percentage Errors of the estimated parameters over a large number
of simulations with different configuration of the devices and the 3D display.

Parameter Max Mean Std
Camera Orientation (deg) 0.494 0.192 0.167
Camera Position (%) 0.432 0.186 0.150
Top and bottom curves (%) 0.547 0.217 0.153
Projector Position (%) 0.313 0.115 0.972
Projector Orientation (deg) 0.131 0.052 0.050
Projector Focal Length (%) 0.295 0.105 0.895
Projector Offset (%) 1.251 0.486 0.452

Since we do not own a CAVE setup, we tried to create a proof-
of-concept demo using our same flexible display setup. Instead of
a smooth curve, we rearranged the poles to created a CAVE like
setup. Figures 10 shows this setup and the results of our algorithm
on it. Note that due to the very flexibility of this display, the curve
deviates considerably from a piecewise linear curve. Hence, errors
creep in and we cannot achieve a sub-pixel accuracy – but see 2-3
pixels misregistration, as shown in the video. However, in simula-
tion, we can achieve the same sub-pixel accuracy as for our smooth
extruded surface.

5.1 Evaluation
We have conducted an extensive analysis on the accuracy of the
estimated parameters using a simulator. The maximum, mean and
standard deviation errors are presented in Table 1. For the orien-
tation of devices (projectors and cameras), we provide deviation in
degrees from the actual orientation. For translation, we provide the
ratio of the error in estimation with the distance from the screen.
For all other parameters, we measure the deviation from the origi-
nal value of the parameter devided by the original value.

To compare the accuracy of the estimation of the display curves,
we sample the estimated curves densely. Then, for each sample, we
find the minimum distance to the original curve. The ratio of the
maximum of these distances to the length of the original curve is
considered to be the accuracy of the display geometry reconstruc-
tion and is reported in Table 1. For this, we did not limit the er-
ror analysis to cylindrical displays only, but ran experiments with
any vertically extruded surface including ones with piecewise lin-
ear boundaries like CAVE. To evaluate the accuracy of the geomet-
ric registration, we find the deviation of (s, t) parameter to which a
projector pixel will be mapped to in the original setup and compare
it with the same from the estimated setup. We find a maximum of
0.3 pixel misregistration from a single projector. Hence, assuming
a roughly tiled configuration, the worst case misregistration in any
direction will be 0.3× 2 = 0.6 pixels. This is consistent with our
empirical observation of geometric misregistration of less than a
pixel. Such accurate registration and calibration for cylindrical tiled
displays has never been reported in the literature prior to our work.
Finally, we also show the generality of our method for handling any
vertically extruded surface (not necessarily a cylinder). The accu-
racy of reconstructing the display curves are evaluated over extru-

Figure 10: Top: A picture of our CAVE setup with the projectors overlap-
ping on the edges. Bottom: Geometric registration on our CAVE setup. The
calibrating camera is visible in the top-left corner of the picture.

sions of different shapes. One example is shown in Figure 6.

5.2 Discussion
Most screens designed for commercial purposes are quite rigid
infra-structure as is the screen we used for this work. However,
we studied the effect of small deviation from extruded surface on
the geometric registration in simulation. For this, the deviation is
simulated using the same metric as is used to measure the accuracy
of estimating the curves. The results in Figure 6 shows that the sur-
face need not be perfectly extruded. 4 to 6% deviation from thereof
results in less than 1 to 2 pixel misregistration.

The projectors we used, even if inexpensive, were close to per-
fect linear devices. However, sometimes they may have small ra-
dial distortions. In such a case, a pattern can be used that has more
then just two lines. If m equally placed lines are used, Xp will be
provided by the intersection of the m planes each containing a pla-
nar curve in 3D corresponding to the lines on the projector image
plane. When fitting each plane, the eigenvalues of the matrix used
for the linear least square fit provides some insights on the 3D curve
shape. A small third eigenvalue indicates a degenerate case where
the curve is close to a line and one cannot robustly fit a plane. A
high forth eigenvalue indicates a large fitting error, i.e. the curve
does not lie on a plane due to the presence of radial distortion in
the projectors. Hence, when finding Xp using linear least squares
intersection of the planes, the equations due to each plane can be
weighted by a ratio of its third and forth eigenvalues found during
the prior plane fitting step. This assures that curves which indeed lie
on a plane are given larger weight than either the degenerate case or
when severe radial distortion is present. To avoid an infinite weight
resulting from a forth eigenvalue which is close to 0 (the best case



of a curve robustly lying on a plane), we provide a threshold to the
maximum weight. Our simulation shows acceptable registration
when using this method in the presence of small radial distortions.

