Skip to main content

Advertisement

Log in

Spatial–Temporal Oxygenation Mapping Using a Near-Infrared Optical Scanner: Towards Peripheral Vascular Imaging

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Near-infrared spectroscopy (NIRS)—based peripheral perfusion, or microcirculation, can be used to assess the severity of peripheral vascular dysfunction. A low-cost, portable non-contact near-infrared optical scanner (NIROS) was developed for spatio-temporal mapping of tissue oxygenation and perfusion in tissues. In vivo validation studies were carried out on control subjects (n = 3) to assess the ability of NIROS to measure real-time oxygenation changes in response to an occlusion paradigm on the dorsum of the hand. NIROS captured real-time tissue oxygenation changes with 95% correlation when compared to a commercial device. A feasibility peripheral imaging study was performed in a mouse model (n = 5) of chronic kidney disease (CKD) induced vascular calcification to assess differences in microcirculatory peripheral tissue oxygenation. The tissue oxygenation (in terms of oxy-, deoxy-, and total hemoglobin changes) due to the occlusion paradigm was distinctly different prior to (week-6) and after the onset of vascular calcification (week-12) in the murine tails. Future work will involve extensive studies to correlate these microcirculatory tissue oxygenation changes in the peripheral tail to the vascular calcification in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adapted from Irwin (1995). B The zoomed in trendlines within the first few seconds of occlusion onset, to demonstrate the immediate increase in HbT

Similar content being viewed by others

Abbreviations

∆[HbO]:

Effective oxyhemoglobin concentration

∆[HbR]:

Effective deoxyhemoglobin concentration

∆[HbT]:

Effective total hemoglobin concentration

∆[StO2]:

Effective oxygen saturation

CKD:

Chronic kidney disease

GUI:

Graphical user interface

HSI:

Hyperspectral imaging

LDPM:

Laser doppler perfusion monitoring

LSCI:

Laser speckle contrast imaging

MBLL:

Modified Beer-Lambert Law

NIR:

Near infrared

NIRS:

Near-infrared spectroscopy

NIROS:

Near infrared optical scanner

PAD:

Peripheral arterial disease

PCC:

Pearson’s correlation coefficient

ROI:

Region of interest

SEM:

Standard error of measurement

TcPO2 :

Transcutaneous oxygenation measurements

VOT:

Vascular occlusion test

References

  1. Bigio, I. J., and S. Fantini. Quantitative Biomedical Optics: Theory, methods, and applications. Cambridge: Cambridge University Press, 2016. https://doi.org/10.1017/CBO9781139029797.

    Book  Google Scholar 

  2. Boezeman, R. P., D. Boersma, J. Wille, J. C. Kelder, M. I. Visscher, F. G. Waanders, F. L. Moll, and J.-P.P. de Vries. The significance of regional hemoglobin oxygen saturation values and limb-to-arm ratios of near-infrared spectroscopy to detect critical limb ischemia. Vascular. 24:492–500, 2016.

    Article  CAS  PubMed  Google Scholar 

  3. Chiang, N., J. K. Jain, J. Sleigh, and T. Vasudevan. Evaluation of hyperspectral imaging technology in patients with peripheral vascular disease. J. Vasc. Surg. 66:1192–1201, 2017.

    Article  PubMed  Google Scholar 

  4. Dargam, V., H. H. Ng, S. Nasim, D. Chaparro, C. I. Irion, S. R. Seshadri, A. Barreto, Z. C. Danziger, L. A. Shehadeh, and J. D. Hutcheson. S2 Heart Sound Detects Aortic Valve Calcification Independent of Hemodynamic Changes in Mice. Front. Cardiovasc. Med. 9:809301, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fowkes, F. G. R., D. Rudan, I. Rudan, V. Aboyans, J. O. Denenberg, M. M. McDermott, P. E. Norman, U. K. Sampson, L. J. Williams, G. A. Mensah, and M. H. Criqui. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 382:1329–1340, 2013.

    Article  PubMed  Google Scholar 

  6. Franceschini, M. A., S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant. Assessment of infant brain development with frequency-domain near-infrared spectroscopy. Pediatr Res. 61(5 Pt 1):546–551, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Futier, E., S. Christophe, E. Robin, A. Petit, B. Pereira, J. Desbordes, J.-E. Bazin, and B. Vallet. Use of near-infrared spectroscopy during a vascular occlusion test to assess the microcirculatory response during fluid challenge. Crit. Care. 15:R214, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Garimella, P. S., and A. T. Hirsch. Peripheral artery disease and chronic kidney disease: clinical synergy to improve outcomes. Adv. Chronic Kidney Dis. 21:460–471, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gerovasili, V., S. Dimopoulos, G. Tzanis, M. Anastasiou-Nana, and S. Nanas. Utilizing the vascular occlusion technique with NIRS technology. Int. J. Ind. Ergon. 40:218–222, 2010.

