Skip to main content

Various Cellular and Molecular Axis Involved in the Pathogenesis of Asthma

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

Asthma is a chronic inflammatory disease described by impaired lung function, airway hyperresponsiveness, episodic wheezing, and dyspnea. Asthma prevalence has risen drastically, and it is estimated that more than 339 million individuals worldwide had asthma with marked heterogeneity in pathophysiology and etiology. Several factors involved in the progression and development of asthma include allergens, pollutants, obesity, viruses, antigens, and many more, eliciting strong inflammatory and immune responses, causing airflow obstruction, and tightening of respiratory smooth muscle causing the characteristic asthma symptoms. Multiple complex molecular pathways are involved in asthma pathophysiologies such as immunoglobulin E, cytokines, nitric oxide, dendritic cells, leukotrienes, oxidative stress, and inflammatory infiltrate of mast cells, neutrophils, eosinophils, lymphocytes, innate immunity, and many more. The current chapter focuses on illustrating the various molecular pathways that contribute to asthma development and its progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mims JW (2015) Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol 5(Suppl 1):S2–S6. https://doi.org/10.1002/alr.21609

    Article  PubMed  Google Scholar 

  2. Edwards MR, Bartlett NW, Hussell T, Openshaw P, Johnston SL (2012) The microbiology of asthma. Nat Rev Microbiol 10(7):459–471. https://doi.org/10.1038/nrmicro2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cookson W (1999) The alliance of genes and environment in asthma and allergy. Nature 402(6760 Suppl):B5-11. https://doi.org/10.1038/35037002

    Article  PubMed  Google Scholar 

  4. Custovic A (2015) To what extent is allergen exposure a risk factor for the development of allergic disease? Clin Exp Allergy 45(1):54–62. https://doi.org/10.1111/cea.12450

    Article  CAS  PubMed  Google Scholar 

  5. Amelink M, de Groot JC, de Nijs SB, Lutter R, Zwinderman AH, Sterk PJ, ten Brinke A, Bel EH (2013) Severe adult-onset asthma: a distinct phenotype. J Allergy Clin Immunol 132(2):336–341. https://doi.org/10.1016/j.jaci.2013.04.052

    Article  PubMed  Google Scholar 

  6. Peters SP (2014) Asthma phenotypes: nonallergic (intrinsic) asthma. The journal of allergy and clinical immunology. In Pract 2(6):650–652. https://doi.org/10.1016/j.jaip.2014.09.006

    Article  Google Scholar 

  7. Matucci A, Vultaggio A, Maggi E, Kasujee I (2018) Is IgE or eosinophils the key player in allergic asthma pathogenesis? Are we asking the right question? Respir Res 19(1):113. https://doi.org/10.1186/s12931-018-0813-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cohn L, Elias JA, Chupp GL (2004) Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol 22:789–815. https://doi.org/10.1146/annurev.immunol.22.012703.104716

    Article  CAS  PubMed  Google Scholar 

  9. McFadden ER Jr (2004) A century of asthma. Am J Respir Crit Care Med 170(3):215–221. https://doi.org/10.1164/rccm.200402-185OE

    Article  PubMed  Google Scholar 

  10. Dharmage SC, Perret JL, Custovic A (2019) Epidemiology of asthma in children and adults. Front Pediatr 7:246. https://doi.org/10.3389/fped.2019.00246

    Article  PubMed  PubMed Central  Google Scholar 

  11. WHO (2020) Asthma. WHO [online] https://www.who.int/news-room/q-a-detail/asthma

  12. Zein JG, Denson JL, Wechsler ME (2019) Asthma over the adult life course: gender and hormonal influences. Clin Chest Med 40(1):149–161. https://doi.org/10.1016/j.ccm.2018.10.009

    Article  PubMed  Google Scholar 

  13. Strachan DP (1989) Hay fever, hygiene, and household size. BMJ (Clin Res ed) 299(6710):1259–1260. https://doi.org/10.1136/bmj.299.6710.1259

    Article  CAS  Google Scholar 

  14. Rook GA, Martinelli R, Brunet LR (2003) Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr Opin Allergy Clin Immunol 3(5):337–342. https://doi.org/10.1097/00130832-200310000-00003

    Article  CAS  PubMed  Google Scholar 

  15. Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD (2015) Asthma. Nat Rev Dis Primers 1(1):15025. https://doi.org/10.1038/nrdp.2015.25

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stern J, Pier J, Litonjua AA (2020) Asthma epidemiology and risk factors. Semin Immunopathol 42(1):5–15. https://doi.org/10.1007/s00281-020-00785-1

    Article  PubMed  Google Scholar 

  17. Stocks SJ, Jones K, Piney M, Agius RM (2015) Isocyanate exposure and asthma in the UK vehicle repair industry. Occup Med (Oxford, England) 65(9):713–718. https://doi.org/10.1093/occmed/kqv108

    Article  CAS  Google Scholar 

  18. Subbarao P, Mandhane PJ, Sears MR (2009) Asthma: epidemiology, etiology and risk factors. CMAJ 181(9):E181–E190. https://doi.org/10.1503/cmaj.080612

    Article  PubMed  PubMed Central  Google Scholar 

  19. Törmänen S, Lauhkonen E, Riikonen R, Koponen P, Huhtala H, Helminen M, Korppi M, Nuolivirta K (2018) Risk factors for asthma after infant bronchiolitis. Allergy 73(4):916–922. https://doi.org/10.1111/all.13347

    Article  PubMed  Google Scholar 

  20. Williams WR (2018) Asthma exacerbation by aspirin and chemical additives: use of a nucleotide template model to investigate potential mechanisms. Gen Physiol Biophys 37(4):461–468. https://doi.org/10.4149/gpb_2018003

    Article  CAS  PubMed  Google Scholar 

  21. Darveaux JI, Lemanske RF Jr (2014) Infection-related asthma. The journal of allergy and clinical immunology. In Pract 2(6):658–663. https://doi.org/10.1016/j.jaip.2014.09.011