Finally, we found that knowing the intrinsic parameters of the
camera is not critical for our method. A large number of image
formats like jpg or tiff store EXIF tags for images provide some
of the camera parameters. One of these is the focal length, the
most important parameter of the intrinsic parameter matrix K of the
camera. To convert the focal length to the unit of pixels, we divide
resolution of the camera by the CCD sensor size and multiply it
with the focal length specified in the EXIF tags. The sensor size of
the camera is available in its specifications. Also, in most cameras
today, it is common to have the principal center at the center of the
image, no skew between the image axes, and square pixels. Hence,
similar to [21], we use these assumptions to initialize the intrinsic
parameter matrix of a camera, K, as

K =

 f 0 0
0 f 0
0 0 1

 , (3)

Our non-linear optimization can accurately refine the single param-
eter in the intrinsic matrix and we do not see any degradation in the
quality of the registration.

6 CONCLUSION

In summary, we have presented the first work to auto-calibrate
projectors on vertically extruded surfaces without using display
to camera correspondences. Our projector auto-calibration is
achieved via a deterministic efficient algorithm that allows interac-
tive changes in the projector position, orientation and zoom factor.
Our method can have tremendous applications in auto-calibration
of large cylindrical displays commonly used for edutainment pur-
poses. It can also be extended to CAVEs to allow projector overlap
across the planar screens of the CAVE.

However, our method is limited to extruded surfaces and cannot
handle another kind of commonly used screens, the domes. In fu-
ture, we would like to extend similar fundamentals of using prior
knowledge of the screen to design methods to achieve geometric
registration without the use of fiducials on other types of screen.
Further, we would like to design a variation of our method that can
tolerate greater deviation from extruded surfaces. Reasonable devi-
ation from perfectly extruded surfaces will allow lower precision in
the screen manufacturing, making these displays more affordable.
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Display Gamut Reshaping for Color Emulation and Balancing

Abstract

Emerging next generation digital light projectors are us-
ing multiple LED/laser sources instead of one white lamp.
This results in a color gamut much larger than any exist-
ing display or capture device. Though advantageous in the-
ory, when used to display contents captured/processed at a
smaller gamut, a large gamut expansion results in hue-shift
artifacts.

We present a hardware-assisted 3D gamut reshaping
method that handles the gamut expansion in LED based
DLP displays by hierarchical temporal multiplexing of the
multiple primaries. This, in turn, results in a color emula-
tion technique by which projectors with such large gamuts
can also achieve a standard color gamut and white point –
the two most important color properties in terms of display
quality, with an additional advantage of increased bright-
ness and dynamic range. The same method can also be used
for color balancing across multiple projectors that are often
used to create large-scale high resolution displays.

1. Introduction
The traditional digital light projection (DLP) technology

includes a white light bulb and a color wheel with differ-
ently colored filters. The filters are temporally multiplexed
at a high speed to selectively pass any one of the multiple
primaries at any instant of time on to the digital micromir-
ror device (DMD) array [34]. The number of filters on the
color wheel can be three (R,G and B), four (R,G, B and
W) or more [30, 13, 24, 1, 25, 6, 15](Figure 1). These are
wide band filters creating a gamut smaller than the stan-
dard industry-specified gamuts like NTSC, PAL and HDTV
(Figure 2). Hence, media in one of these standard gamuts is
mapped to the smaller gamut of the display.

Figure 1. Left to right: Light Path of a traditional DLP projector
and a DLP projector with multiple LED sources (Blue filter is ON).

The projection industry has recently introduced projec-
tors where the color wheel is eliminated by using multi-

NTSC

HDTV (+7.7, +10.3)

LCD Panels/Traditional
Si l S LCD P j t

Traditional Single Source DLP 
Projectors (-2.9, -12.41)
Multiple LED Source DLP 
Projectors (+71, +66.6)
Multiple Laser Source DLP 
P j t ( 151 96 9)Single Source LCD Projectors

(+11.5, +3.8)
Projectors (+151, +96.9)

Figure 2. Comparison of the different standard 2D color gamuts
with the gamuts provided by the LED or laser based projectors,
both in CIE xy and u’v’ space. The bold numbers indicate the
percentage deviation in the area of the 2D gamut when compared
to the NTSC gamut, both in CIE xy and u’v’ space respectively

ple light sources, one for each primary, created from one
or more light emitting diodes (LEDs) [8, 29, 10]. The pri-
maries are then switched ON and OFF or multiplexed tem-
porally independent of each other (Figure 1).

