Skip to main content
Log in

Molecular phylogenetic studies reveal an undescribed species within the North American concept of Melanelixia glabra (Parmeliaceae)

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

We employ a molecular phylogenetic approach using nuclear ITS and mitochondrial SSU rDNA gene regions to test the general efficacy of species boundaries in the morphological species Melanelixia glabra. 35 new sequences are generated for this study. Our results provide evidence that M. glabra is polyphyletic, indicating that using only morphological criteria to define species boundaries in this group of lichenised fungi underestimates actual species-level diversity. These analyses also demonstrate that the geographically distant population of the M. glabra complex in North America is the sister group of two Indian species (M. glabroides and M. villosella) and exhibits considerable molecular divergence from the European and Turkish specimens (M. glabra s. str). Additionally, some minor morphological differences support the isolation of the American clade. Such results strongly suggest that this population of M. glabra is a new phylogenetic (morphological+phylogenetic) taxon that is described here as a new species (Melanelixia californica). Our approach using two independent genes appears to be a rigorous method to critically examine species boundaries originally based on traditional morphological approaches in this group of lichenised fungi. Our study shows that the use of morphology, molecular data and geography provide a robust approach to delimitation of phylogenetic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahti T (1966) Parmelia olivacea and the allied non-isidiate and non-sorediate corticolous lichens in the Northern Hemisphere. Acta Bot Fenn 70:1–68

    Google Scholar 

  • Argüello A, del Prado R, Cubas P, Crespo A (2007) Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biol J Linn Soc 91:455–467

    Article  Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes including a taxonomic survey and description of their vegetation units in Europe. Van Gorcum, Assen, 628 pp

    Google Scholar 

  • Blanco O, Crespo A, Divakar PK, Esslinger TL, Hawksworth DL, Lumbsch HT (2004) Melanelixia and Melanohalea, two new genera segregated from Melanelia (Parmeliaceae) based on molecular and morphological data. Mycol Res 108:873–884

    Article  PubMed  CAS  Google Scholar 

  • Blanco O, Crespo A, Ree RH, Lumbsch HT (2006) Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Mol Phylogenet Evol 39:52–69

    Article  PubMed  CAS  Google Scholar 

  • Buckley TR, Arensburger P, Simon C, Chambers GK (2002) Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. Syst Biol 5:14–18

    Google Scholar 

  • Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:84–397

    Google Scholar 

  • Crespo A (1975) Vegeteación liquénica epifítica de los pisos mediterráneo de meseta y montano ibero-atlántico de la Sierra de Guadarrama. An Inst Bot A J Cavanilles 32(1):185–197

    Google Scholar 

  • Crespo A, Blanco O, Hawksworth DL (2001) The potential of mitocohondrial DNA for establishing phylogeny and stablising generic concepts in the parmelioid lichens. Taxon 50:807–819

    Article  Google Scholar 

  • Crespo A, Molina MC, Blanco O, Schroeter B, Sancho LG, Hawksworth DL (2002) rDNA ITS and β-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichern Parmelia saxatilis. Mycol Res 106:788–795

    Article  CAS  Google Scholar 

  • Crespo A, Lumbsch HT, Mattsson J-E, Blanco O, Divakar PK, Articus K, Wiklund E, Bawingan P, Wedin M (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB-1 gene. Mol Phylogenet Evol 42:812–824

    Article  CAS  Google Scholar 

  • Culberson CF (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J Chromatogr 72:113–125

    Article  PubMed  CAS  Google Scholar 

  • Culberson CF, Johnson A (1982) Substitution of methyl tert.-butyl ether for diethyl ether in the standardized thin-layer chromatographic method for lichen products. J Chromatogr 238:483–487

    Article  CAS  Google Scholar 

  • De Queiroz A (1993) For consensus (sometimes). Syst Biol 42:368–372

    Google Scholar 

  • De Queiroz K (2005) Ernst Mayr and the modern concept of species. Proc Natl Acad Sci U S A 102:6600–6607

    Article  PubMed  CAS  Google Scholar 

  • Divakar PK, Upreti DK (2005a) Parmelioid lichens in India (A revisionary study). Bishen Singh Mahendra Pal Singh, Dehra Dun, 488 pp

    Google Scholar 

  • Divakar PK, Upreti DK (2005b) A new species in Melanohalea (Parmeliaceae, Ascomycotina) and new lichen records from India. Lichenologist 37:511–517

    Article  Google Scholar 

  • Divakar PK, Upreti DK, Elix JA (2001) New species and new records in the lichen family Parmeliaceae (Ascomycotina) from India. Mycotaxon 80:355–362

    Google Scholar 

  • Divakar PK, Molina MC, Lumbsch HT, Crespo A (2005) Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. Lichenologist 37:37–46