    Article  Google Scholar 

  22. Fireman P (2002) Virus-provoked rhinitis in patients who have allergies. Allergy Asthma Proc 23(2):99–102

    PubMed  Google Scholar 

  23. Veerapandian R, Snyder JD, Samarasinghe AE (2018) Influenza in asthmatics: for better or for worse? Front Immunol 9:1843. https://doi.org/10.3389/fimmu.2018.01843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pelaia G, Vatrella A, Busceti MT, Gallelli L, Calabrese C, Terracciano R, Maselli R (2015) Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediat Inflamm 2015:879783. https://doi.org/10.1155/2015/879783

    Article  CAS  Google Scholar 

  25. Tavares LP, Peh HY, Tan WSD, Pahima H, Maffia P, Tiligada E, Levi-Schaffer F (2020) Granulocyte-targeted therapies for airway diseases. Pharmacol Res 157:104881. https://doi.org/10.1016/j.phrs.2020.104881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brightling CE (2014) Destination airway: tracking granulocytes in asthma. EBioMedicine 1(2–3):105–106. https://doi.org/10.1016/j.ebiom.2014.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kay AB (2016) Paul Ehrlich and the early history of granulocytes. Microbiol Spectr 4:4. https://doi.org/10.1128/microbiolspec.MCHD-0032-2016

    Article  Google Scholar 

  28. Miyake K, Karasuyama H (2017) Emerging roles of basophils in allergic inflammation. Allergol Int 66(3):382–391. https://doi.org/10.1016/j.alit.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  29. Raap U, Sumbayev VV, Gibbs BF (2015) The role of basophils in allergic inflammation. Allergo J 24(5):28–33. https://doi.org/10.1007/s15007-015-0883-y

    Article  Google Scholar 

  30. Siracusa MC, Kim BS, Spergel JM, Artis D (2013) Basophils and allergic inflammation. J Allergy Clin Immunol 132(4):789–801.; quiz 788. https://doi.org/10.1016/j.jaci.2013.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siracusa MC, Comeau MR, Artis D (2011) New insights into basophil biology: initiators, regulators, and effectors of type 2 inflammation. Ann N Y Acad Sci 1217:166–177. https://doi.org/10.1111/j.1749-6632.2010.05918.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakashima C, Otsuka A, Kabashima K (2018) Recent advancement in the mechanism of basophil activation. J Dermatol Sci 91(1):3–8. https://doi.org/10.1016/j.jdermsci.2018.03.007

    Article  CAS  PubMed  Google Scholar 

  33. Schroeder JT, Chichester KL, Bieneman AP (2009) Human basophils secrete IL-3: evidence of autocrine priming for phenotypic and functional responses in allergic disease. J Immunol 182(4):2432–2438. https://doi.org/10.4049/jimmunol.0801782

    Article  CAS  PubMed  Google Scholar 

  34. Phillips C, Coward WR, Pritchard DI, Hewitt CR (2003) Basophils express a type 2 cytokine profile on exposure to proteases from helminths and house dust mites. J Leukoc Biol 73(1):165–171. https://doi.org/10.1189/jlb.0702356

    Article  CAS  PubMed  Google Scholar 

  35. Reithofer M, Jahn-Schmid B (2017) Allergens with protease activity from house dust mites. Int J Mol Sci 18:7. https://doi.org/10.3390/ijms18071368

    Article  CAS  Google Scholar 

  36. Bieneman AP, Chichester KL, Chen YH, Schroeder JT (2005) Toll-like receptor 2 ligands activate human basophils for both IgE-dependent and IgE-independent secretion. J Allergy Clin Immunol 115(2):295–301. https://doi.org/10.1016/j.jaci.2004.10.018

    Article  CAS  PubMed  Google Scholar 

  37. Patella V, Florio G, Petraroli A, Marone G (2000) HIV-1 gp120 induces IL-4 and IL-13 release from human fc epsilon RI+ cells through interaction with the VH3 region of IgE. J Immunol 164(2):589–595. https://doi.org/10.4049/jimmunol.164.2.589

    Article  CAS  PubMed  Google Scholar 

  38. Bosch X, Ramos-Casals M (2020) Granulocytes: neutrophils, basophils, eosinophils. In: The autoimmune diseases. Elsevier, pp 243–262. https://doi.org/10.1016/B978-0-12-812102-3.00013-0

  39. Lie WJ, Homburg CH, Kuijpers TW, Knol EF, Mul FP, Roos D, Tool AT (2003) Regulation and kinetics of platelet-activating factor and leukotriene C4 synthesis by activated human basophils. Clin Exp Allergy 33(8):1125–1134. https://doi.org/10.1046/j.1365-2222.2003.01726.x

    Article  CAS  PubMed  Google Scholar 

  40. Yamaguchi M, Koketsu R, Suzukawa M, Kawakami A, Iikura M (2009) Human basophils and cytokines/chemokines. Allergol Int 58(1):1–10. https://doi.org/10.2332/allergolint.08-RAI-0056

    Article  CAS  PubMed  Google Scholar 

  41. Lim LH, Burdick MM, Hudson SA, Mustafa FB, Konstantopoulos K, Bochner BS (2006) Stimulation of human endothelium with IL-3 induces selective basophil accumulation in vitro. J Immunol 176(9):5346–5353. https://doi.org/10.4049/jimmunol.176.9.5346

    Article  CAS  PubMed  Google Scholar 

  42. Borregaard N, Sørensen OE, Theilgaard-Mönch K (2007) Neutrophil granules: a library of innate immunity proteins. Trends Immunol 28(8):340–345. https://doi.org/10.1016/j.it.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  43. Jasper AE, McIver WJ, Sapey E, Walton GM (2019) Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res 8. https://doi.org/10.12688/f1000research.18411.1

  44. Lawrence SM, Corriden R, Nizet V (2018) The ontogeny of a neutrophil: mechanisms of granulopoiesis and homeostasis. Microbiol Mol Biol Rev: MMBR 82:1. https://doi.org/10.1128/mmbr.00057-17

    Article  CAS  Google Scholar 

  45. Maas SL, Soehnlein O, Viola JR (2018) Organ-specific mechanisms of transendothelial neutrophil migration in the lung, liver, kidney, and aorta. Front Immunol 9:1–24. https://doi.org/10.3389/fimmu.2018.02739