The LEDs in these projectors provide more saturated col-
ors than the color wheel resulting in a much larger color
gamut than any traditional projector and standard color
gamuts like NTSC, PAL, and even the most recent HDTV
(56% larger in the CIE u’v’ chromaticity chart). In fact,
the emerging laser projectors, due to monochromatic pri-
maries, promise to provide an even larger color gamut, cov-
ering almost all the colors visible to the human eye (almost
double than that of the NTSC gamut in the CIE u’v’ space)
[20]. The percentage increase/decrease of different display
gamuts when compared to the NTSC gamut both in the CIE
xy and u’v’ chromaticity charts is quantified in Figure 2.

Though larger color gamut assures reproducibility of
a larger range of chrominance, this causes gamut expan-
sion creating several problems (e.g. hue-shifts, white-
point shift and non-optimal utilization of color resources)
when displaying existing media generated in devices with
a much smaller gamut(Section 3). As a result, these up-
coming projectors cannot be used in applications using
projectors and cameras in a tightly coupled feedback loop

1
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[18, 17, 21, 37, 19, 35, 28]. When the projected images are
captured by the lower gamut cameras severe gamut clipping
artifacts occur.

In this paper, we present an algorithm to address this
gamut expansion. Unlike traditional single source projector
architecture where at any particular instance of time only
one of the primaries can be turned on, in projectors with
multiple LED sources more than one primary can be turned
on at the same time. Our method takes advantage of this
key property of simultaneous ON times to design a hard-
ware assisted scheme of hierarchical temporal multiplex-
ing of the LED primaries that can emulate a standard color
gamut and white point without compromising other proper-
ties like brightness, contrast and light efficacy, and enables
the following.
1. Dynamic Color Emulation: Operability at standard color
gamut (like HDTV, NTSC and PAL) and white point (like
D85 and D65) is very important for any display. Our
method emulates many different color gamut and white
point standards from the same set of LED primaries dy-
namically as demanded by the application, just by chang-
ing the parameters of the temporal multiplexing (Section
4). These parameters can be precomputed automatically
and then stored in the projector itself.
2. Robustness to Manufacturing Imprecision: The only way
to achieve a desired color specification in a traditional sin-
gle source projector is to control the color properties of their
color filters via precision manufacturing. Since our method
can achieve the same standard color properties from LEDs
that have a large variation in color, such strict control in
manufacturing can be avoided. This can make the technol-
ogy more flexible and cost effective.
3. Color Balancing in Multi-Projector Displays: Finally,
the same hierarchical scheme can also be used to achieve
color balancing across multiple projectors, common for
building large-area high-resolution displays (Section 4.2).
2. Notation

We first briefly describe our color notation. Our algo-
rithm involves only color matching and does not deal with
color distances. Hence, all computations in our algorithm
are carried on in CIE XYZ space. However, when evaluat-
ing the display quality, we use a perceptually uniform color
space, like CIELAB or CIELUV space.

Let (X, Y, Z) be the 3D coordinates of a color in the CIE
XYZ space, called the tristimulus values. In our algorithmic
computations, total tristimulus value (TTV) X +Y +Z (the
indicator of the total energy of the spectrum) plays an im-
portant role. Hence, we specify the (X, Y, Z) color alter-
natively by its TTV I = X + Y + Z, and its chromaticity
coordinates (the indicator of its chrominance), (x, y), de-
fined as

(x, y) = (
X

X + Y + Z
,

Y

X + Y + Z
). (1)

The XYZ coordinates of a color can be derived easily from
(I, x, y) using

(X, Y, Z) = (xI, yI, I(1− x− y)). (2)

Further, matching two colors, (I1, x1, y1) = (I2, x2, y2)
assures that they also match in their XYZ coordinates i.e.
(X1, Y1, Z1) = (X2, Y2, Z2). Finally, the most important
point to note is that, for colors of similar chrominance, I
scales proportionally to the luminance Y . Hence, in dis-
plays, for considering each primary or the grays, I and Y
are both scaled equally when the inputs are scaled.

It can be shown that in the CIE XYZ space, a ray through
the origin is the locus of colors with the same chromaticity
coordinate (x, y) but different TTVs I . The chromaticity
coordinates (x, y) is a 2D projection of these rays on the
X + Y + Z = d plane. The set of all chrominance visi-
ble to the human eye creates a horse-shoe shaped plot in the
xy space that represents different chrominance values phas-
ing out the I . This is called the chromaticity chart (Figure
2). The point (0.33, 0.33) in this chart indicates a perfect
achromatic color with X = Y = Z. As the colors move
away radially from this point towards the periphery of the
horse-shoe shape, they change in saturation, while the hue
remains constant.

