Skip to main content
Log in

IR-MALDI ion mobility spectrometry

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The novel combination of infrared matrix-assisted laser dispersion and ionization (IR-MALDI) with ion mobility (IM) spectrometry makes it possible to investigate biomolecules in their natural environment, liquid water. As an alternative to an ESI source, the IR-MALDI source was implemented in an in-house-developed ion mobility (IM) spectrometer. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the absorption of an IR laser pulse (λ = 2.94 μm, 6 ns pulse width), which disperses the liquid as nano- and micro-droplets. The prerequisites for the application of IR-MALDI-IM spectrometry as an analytical method are narrow analyte ion signal peaks for a high spectrometer resolution. This can only be achieved by improving the desolvation of ions. One way to full desolvation is to give the cluster ions sufficient time to desolvate. Two methods for achieving this are studied: the implementation of an additional drift tube, as in ESI-IM-spectrometry, and the delayed extraction of the ions. As a result of this optimization procedure, limits of detection between 5 nM and 2.5 μM as well as linear dynamic ranges of 2–3 orders of magnitude were obtained for a number of substances. The ability of this method to analyze simple mixtures is illustrated by the separation of two different surfactant mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wittmer D, Chen YH, Luckenbill BK, Hill HH. Electrospray ionization ion mobility spectrometry. Anal Chem. 1994;66:2348–55.

    Article  CAS  Google Scholar 

  2. Beegle LW, Kanik I, Matz L, Hill HH. Electrospray ionization high-resolution ion mobility spectrometry for the detection of organic compounds. 1. Amino Acids. Anal Chem. 2001;73:3028–34.

    Article  CAS  Google Scholar 

  3. Wu C, Siems WF, Klasmeier J, Hill HH. Separation of isomeric peptides using electrospray ionization/high-resolution ion mobility spectrometry. Anal Chem. 2000;72:391–5.

    Article  CAS  Google Scholar 

  4. Von Helden G, Wyttenbach T, Bowers MT. Inclusion of a MALDI ion-source in the ion chromatography technique—conformational information on polymer and biomolecular ions. Int J Mass Spectrom. 1995;146:349–64.

    Article  Google Scholar 

  5. Koomen JM, Ruotolo BT, Gillig KJ, et al. Oligonucleotide analysis with MALDI-ion-mobility-TOFMS. Anal Bioanal Chem. 2002;373:612–7.

    Article  CAS  Google Scholar 

  6. Tong H, Sze N, Thomson B, Nacsonc S, Pawliszyn J. Solid phase microextraction with matrix assisted laser desorption/ionization introduction to mass spectrometry and ion mobility spectrometry. Analyst. 2002;127:1207–10.

    Article  CAS  Google Scholar 

  7. Steiner WE, Clowers BH, English WA, Hill HH. Atmospheric pressure matrix-assisted laser desorption/ionization with analysis by ion mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:882–8.

    Article  CAS  Google Scholar 

  8. Nordhoff E, Ingendoh A, Cramer R, et al. Matrix-assisted laser desorption/ionization mass spectrometry of nucleic acids with wavelengths in the ultraviolet and infrared. Rapid Commun Mass Spectrom. 1992;6:771–6.

    Article  CAS  Google Scholar 

  9. Kleinekofort W, Avdiev J, Brutschy B. A new method of laser desorption mass spectrometry for the study of biological macromolecules. Int J Mass Spectrom. 1996;152:135–42.

    Article  CAS  Google Scholar 

  10. Kleinekofort W, Pfenninger A, Plomer T, Griesinger C, Brutschy B. Observation of noncovalent complexes using laser-induced liquid beam ionization/desorption. J Mass Spectrom. 1996;156:195–202.

    Google Scholar 

  11. Sobott F, Wattenberg A, Barth H-D, Brutschy B. Ionic clathrates from aqueous solutions detected with laser induced liquid beam ionization/desorption mass spectrometry. Int J Mass Spectrom. 1999;185(187):271–9.

    Article  Google Scholar 

  12. Charvat A, Lugovoj E, Faubel M, Abel B. New design for a time-of-flight mass spectrometer with a liquid beam laser desorption ion source for the analysis of biomolecules. Rev Sci Instrum. 2004;75:1209–18.