    Article  CAS  Google Scholar 

  46. Gane J, Stockley R (2012) Mechanisms of neutrophil transmigration across the vascular endothelium in COPD. Thorax 67:553–561. https://doi.org/10.1136/thoraxjnl-2011-200088

    Article  PubMed  Google Scholar 

  47. Rossaint J, Zarbock A (2013) Tissue-specific neutrophil recruitment into the lung, liver, and kidney. J Innate Immun 5:348–357. https://doi.org/10.1159/000345943

    Article  CAS  PubMed  Google Scholar 

  48. Rosales C, Lowell CA, Schnoor M, Uribe-Querol E (2017) Neutrophils: their role in innate and adaptive immunity 2017. J Immunol Res 2017:9748345. https://doi.org/10.1155/2017/9748345

    Article  PubMed  PubMed Central  Google Scholar 

  49. Selders GS, Fetz AE, Radic MZ, Bowlin GL (2017) An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regener Biomater 4(1):55–68. https://doi.org/10.1093/rb/rbw041

    Article  CAS  Google Scholar 

  50. Gernez Y, Tirouvanziam R, Chanez P (2010) Neutrophils in chronic inflammatory airway diseases: can we target them and how? Eur Respir J 35:467–469. https://doi.org/10.1183/09031936.00186109

    Article  CAS  PubMed  Google Scholar 

  51. Naccache PH (2013) Signalling in neutrophils: a retro look. ISRN Physiol 2013:1–13. https://doi.org/10.1155/2013/986320

    Article  CAS  Google Scholar 

  52. Naccache PH (2014) Cell signalling in neutrophils. Encycl Inflammatory Dis. https://doi.org/10.1007/978-3-0348-0620-6_93-1

  53. Futosi K, Fodor S, Mócsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17:638–650. https://doi.org/10.1016/j.intimp.2013.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han H, Stessin A, Roberts J, Hess K, Gautam N, Kamenetsky M, Lou O, Hyde E, Nathan N, Muller WA, Buck J, Levin LR, Nathan C (2005) Calcium-sensing soluble adenylyl cyclase mediates TNF signal transduction in human neutrophils. J Exp Med 202:353–361. https://doi.org/10.1084/jem.20050778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bertram A, Ley K (2011) Protein kinase C isoforms in neutrophil adhesion and activation. Arch Immunol Ther Exp 59:79–87. https://doi.org/10.1007/s00005-011-0112-7

    Article  CAS  Google Scholar 

  56. Luo HR, Mondal S (2015) Molecular control of PtdIns(3,4,5)P3 signaling in neutrophils. EMBO Rep 16:149–163. https://doi.org/10.15252/embr.201439466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG (2010) Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2:216–227. https://doi.org/10.1159/000284367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kebir DE, Filep JG (2013) Modulation of neutrophil apoptosis and the resolution of inflammation through β2 integrins. Front Immunol 4:1–15. https://doi.org/10.3389/fimmu.2013.00060

    Article  CAS  Google Scholar 

  59. El Kebir D, Filep JG (2010) Role of neutrophil apoptosis in the resolution of inflammation. TheScientificWorldJournal 10:1731–1748. https://doi.org/10.1100/tsw.2010.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carr TF, Zeki AA, Kraft M (2018) Eosinophilic and noneosinophilic asthma. Am J Respir Crit Care Med 197:22–37. https://doi.org/10.1164/rccm.201611-2232PP

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA (2019) Immunologic mechanisms in asthma. Seminars in Immunology, vol 46. Elsevier. doi:https://doi.org/10.1016/j.smim.2019.101333

  62. Spencer LA, Bonjour K, Melo RCN, Weller PF (2014) Eosinophil secretion of granule-derived cytokines. Front Immunol 5:1–9. https://doi.org/10.3389/fimmu.2014.00496

    Article  CAS  Google Scholar 

  63. Davoine F, Lacy P (2014) Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol 5. https://doi.org/10.3389/fimmu.2014.00570

  64. Iwashita H, Morita S, Sagiya Y, Nakanishi A (2006) Role of eosinophil chemotactic factor by T lymphocytes on airway hyperresponsiveness in a murine model of allergic asthma. Am J Respir Cell Mol Biol 35(1):103–109. https://doi.org/10.1165/rcmb.2005-0134OC

    Article  CAS  PubMed  Google Scholar 

  65. Saeki M, Nishimura T, Kitamura N, Hiroi T, Mori A, Kaminuma O (2019) Potential mechanisms of T cell-mediated and eosinophil-independent bronchial hyperresponsiveness. Int J Mol Sci 20:12. https://doi.org/10.3390/ijms20122980

    Article  CAS  Google Scholar 

  66. Kay AB (2005) The role of eosinophils in the pathogenesis of asthma. Trends Mol Med 11(4):148–152. https://doi.org/10.1016/j.molmed.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  67. McAnulty RJ (2007) Fibroblasts and myofibroblasts: their source, function and role in disease. Int J Biochem Cell Biol 39(4):666–671. https://doi.org/10.1016/j.biocel.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  68. Phan SH (2008) Biology of fibroblasts and myofibroblasts. Proc Am Thorac Soc 5(3):334–337. https://doi.org/10.1513/pats.200708-146DR

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brightling CE, Gupta S, Gonem S, Siddiqui S (2012) Lung damage and airway remodelling in severe asthma. Clin Exp Allergy 42(5):638–649. https://doi.org/10.1111/j.1365-2222.2011.03917.x

    Article  CAS  PubMed  Google Scholar 

  70. Ito JT, Lourenço JD, Righetti RF, Tibério I, Prado CM, Lopes F (2019) Extracellular matrix component remodeling in respiratory diseases: what has been found in clinical and experimental studies? Cell 8:4. https://doi.org/10.3390/cells8040342