Finally, it can be shown with simple algebra, that adding
two colors, (I1, x1, y1) and (I2, x2, y2), result in a color
(I3, x3, y3) where I3 is the sum of the TTVs of the super-
imposing colors and chrominance is the weighted convex
combination of the chrominance of the superimposing col-
ors in the xy chromaticity chart, where the weights are given
by the proportion of their TTVs. In other words,

(I3, x3, y3) =
(

I1 + I2,
x1I1 + x2I2

I1 + I2
,
y1I1 + y2I2

I1 + I2

)
.

(3)
This result can be generalized to n colors, where the

chrominance of the new color lies within the convex hull
of the chrominance of the constituting n colors. Thus, in
a projector with three primaries, the reproducible chromi-
nance lies within the triangle spanned by the chrominance
of the three primaries (Figure 2). This is called the 2D color
gamut or simply the color gamut. The chrominance of the
white created by full intensity primaries superimposed from
three channels is called the white point. This depends on the
proportion of the TTVs of the three primaries and need not
be the perfect white, (0.33, 0.33). The brightness of a de-
vice is defined by the luminance Y of full intensity white,
and is proportional to its TTV. Note that the white point
and 2D color gamut specifies the chrominance capabilities
while brightness specifies the dynamic range capabilities. If
the brightness of black is constant, a higher brightness indi-
cates a higher dynamic range. When considering brightness
and chrominance together, the XY Z values of the primaries

2
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Figure 3. Effects of No Color Management – Row 1: Images in
NTSC color gamut; Row 2: The grayscale representation of nor-
malized hue shift in the perceptually uniform CIELAB space due
to gamut expansion in LED projectors (Brighter grays indicate
more hue-shift) – the normalization is with respect to the maxi-
mum hue shift seen in each image; the max and mean hue shift
in the three images from left to right are (52.5, 32.8), (55.2, 39.1)
and (54.3, 41.8) respectively; Row 3: The images displayed on the
LED projector with a larger 2D color gamut is then recaptured by
a standard NTSC camera. Note that due to shifting of colors out-
side of the NTSC space during display, the recaptured image loses
many of the colors due to gamut clipping.

span a 3D parellelopipped in the CIE XYZ space. This con-
stitutes the range of all different colors (both chrominance
and brightness) that can be reproduced by the device, called
the 3D color gamut.

3. Gamut Expansion and Related Work

A smaller gamut media displayed on a larger gamut dis-
play without applying any color management techniques
(i.e., no modification of content) can show visible color in-
coherence (jarring hue-shifts) due to the increase in the per-
ceptual distance between two perceptually coherent colors.
Figure 3 visualizes this hue-shift at every pixel in percep-
tually uniform CIELAB space as a gray scale image nor-
malized with respect to its maximum hue-shift in the im-
age (since this cannot be captured or printed in a device
with a smaller gamut than the LED projector). Since a hue-
shift of 3-5 in CIELAB space is easily visible [38], the hue-
shifts resulting from the gamut expansion (between 30-55)
is very significant. Note that the color shifts are predomi-
nantly in the red-yellow (fall image) and green-yellow (gar-
den image) region of the chromaticity chart where most of
the gamut expansion occurs (Figure 2). It also causes a
significant white point shift (e.g. frog image). A NTSC
gamut with standard D65 white (chromaticity coordinate
of (0.3127, 0.3290)) shifts considerably to the greenish-
blue white region (0.272, 0.369) when used for the larger

gamut, display. Hence, in any projector camera applica-
tion [18, 17, 21, 37, 19, 35, 28, 22] when images of the
gamut expanded media on an LED projector is captured by a
lower gamut camera, gamut clipping results in severe color
blotches (Figure 3).

Gamut expansion is prevalent in a much smaller scale
when moving from the smaller color gamut of a printer to a
larger gamut of a monitor, but not as pronounced as in the
context of projection-based displays, especially when using
multiple primaries [15, 20]. However, a similar scenario
is prevalent currently in the context of dynamic range of
displays [27] and has led to development of inverse tone
mapping methods that map LDR content to HDR displays
[23, 2]. Gamut being a 2D/3D entity, as opposed to 1D
dynamic range, makes gamut expansion a more complex
problem. In this section, we briefly visit the relevant works
in this direction.

Figure 4. Comparisons of the 3D gamuts in CIE XYZ space of a
traditional projector (green) and a LED projector assuming their
primaries have the same TTV (red), and 1.5 times the TTV (blue).