    Article  CAS  Google Scholar 

  13. Stasicki B, Charvat A, Faubel M, Abel B. Visualization of laser-induced liquid micro-jet disintegration by means of high-speed video stroboscopy. Proc SPIE. 2005;5580:335–46.

    Article  CAS  Google Scholar 

  14. Charvat A, Abel B. How to make big molecules fly out of liquid water: applications, features and physics of laser assisted liquid phase dispersion mass spectrometry. Phys Chem Chem Phys. 2007;9:3335–60.

    Article  CAS  Google Scholar 

  15. Morgner N, Barth HD, Brutschy B. A new way to detect noncovalently bonded complexes of biomolecules from liquid micro-droplets by laser mass spectrometry. Aust J Chem. 2006;59:109–14.

    Article  CAS  Google Scholar 

  16. Hoffmann J, Schmidt TL, Heckel A, Brutschy B. Probing the limits of liquid droplet laser desorption mass spectrometry in the analysis of oligonucleotides and nucleic acids. Rapid Commun Mass Spectrom. 2009;23:2176–80.

    Article  CAS  Google Scholar 

  17. Charvat A, Stasicki B, Abel B. Product screening of fast reactions in IR-laser-heated liquid water filaments in a vacuum by mass spectrometry. J Phys Chem A. 2006;110:3297–306.

    Article  CAS  Google Scholar 

  18. Laiko VV, Taranenko NI, Berkout VD, et al. Desorption/ionization of biomolecules from aqueous solutions at atmospheric pressure using an infrared laser at 3 μm. J Am Soc Mass Spectrom. 2002;13:354–61.

    Article  CAS  Google Scholar 

  19. Rapp E, Charvat A, Beinsen A, et al. Atmospheric pressure free liquid infrared MALDI mass spectrometry: toward a combined ESI/MALDI-liquid chromatography interface. Anal Chem. 2009;81:443–52.

    Article  CAS  Google Scholar 

  20. Berkenkamp S, Menzel C, Hillenkamp F, Dreisewerd K. Measurements of mean initial velocities of analyte and matrix ions in infrared matrix-assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom. 2002;13:209–20.

    Article  CAS  Google Scholar 

  21. Apitz I, Vogel A. Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl Phys A. 2005;81:329–38.

    Article  CAS  Google Scholar 

  22. Leisner A, Rohlfing A, Röhling U, Dreisewerd K, Hillenkamp F. Time-resolved imaging of the plume dynamics in infrared matrix-assisted laser desorption/ionization with a glycerol matrix. J Phys Chem B. 2005;109:11661–6.

    Article  CAS  Google Scholar 

  23. Rohlfing A, Menzel C, Kukreja LM, Hillenkamp F, Dreisewerd K. Photoacoustic analysis of matrix-assisted laser desorption/ionization processes with pulsed infrared lasers. J Phys Chem B. 2003;107:12275–86.

    Article  CAS  Google Scholar 

  24. Chen Z, Vertes A. Early plume expansion in atmospheric pressure midinfrared laser ablation of water-rich targets. Phys Rev E. 2008;77:036316.

    Article  Google Scholar 

  25. Wiederschein F, Vöhringer-Martinez E, Beinsen A, et al. Charge separation and isolation in strong water droplet impacts. Phys Chem Chem Phys. 2015;17:6858–64.

    Article  CAS  Google Scholar 

  26. Zühlke M, Riebe D, Beitz T, et al. An electrospray ionization-ion mobility spectrometer as detector for high-performance liquid chromatography. Eur J Mass Spectrom. 2015;21:391–402.

    Article  Google Scholar 

  27. Tabrizchi M, Khayamian T, Taj N. Design and optimization of a corona discharge ionization source for ion mobility spectrometry. Rev Sci Instrum. 2000;71:2321–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

For financial support, the authors thank the German Excellence Initiative (DFG – Deutsche Forschungsgemeinschaft) and the School of Analytical Sciences Adlershof (SALSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Villatoro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villatoro, J., Zühlke, M., Riebe, D. et al. IR-MALDI ion mobility spectrometry. Anal Bioanal Chem 408, 6259–6268 (2016). https://doi.org/10.1007/s00216-016-9739-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9739-x

Keywords

Navigation