    Article  CAS  Google Scholar 

  71. Kollmannsberger P, Bidan CM, Dunlop JWC, Fratzl P, Vogel V (2018) Tensile forces drive a reversible fibroblast-to-myofibroblast transition during tissue growth in engineered clefts. Sci Adv 4(1):eaao4881. https://doi.org/10.1126/sciadv.aao4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wójcik-Pszczoła K, Jakieła B, Plutecka H, Koczurkiewicz P, Madeja Z, Michalik M, Sanak M (2018) Connective tissue growth factor regulates transition of primary bronchial fibroblasts to myofibroblasts in asthmatic subjects. Cytokine 102:187–190. https://doi.org/10.1016/j.cyto.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  73. Bagnasco D, Ferrando M, Varricchi G, Passalacqua G, Canonica GW (2016) A critical evaluation of anti-IL-13 and anti-IL-4 strategies in severe asthma. Int Arch Allergy Immunol 170(2):122–131

    Article  CAS  PubMed  Google Scholar 

  74. Caminati M, Le Pham D, Bagnasco D, Canonica GW (2018) Type 2 immunity in asthma. World Allergy Organ J 11(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Corry DB, Folkesson HG, Warnock ML, Erle DJ, Matthay MA, Wiener-Kronish JP, Locksley RM (1996) Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med 183(1):109–117

    Article  CAS  PubMed  Google Scholar 

  76. Watanabe A, Mishima H, Kotsimbos TC, Hojo M, Renzi PM, Martin JG, Hamid QA (1997) Adoptively transferred late allergic airway responses are associated with Th2-type cytokines in the rat. Am J Respir Cell Mol Biol 16(1):69–74

    Article  CAS  PubMed  Google Scholar 

  77. Cohn L, Tepper JS, Bottomly K (1998) Cutting edge: IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells. J Immunol 161(8):3813–3816

    Article  CAS  PubMed  Google Scholar 

  78. Grünig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282(5397):2261–2263

    Article  PubMed  PubMed Central  Google Scholar 

  79. Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH, Umetsu DT (2001) Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol 167(8):4668–4675

    Article  CAS  PubMed  Google Scholar 

  80. Marone G, Granata F, Pucino V, Pecoraro A, Heffler E, Loffredo S, Scadding GW, Varricchi G (2019) The intriguing role of interleukin 13 in the pathophysiology of asthma. Front Pharmacol 10

    Google Scholar 

  81. Bagnasco D, Ferrando M, Varricchi G, Puggioni F, Passalacqua G, Canonica GW (2017) Anti-interleukin 5 (IL-5) and IL-5Ra biological drugs: efficacy, safety, and future perspectives in severe eosinophilic asthma. Front Med 4:135

    Article  Google Scholar 

  82. Haspeslagh E, Debeuf N, Hammad H, Lambrecht BN (2017) Murine models of allergic asthma. In: Inflammation. Springer, pp 121–136

    Google Scholar 

  83. Karo-Atar D, Bitton A, Benhar I, Munitz A (2018) Therapeutic targeting of the interleukin-4/interleukin-13 signaling pathway: in allergy and beyond. BioDrugs 32(3):201–220

    Article  CAS  PubMed  Google Scholar 

  84. Lykouras D, Sampsonas F, Kaparianos A, Karkoulias K, Spiropoulos K (2008) Role and pharmacogenomics of TNF-alpha in asthma. Mini Rev Med Chem 8(9):934–942

    Article  CAS  PubMed  Google Scholar 

  85. Cuchacovich R, Espinoza CG, Virk Z, Espinoza LR (2008) Biologic therapy (TNF-α antagonists)-induced psoriasis: a cytokine imbalance between TNF-α and IFN-α? JCR. J Clin Rheumatol 14(6):353–356

    Article  PubMed  Google Scholar 

  86. Karkale S, Khurana A, Saifi MA, Godugu C, Talla V (2018) Oropharyngeal administration of silica in Swiss mice: a robust and reproducible model of occupational pulmonary fibrosis. Pulm Pharmacol Ther 51:32–40

    Article  CAS  PubMed  Google Scholar 

  87. Khurana A, Tekula S, Godugu C (2018) Nanoceria suppresses multiple low doses of streptozotocin-induced type 1 diabetes by inhibition of Nrf2/NF-κB pathway and reduction of apoptosis. Nanomedicine 13(15):1905–1922

    Article  CAS  PubMed  Google Scholar 

  88. Pasari LP, Khurana A, Anchi P, Saifi MA, Annaldas S, Godugu C (2019) Visnagin attenuates acute pancreatitis via Nrf2/NFκB pathway and abrogates associated multiple organ dysfunction. Biomed Pharmacother 112:108629

    Article  CAS  PubMed  Google Scholar 

  89. Liu Z-g (2005) Molecular mechanism of TNF signaling and beyond. Cell Res 15(1):24–27

    Article  CAS  PubMed  Google Scholar 

  90. Mukhopadhyay S, Hoidal JR, Mukherjee TK (2006) Role of TNFα in pulmonary pathophysiology. Respir Res 7(1):125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Del Valle DM, Kim-Schulze S, Huang H-H, Beckmann ND, Nirenberg S, Wang B, Lavin Y, Swartz TH, Madduri D, Stock A (2020) An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med:1–8

    Google Scholar 

  92. Charrad R, Berraïes A, Hamdi B, Ammar J, Hamzaoui K, Hamzaoui A (2016) Anti-inflammatory activity of IL-37 in asthmatic children: correlation with inflammatory cytokines TNF-α, IL-β, IL-6 and IL-17A. Immunobiology 221(2):182–187

    Article  CAS  PubMed  Google Scholar 

  93. Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA, Rothenberg ME, Drazen JM, Luster AD (1997) Expression of eotaxin by human lung epithelial cells: induction by cytokines and inhibition by glucocorticoids. J Clin Invest 99(7):1767–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mei D, Tan WSD, Wong WSF (2019) Pharmacological strategies to regain steroid sensitivity in severe asthma and COPD. Curr Opin Pharmacol 46:73–81

    Article  CAS  PubMed  Google Scholar 

  95. Wortley MA, Bonvini SJ (2019) Transforming Growth Factor-β1: A Novel Cause of Resistance to Bronchodilators in Asthma? American Thoracic Society