Gamut Clipping: Standard gamut clipping techniques
[33, 7, 14, 5] are currently used when converting between
gamuts of similar shape and volume. The source input
0 ≤ (r, g, b) ≤ 1 is mapped to a target color (r′, g′, b′) using
a linear transformation M , i,e. (r′, g′, b′)T = M(r, g, b)T .
The resulting (r′, g′, b′), if outside the target 3D gamut is
clipped to the boundary of the 3D gamut. However, this
can have some adverse effects on gamut expansion. First,
a larger 2D color gamut of the LED projector does not
necessarily indicate a larger 3D color gamut. If the lumi-
nance (and hence the TTVs) of the primaries are similar,
the standard NTSC 3D gamuts may be significantly differ-
ent in shape and not contained within the LED projector’s
3D gamut (Figure 4). Hence, clipping of transformed col-
ors still maps multiple source colors to a single target color
resulting in color blotches (Figure 3 bottom row).

Gamut Extension: Instead of clipping only the out-of-
gamut colors, other techniques aim at moving all differ-
ent colors in an optimized fashion from the smaller source
gamut to the larger target gamut. [12, 26] apply hue-
preserving color extrapolation by changing only the bright-
ness (and hence TTVs) and saturation, and [15, 9] apply
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complex non-linear optimizations on perceptually uniform
3D color spaces constraining the movement of colors within
an acceptable distance. However, since the increase in
gamut volume in LED projectors is much more drastic than
what is expected in these methods, they result in perceivable
hue shift [15] and may not utilize the entire gamut.

Comparison of Proposed Method: Our method is com-
plementary to all the above methods. In contrast to com-
plex gamut extension techniques [12, 5, 14, 15, 26, 9], the
biggest advantage of our method lies in its sheer simplic-
ity - both in concept and in computation. Unlike existing
gamut extension techniques our method can be directly im-
plemented using the existing DLP hardware. Further, our
method can exactly emulate a predefined 2D gamut or white
point, without working within the confines of the 3D gamut
provided by an optimization. Finally, the hierarchical na-
ture of our method (Section 4.1.3) allows a larger flexibility
in terms of the emulated properties and extension to multi-
projector displays (Section 4.2).

Figure 5. The 3D NTSC gamut (green), 3D gamut of the LED
projector before our method is applied (red) and the reshaped
3D gamut of the projector after our method is applied (blue), in
CIEXYZ space. The projection of the three basis vectors that span
the 3D gamut on a X+Y+Z=d plane is the 2D color gamut. Note
that after applying our method, the basis vectors of the reshaped
3D gamut is coincident with the NTSC gamut but is bigger. This
assures that the extra 3D volume is used to increase the brightness
(and hence the dynamic range), rather than the 2D gamut.

4. Hardware Assisted Gamut Reshaping

Most of the extra volume of the 3D gamut of LED pro-
jectors (Figure 4) is used to reproduce a larger range of
chrominance, while the range of reproducible brightness,
given by the proportional TTVs, is still similar. We present
a content-independent hardware-assisted algorithm that re-
shapes this 3D gamut using hierarchical temporal multi-
plexing, so that most of this extra volume is instead uti-
lized to increase the brightness, while the 2D color gamut is
matched to a standard 2D color gamut (Figure 5).

Our algorithm uses this property of simultaneous ON
time of the primaries to design a scheme to superimpose

the multiple primaries in a controlled, deterministic (non-
iterative) manner so that any specified 2D color gamut and
white point that lies within the gamut can be achieved.
4.1. Color Emulation for a Single Projector

Our method takes two sets of inputs – (a) the target (de-
sired) color specifications, i.e., chromaticities of the pri-
maries and white point; (b) the chromaticity coordinates
and the TTV, (I, x, y), of the LED primaries at full inten-
sity, measured by a radiometer. The output is the pulse
width modulated ON-times for superimposing the primaries
to achieve the target specifications. Note that this is appli-
cable even to systems with more than three primaries.

Let the measured color properties of the LED primary l,
l ∈ {R,G, B}, be (Il, Cl) where Cl = (xl, yl) is the chro-
maticity coordinate of l. Let the target 2D color gamut be
defined by the new primaries R′, G′ and B′ whose chro-
maticity coordinates are Cl′ , l′ ∈ {R′, G′, B′} and the
white point chrominance is CW ′ = (xW ′ , yW ′).

The output of the different intensity levels in LED-based
DLP projectors are achieved via temporal multiplexing of
the ON times of each LED primaries, R, G and B [11].
This forms the Level 0 of our hierarchical scheme. Each
of the successive levels run two methods: (a) temporal-
modulation that determines the relative ON times of the
different LEDs which will be turned ON simultaneously to
achieve the target specification; (b) TTV-computation that
determines the TTV of the new primaries thus formed by the
temporal modulation step. Figure 6 illustrates the method.