    Article  Google Scholar 

  • Divakar PK, Crespo A, Blanco O, Lumbsch HT (2006) Phylogenetic significance of morphological characters in the tropical Hypotrachyna clade of parmelioid lichens (Parmeliaceae, Ascomycota). Mol Phylogenet Evol 40:448–458

    Article  PubMed  CAS  Google Scholar 

  • Divakar PK, Amo G, del Prado R, Esslinger TL, Crespo A (2007) Upper cortex anatomy corroborates phylogenetic hypothesis in species of Physconia (Ascomycota, Lecanoromycetes). Mycol Res 111:1311–1320

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–97

    Article  PubMed  CAS  Google Scholar 

  • Egea JM (1996) Catalogue of lichenized and lichenicolous fungi of Morocco. Bocconea 6:19–114

    Google Scholar 

  • Elix JA (1993) Progress in the generic delimitation of Parmelia sensu lato lichens (Ascomycotina: Parmeliaceae) and a synoptic key to the Parmeliaceae. Bryologist 96:359–383

    Article  Google Scholar 

  • Elix JA (1994) Lichens, Lecanorales 2, Parmeliaceae. Flora Aust 55:1–360

    Google Scholar 

  • Elix JA, Ernst-Russell KD (1993) A catalogue of standardized thin layer chromatographic data and biosynthetic relationships for lichen substances, 2nd edn. Australian National University, Canberra

    Google Scholar 

  • Esslinger TL (1977) A chemosystematic revision of the brown Parmeliae. J Hattori Bot Lab 42:1–211

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Feuerer T, Thell A (2002) Parmelia ernstiae—a new macrolichen from Germany. Mitt Inst Allg Bot Hambg 30–32:49–60

    Google Scholar 

  • Guindon S, Gascuel O (2003) PhyML—a simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hale ME (1990) A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae). Smithson Contrib Bot 74:1–250

    Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Högnabba F, Wedin M (2003) Molecular phylogeny of the Sphaerophorus globosus species complex. Cladistics 19:224–232

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Kroken S, Taylor JW (2001) A gene genealogical approach to recognize phylogentic species boundaries in the lichenized fungus Letharia. Mycologia 93:38–53

    Article  CAS  Google Scholar 

  • Lumbsch HT, Schmitt I, Barker D, Pagel M (2006) Evolution of micromorphological and chemical characters in the lichen-forming fungal family Pertusariaceae. Biol J Linn Soc 89:615–626

    Article  Google Scholar 

  • Lutzoni F, Wagner P, Reeb V, Zoller S (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Syst Biol 49:628–651

    Article  PubMed  CAS  Google Scholar 

  • Molina MC, Crespo A, Blanco O, Lumbsch HT, Hawksworth DL (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and -tubulin sequences. Lichenologist 36:37–54

    Article  Google Scholar 

  • Myllys L, Stenroos S, Thell A, Ahti T (2003) Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Mol Phylogenet Evol 27:58–69

    Article  PubMed  CAS  Google Scholar 

  • Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  • Otte V, Esslinger TL, Litterski B (2005) Global distribution of the European species of the lichen genus Melanelia Essl. J Biogeogr 32:1221–1241

    Article  Google Scholar 

  • Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Purvis OW, Coppins BJ, Hawksworth DL, James PW, Moore DM (1992) The Lichen Flora of Great Britain and Ireland. Natural History Museum Publications & British Lichen Society, London

    Google Scholar 

  • Rodríguez F, Oliver JF, Martín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    Article  PubMed  Google Scholar 

  • Schaerer LE (1840) Lichen. Helvet. Spicil. Sect 10: 466

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    CAS  Google Scholar 

  • Strimmer K, Rambaut A (2002) Inferring confidence sets of possibly miss specified gene trees. Proc R Soc Lond, B Biol Sci 269:137–142

    Article  Google Scholar 

  • Swinscow TDV, Krog H (1988) Macrolichens of East Africa. British Museum (Natural History), London, 390 pp

    Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods), versión 4.0b10. Sinauer, Sunderland

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundación del Banco de Bilbao Vizcaya Argentaria (BBVA). Sequencing was carried out at the Unidad de Genómica (Parque Científico de Madrid, UCM) and the Unitat de Genomica (Parc Científic Barcelona, UB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Crespo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divakar, P.K., Figueras, G., Hladun, N.L. et al. Molecular phylogenetic studies reveal an undescribed species within the North American concept of Melanelixia glabra (Parmeliaceae). Fungal Diversity 42, 47–55 (2010). https://doi.org/10.1007/s13225-010-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-010-0027-3

Keywords

Navigation