    Google Scholar 

  96. Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P (2009) Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J Cell Physiol 219(2):449–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lafontaine L, Chaudhry P, Lafleur M-J, Van Themsche C, Soares MJ, Asselin E (2011) Transforming growth factor Beta regulates proliferation and invasion of rat placental cell lines. Biol Reprod 84(3):553–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Roberts AB, McCune BK, Sporn MB (1992) TGF-β: regulation of extracellular matrix. Kidney Int 41(3):557–559

    Article  CAS  PubMed  Google Scholar 

  99. Sanjabi S, Oh SA, Li MO (2017) Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 9(6):a022236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wu MY, Hill CS (2009) TGF-β superfamily signaling in embryonic development and homeostasis. Dev Cell 16(3):329–343

    Article  CAS  PubMed  Google Scholar 

  101. Bartram U, Speer CP (2004) The role of transforming growth factor β in lung development and disease. Chest 125(2):754–765

    Article  PubMed  Google Scholar 

  102. Massagué J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13(10):616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zarzynska JM (2014) Two faces of TGF-beta1 in breast cancer. Mediat Inflamm 2014

    Google Scholar 

  104. Lakos G, Takagawa S, Chen S-J, Ferreira AM, Han G, Masuda K, Wang X-J, DiPietro LA, Varga J (2004) Targeted disruption of TGF-β/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol 165(1):203–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sayed N, Khurana A, Saifi MA, Singh M, Godugu C (2019) Withaferin a reverses bile duct ligation-induced liver fibrosis by modulating extracellular matrix deposition: role of LOXL2/Snail1, vimentin, and NFκB signaling. Biofactors 45(6):959–974

    Article  CAS  PubMed  Google Scholar 

  106. Boo S, Dagnino L (2013) Integrins as modulators of transforming growth factor beta signaling in dermal fibroblasts during skin regeneration after injury. Adv Wound Care 2(5):238–246

    Article  Google Scholar 

  107. Johansson MW, Mosher DF (2013) Integrin activation states and eosinophil recruitment in asthma. Front Pharmacol 4:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L, Muller SJ, Fahy JV (2010) Roles of epithelial cell-derived periostin in TGF-β activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci 107(32):14170–14175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Khalil N, Parekh T, O'connor R, Antman N, Kepron W, Yehaulaeshet T, Xu Y, Gold L (2001) Regulation of the effects of TGF-β1 by activation of latent TGF-β1 and differential expression of TGF-β receptors (TβR-I and TβR-II) in idiopathic pulmonary fibrosis. Thorax 56(12):907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Babalola O, Mamalis A, Lev-Tov H, Jagdeo J (2014) NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents. Arch Dermatol Res 306(4):313–330

    Article  CAS  PubMed  Google Scholar 

  111. Herrick A, Cerinic MM (2001) The emerging problem of oxidative stress and the role of antioxidants in systemic sclerosis. Clin Exp Rheumatol 19(1):4–8

    CAS  PubMed  Google Scholar 

  112. Kinnula VL, Fattman CL, Tan RJ, Oury TD (2005) Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med 172(4):417–422

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kliment CR, Oury TD (2010) Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med 49(5):707–717

    Article  CAS  PubMed  Google Scholar 

  114. Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338(1):668–676

    Article  CAS  PubMed  Google Scholar 

  115. Peel AM, Crossman-Barnes C-J, Tang J, Fowler SJ, Davies GA, Wilson AM, Loke YK (2017) Biomarkers in adult asthma: a systematic review of 8-isoprostane in exhaled breath condensate. J Breath Res 11(1):016011

    Article  PubMed  CAS  Google Scholar 

  116. Emelyanov A, Fedoseev G, Abulimity A, Rudinski K, Fedoulov A, Karabanov A, Barnes PJ (2001) Elevated concentrations of exhaled hydrogen peroxide in asthmatic patients. Chest 120(4):1136–1139

    Article  CAS  PubMed  Google Scholar 

  117. Ekmekci O, Donma O, Sardoğan E, Yildirim N, Uysal O, Demirel H, Demir T (2004) Iron, nitric oxide, and myeloperoxidase in asthmatic patients. Biochem Mosc 69(4):462–467

    Article  CAS  Google Scholar 

  118. Batra J, Chatterjee R, Ghosh B (2007) Inducible nitric oxide synthase (iNOS): role in asthma pathogenesis. Indian journal of biochemistry & biophysics 44 (5):303–309

    Google Scholar 

  119. Dunford PJ, Holgate ST (2010) The role of histamine in asthma. In: Histamine in inflammation. Springer, pp 53–66

    Google Scholar 

  120. Kleniewska P, Pawliczak R (2017) The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed Pharmacother 94:100–108

    Article  CAS  PubMed  Google Scholar 

  121. Fattman CL, Schaefer LM, Oury TD (2003) Extracellular superoxide dismutase in biology and medicine. Free Radic Biol Med 35(3):236–256

    Article  CAS  PubMed  Google Scholar 

  122. Kinnula VL, Crapo JD (2003) Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med 167(12):1600–1619

    Article  PubMed  Google Scholar 

  123. Kinnula VL, Crapo JD, Raivio KO (1995) Generation and disposal of reactive oxygen metabolites in the lung. Lab Invest 73(1):3–19

    CAS  PubMed  Google Scholar 

  124. Powis G, Mustacich D, Coon A (2000) The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 29(3–4):312–322

    Article  CAS  PubMed  Google Scholar 

  125. Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, Yamamoto M, Kensler TW, Tuder RM, Georas SN (2005) Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 202(1):47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci Ö (2018) Oxidative stress in asthma: part of the puzzle. Pediatr Allergy Immunol 29(8):789–800

    Article  PubMed  Google Scholar 

  127. Gabrielli A, Svegliati S, Moroncini G, Amico D (2012) Suppl 1: new insights into the role of oxidative stress in scleroderma fibrosis. Open Rheumatol J 6:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8(3):193–204

    Article  CAS  PubMed  Google Scholar 

  129. Schon-Hegrad MA, Oliver J, McMenamin PG, Holt PG (1991) Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J Exp Med 173(6):1345–1356