4.1.1 Gamut Emulation in Level 1

The goal of this step is to superimpose the colors from
more than one LED to transform the larger 2D gamut to
the smaller standard 2D gamut like NTSC (Figure 2).
Temporal Modulation: We control the ON times of the
three LEDs to realize the proportions of the LED primaries
that achieve the target primaries. tij , denotes the ON-time
for LED primary i, i ∈ {R,G, B}, required to create the
target primary j, j ∈ {R′, G′, B′}. For e.g. tGR′ denotes
the ON-time of the green LED primary to create the target
red primary.

First, we compute a 3× 3 matrix that transforms the tri-
angle CRCGCB to CR′CG′CB′ , given by CR′

CG′

CB′

 =

 dR′ eR′ fR′

dG′ eG′ fG′

dB′ eB′ fB′

 CR

CG

CB

 (4)

where dl′ , el′ , fl′ denote the proportion of R,G and B
(barycentric coodinates) required to create the target pri-
maries l′, l′ ∈ {R′, G′, B′}. Since fl′ = 1− dl′ − el′ , there
are only six unknowns which are provided by the known Cl

and Cl′ .
For IR = IG = IB , dl′ , el′ and fl′ can be directly as-

signed to tRl′ , tGl′ and tBl′ respectively. However, since
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Level 0

Gamut 
Emulation
(Level 1)

White point
Emulation
(Level 2)

Primaries White Point

R
G
B

R’ G’ B’

Color 
Balancing
With Other 
Projectors
(Level 3)

R
G
B

R
G
B

R
G
B

1 unit 1 unit 1 unit

tRR’

tGR’

tBR’

tRG’

tGG’

tBG’

tRB’

tGB’

tBB’

tR’ tG’ tB’

ktR’ ktG’ ktB’

R’’ G’’ B’’

RM GM BM

1 unit = 11mS

Figure 6. This shows the 33mS time interval for displaying a single frame of a 30fps video. The colored bars show how much time each of
the primaries are ON in each interval for each level of the hierarchy. The circles on the right hand side show how the color properties of
the display changes with each level. Note that this is just an illustration of the computation and does not correspond to any real data.

IR 6= IG 6= IB in reality, the ON times tRl′ , tGl′ and tBl′

required to achieve the target chrominance Cl′ must take
this into consideration. For example, if IR < IG, then IR

should be kept ON longer to provide the desired TTV pro-
portional to dl′ . Thus, the timing is a function of both the
chrominance and TTV of the source LED primaries. For
example, the tlR′ , l ∈ {R,G, B} is given by

tRR′ = dR′ × IR + IG + IB

IR
(5)

tGR′ = eR′ × IR + IG + IB

IG
(6)

tBR′ = fR′ × IR + IG + IB

IB
(7)

Since, R′ is formed by the superposition of all three of R,G
and B, these timings are normalized by the maximum of
tRR′ , tGR′ and tBR′ . For simplicity, we retain the same no-
tation for the normalized timings. Similar computations are
performed to compute the timings for G′ and B′. For gen-
erating CR′ , tRR′ will usually be much larger than tGR′ and
tBR′ since CR′ is much closer to CR than to CG and CB .
Hence, for CR′ , tRR′ = 1 after normalization. Similarly,
after normalization, tGG′ = 1 and tBB′ = 1 for CG′ and
CB′ respectively.
TTV Computation: The temporal modulation creates new
primaries R′, G′ and B′ whose TTV we compute next. The
TTV of the new primary l′ ∈ {R′, G′, B′}, is Il′ and is
given by

Il′ = tRl′IR + tGl′IG + tBl′IB (8)

Since tRl′ = 1, Il′ > Il. Thus, the new primaries are
brighter (due to superimposition of additional light from

other primaries) leading to a brighter projector.

Figure 7. The 3D gamut in CIEXYZ space at Level 0 (red), Level
1 (magenta) and Level 2 (blue) of our method.

4.1.2 White Point Emulation in Level 2

This step realizes the target white point without affecting
the new primaries achieved in the previous level using the
same steps of temporal modulation and TTV computation
but with the new primaries R′, G′ and B′.
Temporal Modulation: We modify the contributing pro-
portions of the new primaries, R′, G′ and B′, in such a
manner that the chromaticity of target white point, CW ′ ,
is matched. Let this target proportion be pR′ : pG′ : pB′

where pB′ = 1− pR′ − pG′ . The equation is given by

pR′(xR′ , yR′)+pG′(xG′ , yG′)+pB′(xB′ , yB′) = (xW ′ , yW ′).
(9)

Thus, the ON times for the new primaries to achieve the
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Desired Gamut/ Increase Decrease in Volume
White Point in CIE Y of 3D Gamut

Lvl 1 Lvl 2 Lvl 1 Lvl 2
HDTV/D65 20.8% 17.1% 3.0% 5.5%

(USA)
HDTV/D85 20.8% 19.1% 3.0% 11.1%

(Japan/Korea)
NTSC/D65 23.4% 20.1% 4.4% 7.2%

(USA)
NTSC/D85 23.1% 21.8% 4.4% 13.8%

(Japan/Korea)
PAL/D65 20.1% 15.9% 2.8% 5.5%

(Europe/India)

Table 1. Statistics of how the brightness and volume of the 3D
gamut of the projector changes in Level 1 and Level 2 from its
original state in Level 0.