    Article  Google Scholar 

  10. Gómez, H., A. Torres, P. Polanco, H. K. Kim, S. Zenker, J. C. Puyana, and M. R. Pinsky. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O2 saturation response. Intensive Care Med. 34:1600–1607, 2008.

    Article  PubMed  Google Scholar 

  11. Grinvald, A., et al. In-vivo optical imaging of cortical architecture and dynamics. In: Modern techniques in neuroscience research, edited by U. Windhorst, H. Johansson, et al., . Berlin: Springer, 1999, pp. 893–969.

    Chapter  Google Scholar 

  12. Hartwig, V., M. Marinelli, F. Rocco, and A. L’Abbate. Assessment of Microvascular Function Using Near-Infrared Spectroscopic 2D Imaging of Whole Hand Combined with Vascular Occlusion Test. J. Med. Biol. Eng. 36:87–95, 2016.

    Article  Google Scholar 

  13. Ho, B. K., and J. K. Robinson. Color bar tool for skin type self-identification: a cross-sectional study. J. Am. Acad. Dermatol. 73:312–313, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang, C.-L., I. H. Wu, Y.-W. Wu, J.-J. Hwang, S.-S. Wang, W.-J. Chen, et al. Association of lower extremity arterial calcification with amputation and mortality in patients with symptomatic peripheral artery disease. PLoS ONE. 9(2):e90201, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Humeau, A., F. Chapeau-Blondeau, D. Rousseau, M. Tartas, B. Fromy, and P. Abraham. Multifractality in the peripheral cardiovascular system from pointwise hölder exponents of laser doppler flowmetry signals. Biophys. J. 93:L59–L61, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ijichi, S., T. Kusaka, K. Isobe, et al. Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy. Pediatr. Res. 58:568–573, 2005.

    Article  PubMed  Google Scholar 

  17. Irwin, M. S., M. S. Thorniley, C. J. Dore, and C. J. Green. Near infra-red spectroscopy: a non-invasive monitor of perfusion and oxygenation within the microcirculation of limbs and flaps. Br. J. Plast. Surg. 48:14–22, 1995.

    Article  CAS  PubMed  Google Scholar 

  18. Jankowski, J., J. Floege, D. Fliser, M. Böhm, and N. Marx. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 143:1157–1172, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kagaya, Y., N. Ohura, H. Suga, H. Eto, A. Takushima, and K. Harii. ‘Real angiosome’ assessment from peripheral tissue perfusion using tissue oxygen saturation foot-mapping in patients with critical limb ischemia. Eur. J. Vasc. Endovasc. Surg. 47:433–441, 2014.

    Article  CAS  PubMed  Google Scholar 

  20. Khalil, M. A., H. K. Kim, J. W. Hoi, I. Kim, R. Dayal, G. Shrikhande, and A. H. Hielscher. Detection of peripheral arterial disease within the foot using vascular optical tomographic imaging: a clinical pilot study. Eur. J. Vasc. Endovasc. Surg. 49:83–89, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kohl, M., et al. Physical model for the spectroscopic analysis of cortical intrinsic optical signals. Phys. Med. Biol. 45(12):3749, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. Kwasinski, R., C. Fernandez, K. Leiva, R. Schutzman, E. Robledo, P. Kallis, L. J. Borda, R. Kirsner, F. Perez-Clavijo, and A. Godavarty. Tissue oxygenation changes to assess healing in venous leg ulcers using near-infrared optical imaging. Adv. Wound Care. 8:565–579, 2019.

    Article  Google Scholar 

  23. Leiva, K., J. Mahadevan, K. Kaile, R. Schutzman, E. Robledo, S. Narayanan, V. Muthukrishnan, V. Mohan, W. Wu, and A. Godavarty. Breath-hold paradigm to assess variations in oxygen flow in diabetic foot ulcers using a non-contact near-infrared optical scanner. Adv. Wound Care. 8:386–402, 2019.

    Article  Google Scholar 

  24. London, G. M. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transplant. 18:1731–1740, 2003.

    Article  PubMed  Google Scholar 

  25. Ma, K. F., S. F. Kleiss, R. C. L. Schuurmann, R. P. H. Bokkers, Ç. Ünlü, and J.-P.P.M. De Vries. A systematic review of diagnostic techniques to determine tissue perfusion in patients with peripheral arterial disease. Expert Rev. Med. Devices. 16:697–710, 2019.