    Article  CAS  PubMed  Google Scholar 

  130. Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA (2001) Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med 193(1):51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tan JK, O’Neill HC (2005) Maturation requirements for dendritic cells in T cell stimulation leading to tolerance versus immunity. J Leukoc Biol 78(2):319–324

    Article  CAS  PubMed  Google Scholar 

  132. Akbari O, Freeman GJ, Meyer EH, Greenfield EA, Chang TT, Sharpe AH, Berry G, DeKruyff RH, Umetsu DT (2002) Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 8(9):1024–1032

    Article  CAS  PubMed  Google Scholar 

  133. Ortiz-Stern A, Kanda A, Mionnet C, Cazareth J, Lazzari A, Fleury S, Dombrowicz D, Glaichenhaus N, Julia V (2011) Langerin+ dendritic cells are responsible for LPS-induced reactivation of allergen-specific Th2 responses in postasthmatic mice. Mucosal Immunol 4(3):343–353

    Article  CAS  PubMed  Google Scholar 

  134. Brimnes MK, Bonifaz L, Steinman RM, Moran TM (2003) Influenza virus–induced dendritic cell maturation is associated with the induction of strong T cell immunity to a coadministered, normally nonimmunogenic protein. J Exp Med 198(1):133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lambrecht BN, Pauwels RA, Groth BFS (2000) Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model. J Immunol 164(6):2937–2946

    Article  CAS  PubMed  Google Scholar 

  136. Akbari O, DeKruyff RH, Umetsu DT (2001) Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2(8):725–731

    Article  CAS  PubMed  Google Scholar 

  137. El-Gammal A, Oliveria J-P, Howie K, Watson R, Mitchell P, Chen R, Baatjes A, Smith S, Al-Sajee D, Hawke TJ (2016) Allergen-induced changes in bone marrow and airway dendritic cells in subjects with asthma. Am J Respir Crit Care Med 194(2):169–177

    Article  CAS  PubMed  Google Scholar 

  138. Lambrecht BN, Carro-Muino I, Vermaelen K, Pauwels RA (1999) Allergen-induced changes in bone-marrow progenitor and airway dendritic cells in sensitized rats. Am J Respir Cell Mol Biol 20(6):1165–1174

    Article  CAS  PubMed  Google Scholar 

  139. Vermaelen K, Pauwels R (2003) Accelerated airway dendritic cell maturation, trafficking, and elimination in a mouse model of asthma. Am J Respir Cell Mol Biol 29(3):405–409

    Article  CAS  PubMed  Google Scholar 

  140. Vermaelen KY, Cataldo D, Tournoy K, Maes T, Dhulst A, Louis R, Foidart J-M, Noël A, Pauwels R (2003) Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma. J Immunol 171(2):1016–1022

    Article  CAS  PubMed  Google Scholar 

  141. Tata PR, Rajagopal J (2017) Plasticity in the lung: making and breaking cell identity. Development 144(5):755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Potaczek DP, Miethe S, Schindler V, Alhamdan F, Garn H (2020) Role of airway epithelial cells in the development of different asthma phenotypes. Cell Signal 69:109523

    Article  CAS  PubMed  Google Scholar 

  143. Braga FAV, Kar G, Berg M, Carpaij OA, Polanski K, Simon LM, Brouwer S, Gomes T, Hesse L, Jiang J (2019) A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med 25(7):1153–1163

    Article  CAS  Google Scholar 

  144. Leishangthem GD, Mabalirajan U, Singh VP, Agrawal A, Ghosh B, Dinda AK (2013) Ultrastructural changes of airway in murine models of allergy and diet-induced metabolic syndrome. Int Scholarly Res Not 2013

    Google Scholar 

  145. Ordovas-Montanes J, Dwyer DF, Nyquist SK, Buchheit KM, Vukovic M, Deb C, Wadsworth MH, Hughes TK, Kazer SW, Yoshimoto E (2018) Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560(7720):649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Turner J, Roger J, Fitau J, Combe D, Giddings J, Heeke GV, Jones CE (2011) Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium. Am J Respir Cell Mol Biol 44(3):276–284

    Article  CAS  PubMed  Google Scholar 

  147. Tyner JW, Kim EY, Ide K, Pelletier MR, Roswit WT, Morton JD, Battaile JT, Patel AC, Patterson GA, Castro M (2006) Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J Clin Invest 116(2):309–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zissler U, Chaker A, Effner R, Ulrich M, Guerth F, Piontek G, Dietz K, Regn M, Knapp B, Theis F (2016) Interleukin-4 and interferon-γ orchestrate an epithelial polarization in the airways. Mucosal Immunol 9(4):917–926

    Article  CAS  PubMed  Google Scholar 

  149. Fogli LK, Sundrud MS, Goel S, Bajwa S, Jensen K, Derudder E, Sun A, Coffre M, Uyttenhove C, Van Snick J (2013) T cell–derived IL-17 mediates epithelial changes in the airway and drives pulmonary neutrophilia. J Immunol 191(6):3100–3111

    Article  CAS  PubMed  Google Scholar 

  150. Simpson JL, Phipps S, Baines KJ, Oreo KM, Gunawardhana L, Gibson PG (2014) Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. Eur Respir J 43(4):1067–1076

    Article  PubMed  CAS  Google Scholar 

  151. Nakanishi A, Morita S, Iwashita H, Sagiya Y, Ashida Y, Shirafuji H, Fujisawa Y, Nishimura O, Fujino M (2001) Role of gob-5 in mucus overproduction and airway hyperresponsiveness in asthma. Proc Natl Acad Sci 98(9):5175–5180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tan HTT, Hagner S, Ruchti F, Radzikowska U, Tan G, Altunbulakli C, Eljaszewicz A, Moniuszko M, Akdis M, Akdis CA (2019) Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy 74(2):294–307

    Article  CAS  PubMed  Google Scholar 

  153. Pezzulo AA, Tudas RA, Stewart CG, Buonfiglio LGV, Lindsay BD, Taft PJ, Gansemer ND, Zabner J (2019) HSP90 inhibitor geldanamycin reverts IL-13–and IL-17–induced airway goblet cell metaplasia. J Clin Invest 129(2):744–758