Figure 8. This figure demonstrates the white point emulation. The
original non-standard reddish white (0.35,0.325) in CIE xy space
(left) has been changed to a neutral D65 white (middle) and a
bluish D85 white (right) using our white emulation.

target white point is

tl′ = pl′ ×
∑

l′∈{R′,G′,B′} Il′

Il′
(10)

In this step, the normalization of the timings is different.
Unlike Level 1 where the LED primaries R, G and B were
superimposed, in Level 2 the primaries R′, G′ and B′ are
lighted sequentially for a total of 3 units of time. Hence, tl′

should be normalized by tR′+tG′+tB′
3 . Here also, we retain

the same notation for the normalized timings for simplicity.
TTV Computation: Hence, the TTV of the new pri-
maries is given by tl′Il′ . The TTV of the white, IW ′ ,
is the sum of the TTVs of these new primaries IW ′ =∑

l′∈{R′,G′,B′} tl′Il′ . IW ′ is proportional to the luminance
of the white which is the measure of the display bright-
ness. In Section 4.1.3, we show that IW ′ is greater than
IW = IR + IG + IB in the original projector.

4.1.3 Discussion

This section offers some useful insights to the transforma-
tions achieved by our method.

Reshaping of the 3D Gamut: Figure 7 shows how the
3D gamut reshaping happens across different levels of our
hierarchical scheme. The 3D gamut reduces in volume from
Level 1 to 2 due to the constraints imposed by a specific
target white point. However, the final 3D gamut is always
bigger than the standard industry specfied 3D color gamut
but smaller than the original LED 3D gamut.

Figure 9. Please zoom in to see our curved screen display made of
four projectors (real system, not simulated) running our color bal-
ancing algorithm. Top: This shows the whites before (left) and af-
ter (right) our color emulation matching to an NTSC gamut. Note
that the brightness balancing across projectors described in Sec-
tion 4.2 is still not applied. Hence, intensity variation and seams
are still visible. Middle: This shows a regular content (Venice) be-
fore (left) and after (right) our color emulation for each projector to
match the NTSC gamut, followed by our TTV (and hence bright-
ness) balancing across projectors and finally removing spatial vari-
ation in TTV (and hence in brightness) using existing camera-
based calibration methods. Bottom: In this zoomed in views, com-
pare the colors of the buildings near the text Hotel Marconi to
see the effect of our color balancing.

Table 1 compares the volume of the 3D gamut and the
TTV of the white (IW ′), finally achieved by the color em-
ulation method. Note that since for the equi-chrominance
grays of a display, I and luminance Y are scaled similarly
with the input (Section 2), IW ′ provides a direct measure
of the increase in the display brightness. However, the loss
in the volume is very small when compared to the gain in
brightness, which can be as large as 25%.

Hierarchical Nature of the Scheme: Our method is hi-
erarchical in nature where each level of the hierarchy mod-
ifies the primaries which are then used as new primaries in
the subsequent level. This provides a few nice properties
to our algorithm. (a) Level Independency: In each step of
the hierarchy, only one property of the display is modified
independently (e.g. 2D color gamut in Level 1 and white
point in Level 2). (b) Preservation of Lower Level Prop-
erties: A color property standardized at a particular level
of the hierarchy is preserved through the subsequent levels.
(e.g. changing white point in Level 2 does not change the
new primaries R′, G′ and B′). (c) Module Invariance: The
same computations are used in each level of the hierarchy
but with different inputs to impact different properties.

Flexibility of the Scheme: Note that we can precom-
pute timings to achieve multiple different specifications (for
e.g. HDTV and D65 white or NTSC and D85 white) and
store them in a look-up-table (LUT) in the projector itself.
The application software can then use this to create differ-
ent color properties as the desired white point or gamut used
in devices changes from country to country (from NTSC

6
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Figure 10. This shows our planar display made of 16 projectors
(real system, not simulated) after color balancing using the follow-
ing three steps in succession: (a) color emulation of each projector
to NTSC gamut (Section 4); (b) color balancing across projectors
(Section 4.2); (c) removal of spatial vignetting effects by existing
camera-based registration methods.

in US to PAL in Europe/India, from D65 in US to D85 in
Japan/Korea).