    Article  CAS  PubMed  Google Scholar 

  26. Marín-Corral, J., L. Claverias, M. Bodí, S. Pascual, A. Dubin, J. Gea, and A. Rodriguez. Prognostic value of brachioradialis muscle oxygen saturation index and vascular occlusion test in septic shock patients. Med. Intensiv. (English Edition). 40:208–215, 2016.

    Article  Google Scholar 

  27. Mayeur, C., S. Campard, C. Richard, and J.-L. Teboul. Comparison of four different vascular occlusion tests for assessing reactive hyperemia using near-infrared spectroscopy. Crit. Care Med. 39:695–701, 2011.

    Article  PubMed  Google Scholar 

  28. Mesquita, R. C., M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler. Diffuse optical characterization of an exercising patient group with peripheral artery disease. J. Biomed. Opt. 18:057007, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Muthukumaran, D., and M. Sivakumar. Medical image registration: a Matlab based approach. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2(1):29–34, 2017.

    Google Scholar 

  30. Narula, N., A. J. Dannenberg, J. W. Olin, D. L. Bhatt, K. W. Johnson, G. Nadkarni, J. Min, S. Torii, P. Poojary, S. S. Anand, J. J. Bax, S. Yusuf, R. Virmani, and J. Narula. Pathology of peripheral artery disease in patients with critical limb ischemia. J. Am. Coll. Cardiol. 72:2152–2163, 2018.

    Article  CAS  PubMed  Google Scholar 

  31. Pham, T., K. Tgavalekos, A. Sassaroli, G. Blaney, and S. Fantini. Quantitative measurements of cerebral blood flow with near-infrared spectroscopy. Biomed. Opt. Express. 10(4):2117–2134, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sigrist, M. K., and C. W. McIntyre. Vascular calcification is associated with impaired microcirculatory function in chronic haemodialysis patients. Nephron Clin. Pract. 108(2):c121–c126, 2008.

    Article  CAS  PubMed  Google Scholar 

  33. Steenhaut, K., K. Lapage, T. Bové, S. De Hert, and A. Moerman. Evaluation of different near-infrared spectroscopy technologies for assessment of tissue oxygen saturation during a vascular occlusion test. J. Clin. Monit. Comput. 31:1151–1158, 2017.

    Article  PubMed  Google Scholar 

  34. Suo, S., L. Zhang, H. Tang, Q. Ni, S. Li, H. Mao, X. Liu, S. He, J. Qu, Q. Lu, and J. Xu. Evaluation of skeletal muscle microvascular perfusion of lower extremities by cardiovascular magnetic resonance arterial spin labeling, blood oxygenation level-dependent, and intravoxel incoherent motion techniques. J. Cardiovasc. Magn. Reson. 20:18, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tani, T., H. Orimo, A. Shimizu, and S. Tsuruoka. Development of a novel chronic kidney disease mouse model to evaluate the progression of hyperphosphatemia and associated mineral bone disease. Sci. Rep. 7:2233, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tgavalekos, K., T. Pham, N. Krishnamurthy, A. Sassaroli, and S. Fantini. Frequency-resolved analysis of coherent oscillations of local cerebral blood volume, measured with near-infrared spectroscopy, and systemic arterial pressure in healthy human subjects. PLoS ONE. 14(2):e0211710, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thang, O. H., E. H. Serné, M. P. Grooteman, Y. M. Smulders, P. M. Ter Wee, G. J. Tangelder, and M. J. Nubé. Premature aging of the microcirculation in patients with advanced chronic kidney disease. Nephron Extra. 2(1):283–292, 2019.

    Article  Google Scholar 

  38. Yudovsky, D., A. Nouvong, and L. Pilon. Hyperspectral imaging in diabetic foot wound care. J. Diabetes Sci. Technol. 4:1099–1113, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zepeda, A., C. Arias, and F. Sengpiel. Optical imaging of intrinsic signals: recent developments in the methodology and its applications. J. Neurosci. Methods. 136(1):1–21, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding support by NIDDK’s DiaComp Pilot Grant (5U24DK115255-02) and K.L. was supported by an F31 fellowship (F31DK125153). The murine studies were funded by grants to J.D.H. from the National Heart, Lung, and Blood Institute (1R01HL160740) and seed funding from the NSF Engineering Research Center, Precise Advanced Technologies and Health Systems for Underserved Populations (PATHS-UP)—Award no. 1648451. V.D. was supported by an F31 fellowship (F31HL154671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Godavarty.

Ethics declarations

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Additional information

Associate Editor Chiara Bellini oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiva, K., Leizaola, D., Gonzalez, I. et al. Spatial–Temporal Oxygenation Mapping Using a Near-Infrared Optical Scanner: Towards Peripheral Vascular Imaging. Ann Biomed Eng 51, 2035–2047 (2023). https://doi.org/10.1007/s10439-023-03229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03229-7

Keywords

Navigation