    Article  PubMed  PubMed Central  Google Scholar 

  154. Chen Y, Thai P, Zhao Y-H, Ho Y-S, DeSouza MM, Wu R (2003) Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 278(19):17036–17043

    Article  CAS  PubMed  Google Scholar 

  155. Fujisawa T, Chang MM-J, Velichko S, Thai P, Hung L-Y, Huang F, Phuong N, Chen Y, Wu R (2011) NF-κB mediates IL-1β–and IL-17A–induced MUC5B expression in airway epithelial cells. Am J Respir Cell Mol Biol 45(2):246–252

    Article  CAS  PubMed  Google Scholar 

  156. Oyanagi T, Takizawa T, Aizawa A, Solongo O, Yagi H, Nishida Y, Koyama H, Saitoh A, Arakawa H (2017) Suppression of MUC5AC expression in human bronchial epithelial cells by interferon-γ. Allergol Int 66(1):75–82

    Article  CAS  PubMed  Google Scholar 

  157. Mitchell C, Provost K, Niu N, Homer R, Cohn L (2011) IFN-γ acts on the airway epithelium to inhibit local and systemic pathology in allergic airway disease. J Immunol 187(7):3815–3820

    Article  CAS  PubMed  Google Scholar 

  158. Holgate ST, Davies DE (2009) Rethinking the pathogenesis of asthma. Immunity 31(3):362–367

    Article  CAS  PubMed  Google Scholar 

  159. Holgate ST (2011) The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev 242(1):205–219

    Article  CAS  PubMed  Google Scholar 

  160. Kouzaki H, Tojima I, Kita H, Shimizu T (2013) Transcription of interleukin-25 and extracellular release of the protein is regulated by allergen proteases in airway epithelial cells. Am J Respir Cell Mol Biol 49(5):741–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. O'Leary CE, Schneider C, Locksley RM (2019) Tuft cells—systemically dispersed sensory epithelia integrating immune and neural circuitry. Annu Rev Immunol 37:47–72

    Article  CAS  PubMed  Google Scholar 

  162. Desai M, Oppenheimer J (2016) Elucidating asthma phenotypes and endotypes: progress towards personalized medicine. Ann Allergy Asthma Immunol 116(5):394–401

    Article  PubMed  Google Scholar 

  163. Miethe S, Guarino M, Alhamdan F, Simon H-U, Renz H, Dufour J-F, Potaczek DP, Garn H (2018) Effects of obesity on asthma: immunometabolic links. Pol Arch Internal Med 128(7–8):469–477

    Google Scholar 

  164. Shahana S, Björnsson E, Lúdvíksdóttir D, Janson C, Nettelbladt O, Venge P, Roomans GM (2005) Ultrastructure of bronchial biopsies from patients with allergic and non-allergic asthma. Respir Med 99(4):429–443

    Article  CAS  PubMed  Google Scholar 

  165. Turato G, Barbato A, Baraldo S, Zanin ME, Bazzan E, Lokar-Oliani K, Calabrese F, Panizzolo C, Snijders D, Maestrelli P, Zuin R, Fabbri LM, Saetta M (2008) Nonatopic children with multitrigger wheezing have airway pathology comparable to atopic asthma. Am J Respir Crit Care Med 178(5):476–482. https://doi.org/10.1164/rccm.200712-1818OC

    Article  PubMed  Google Scholar 

  166. Trejo Bittar HE, Yousem SA, Wenzel SE (2015) Pathobiology of severe asthma. Annu Rev Pathol 10:511–545. https://doi.org/10.1146/annurev-pathol-012414-040343

    Article  CAS  PubMed  Google Scholar 

  167. Salter B, Pray C, Radford K, Martin JG, Nair P (2017) Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir Res 18(1):156. https://doi.org/10.1186/s12931-017-0640-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pascual RM, Peters SP (2005) Airway remodeling contributes to the progressive loss of lung function in asthma: an overview. J Allergy Clin Immunol 116(3):477–486.; quiz 487. https://doi.org/10.1016/j.jaci.2005.07.011

    Article  PubMed  Google Scholar 

  169. Kim KC (2012) Role of epithelial mucins during airway infection. Pulm Pharmacol Ther 25(6):415–419. https://doi.org/10.1016/j.pupt.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  170. Whitsett JA, Alenghat T (2015) Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 16(1):27–35. https://doi.org/10.1038/ni.3045

    Article  CAS  PubMed  Google Scholar 

  171. Lambrecht BN, Hammad H (2013) Asthma: the importance of dysregulated barrier immunity. Eur J Immunol 43(12):3125–3137. https://doi.org/10.1002/eji.201343730

    Article  CAS  PubMed  Google Scholar 

  172. Cohen L, E X, Tarsi J, Ramkumar T, Horiuchi TK, Cochran R, DeMartino S, Schechtman KB, Hussain I, Holtzman MJ, Castro M (2007) Epithelial cell proliferation contributes to airway remodeling in severe asthma. Am J Respir Crit Care Med 176(2):138–145. https://doi.org/10.1164/rccm.200607-1062OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Druilhe A, Wallaert B, Tsicopoulos A, Lapa e Silva JR, Tillie-Leblond I, Tonnel AB, Pretolani M (1998) Apoptosis, proliferation, and expression of Bcl-2, Fas, and Fas ligand in bronchial biopsies from asthmatics. Am J Respir Cell Mol Biol 19(5):747–757. https://doi.org/10.1165/ajrcmb.19.5.3166

    Article  CAS  PubMed  Google Scholar 

  174. Makinde T, Murphy RF, Agrawal DK (2007) The regulatory role of TGF-beta in airway remodeling in asthma. Immunol Cell Biol 85(5):348–356. https://doi.org/10.1038/sj.icb.7100044

    Article  CAS  PubMed  Google Scholar 

  175. Fahy JV (2002) Goblet cell and mucin gene abnormalities in asthma. Chest 122(6 Suppl):320s–326s. https://doi.org/10.1378/chest.122.6_suppl.320s

    Article  CAS  PubMed  Google Scholar 

  176. Rubin BK, Priftis KN, Schmidt HJ, Henke MO (2014) Secretory hyperresponsiveness and pulmonary mucus hypersecretion. Chest 146(2):496–507. https://doi.org/10.1378/chest.13-2609