4.1.4 Implementation and Results

We tested our color emulation on over 20 different pro-
jectors to realize NTSC gamut and D65 color point. The
time multiplexing was realized using the DLP chip hard-
ware. Figure 8 shows the results of changing the white point
from the existing white point (shifted towards red) to a D65
(neutral) and D85 (shifted towards blue) white. Since, the
saturated primaries of the projectors cannot be reproduced
either in print or in existing displays, we provide statistical
data on the accuracy of the gamut mapping. Our red, green
and blue LEDs had mean dominant wavelength of 617nm,
520nm green and 464nm with a variation about 16nm, 8nm
and 6nm respectively. We achieved an NTSC gamut for all
the projectors up to an absolute error of 10−4 in the CIE xy
chromaticity chart. Since we are dealing with color match-
ing and not dealing with perceptual distances, use of CIE xy
space is justified. All measurements (before and after color
emulation) were from the same spot on the projector using
a Photo Research 705 Spectrascan spectroradiometer.
4.2. Color Balancing Multiple Projectors

The advent of low-cost LED projectors bring in the
potential of building very high-resolution tiled projection-
based displays that are both portable and affordable [22, 4,
3]. Currently, color balancing across multiple projectors is
achieved via software in two steps: (a) first, a common 3D
color gamut contained within the gamut of all the projectors
is computed; (b) next, a linear [31, 32] or piecewise linear
[36] transformation is used to convert the gamuts of all the
projectors to the common gamut. For LED projectors such
a gamut mapping leads to degradation in image brightness
and contrast.

We can use our hierarchical temporal multiplexing
scheme to achieve color balancing across multiple projec-

tors in two steps. (a) First, we use our color emulation
method to match all the different projector to the same stan-
dard color gamut and white point (Section 4). (b) Next, to
balance the still varying brightness we add an extra level to
our hierarchical method (Section 4.1).

Let us assume n projectors, with projector i having the
TTV for white IW ′

i
following the first two levels. We seek

to match the TTV (and hence brightness) across multiple
projectors, such that for any i, j ∈ 0, . . . n− 1, IW ′

i
= IW ′

j
.

First, we choose the minimum TTV of all projectors as the
target TTV IM = mini∈0,...n−1 IWi

. Next the ON period
of each of the new primaries of the projector i are scaled
by ki = IM

IW ′
i

matching the TTV (and hence brightness) of

all projectors to IM . The new primaries thus formed are
denoted by RM , GM and BM . However, since the relative
proportions of the primaries are not changed, the 2D color
gamut and the white point are unaffected by this step.

Our method can only achieve color and brightness
balancing across projectors, but cannot handle the intra-
projector spatial variation in brightness (commonly called
vignetting effect). For this, existing camera-based bright-
ness calibration methods [16] can be used following our
color balancing scheme. Since our hierarchical temporal
multiplexing method has already modified the larger projec-
tor gamut to be close to that of the camera, using a camera
in the feedback loop no longer poses a problem.

4.2.1 Implementation and Results

We have implemented our color balancing technique on two
displays – (a) a curved display made of four projectors (Fig-
ure 9); and (b) a planar display made of 16 projectors (Fig-
ure 10). The whites on the calibrated display in the top
row of Figure 9 is only after application of our color emu-
lation method, as described in Section 4. Hence, the bright-
ness variation across projectors and the spatial vignetting is
still evident. All the other images of calibrated displays are
achieved by applying three steps: (a) color emulation, as in
Section 4; (b) brightness balancing as in Section 4.2; and
(c) removal of spatial vignetting by applying the methods
in [16]. Note that these three steps make both our four and
sixteen projector displays perceptually seamless.

5. Conclusion
In conclusion, we demonstrated that the larger gamut of

the current LED projectors lead to several hue-shift arti-
facts and sub-optimal utilization of color resources when
displaying existing lower gamut media due to gamut ex-
pansion. We presented a content-independent hardware-
assisted method that reshapes the 3D gamut to match a stan-
dard 2D color gamut while directing the extra volume to-
wards achieving a higher dynamic range. This method can
be used for color emulation of single projectors and also for
color balancing multiple projectors.
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As is evident, in the future it is critical to explore ap-
proaches to develop a sensor with large gamut so that the
display resources can be utilized to its fullest. One can also
explore better content-dependent approaches in the future
that can handle very large gamut expansions so that the
larger chrominance gamut offered by these emerging dis-
plays are optimally utilized.
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