    Article  PubMed  Google Scholar 

  177. Boublil L, Assémat E, Borot MC, Boland S, Martinon L, Sciare J, Baeza-Squiban A (2013) Development of a repeated exposure protocol of human bronchial epithelium in vitro to study the long-term effects of atmospheric particles. Toxicol in vitro 27(2):533–542. https://doi.org/10.1016/j.tiv.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  178. Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, Finkbeiner WE, Widdicombe JH, Gruenert DC (1994) CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10(1):38–47. https://doi.org/10.1165/ajrcmb.10.1.7507342

    Article  CAS  PubMed  Google Scholar 

  179. Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171(11):6164–6172. https://doi.org/10.4049/jimmunol.171.11.6164

    Article  CAS  PubMed  Google Scholar 

  180. Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, Chiba H (2003) Tight junctions and human diseases. Med Electron Microsc 36(3):147–156. https://doi.org/10.1007/s00795-003-0219-y

    Article  PubMed  Google Scholar 

  181. Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20(3):142–149. https://doi.org/10.1016/j.tcb.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  182. Green KJ, Jones JC (1996) Desmosomes and hemidesmosomes: structure and function of molecular components. FASEB J 10(8):871–881. https://doi.org/10.1096/fasebj.10.8.8666164

    Article  CAS  PubMed  Google Scholar 

  183. Girodet PO, Ozier A, Bara I, Tunon de Lara JM, Marthan R, Berger P (2011) Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention. Pharmacol Ther 130(3):325–337. https://doi.org/10.1016/j.pharmthera.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  184. Tschumperlin DJ, Drazen JM (2001) Mechanical stimuli to airway remodeling. Am J Respir Crit Care Med 164(10 Pt 2):S90–S94. https://doi.org/10.1164/ajrccm.164.supplement_2.2106060

    Article  CAS  PubMed  Google Scholar 

  185. Kaminska M, Foley S, Maghni K, Storness-Bliss C, Coxson H, Ghezzo H, Lemière C, Olivenstein R, Ernst P, Hamid Q, Martin J (2009) Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction. J Allergy Clin Immunol 124(1):45–51.e41-44. https://doi.org/10.1016/j.jaci.2009.03.049

    Article  PubMed  Google Scholar 

  186. Ramos-Barbón D, Fraga-Iriso R, Brienza NS, Montero-Martínez C, Verea-Hernando H, Olivenstein R, Lemiere C, Ernst P, Hamid QA, Martin JG (2010) T cells localize with proliferating smooth muscle alpha-actin+ cell compartments in asthma. Am J Respir Crit Care Med 182(3):317–324. https://doi.org/10.1164/rccm.200905-0745OC

    Article  PubMed  Google Scholar 

  187. Folkerts G, Nijkamp FP (2006) Nitric oxide in asthma therapy. Curr Pharm Des 12(25):3221–3232. https://doi.org/10.2174/138161206778194141

    Article  CAS  PubMed  Google Scholar 

  188. Bove PF, van der Vliet A (2006) Nitric oxide and reactive nitrogen species in airway epithelial signaling and inflammation. Free Radic Biol Med 41(4):515–527. https://doi.org/10.1016/j.freeradbiomed.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  189. Belvisi M, Ward J, Mitchell J, Barnes P (1995) Nitric oxide as a neurotransmitter in human airways. Archives Internationales de Pharmacodynamie et de Therapie 329(1):97–110

    CAS  PubMed  Google Scholar 

  190. Nijkamp FP, Folkerts G (1995) Nitric oxide and bronchial hyperresponsiveness. Arch Int Pharmacodyn Ther 329(1):81–96

    CAS  PubMed  Google Scholar 

  191. Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G (2004) Nitric oxide in health and disease of the respiratory system. Physiol Rev 84(3):731–765. https://doi.org/10.1152/physrev.00034.2003

    Article  CAS  PubMed  Google Scholar 

  192. Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774. https://doi.org/10.1146/annurev.physiol.64.081501.155952

    Article  CAS  PubMed  Google Scholar 

  193. Robbins RA, Barnes PJ, Springall DR, Warren JB, Kwon OJ, Buttery LD, Wilson AJ, Geller DA, Polak JM (1994) Expression of inducible nitric oxide in human lung epithelial cells. Biochem Biophys Res Commun 203(1):209–218. https://doi.org/10.1006/bbrc.1994.2169

    Article  CAS  PubMed  Google Scholar 

  194. Kharitonov SA, O'Connor BJ, Evans DJ, Barnes PJ (1995) Allergen-induced late asthmatic reactions are associated with elevation of exhaled nitric oxide. Am J Respir Crit Care Med 151(6):1894–1899

    Article  CAS  PubMed  Google Scholar 

  195. Prado CM, Leick-Maldonado EA, Yano L, Leme AS, Capelozzi VL, Martins MA, Tibério IF (2006) Effects of nitric oxide synthases in chronic allergic airway inflammation and remodeling. Am J Respir Cell Mol Biol 35(4):457–465. https://doi.org/10.1165/rcmb.2005-0391OC

    Article  CAS  PubMed  Google Scholar 

  196. Pavord ID, Shaw D (2008) The use of exhaled nitric oxide in the management of asthma. J Asthma 45(7):523–531. https://doi.org/10.1080/02770900801978557

    Article  CAS  PubMed  Google Scholar 

  197. Andreadis AA, Hazen SL, Comhair SA, Erzurum SC (2003) Oxidative and nitrosative events in asthma. Free Radic Biol Med 35(3):213–225. https://doi.org/10.1016/s0891-5849(03)00278-8

    Article  CAS  PubMed  Google Scholar 

  198. Pollock DM, Keith TL, Highsmith RF (1995) Endothelin receptors and calcium signaling 1. FASEB J 9(12):1196–1204

    Article  CAS  PubMed  Google Scholar 

  199. Rubanyi G (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46:325–415

    CAS  PubMed  Google Scholar 

  200. Kılkıl G, Muz MH, Deveci F, Turgut T, İlhan F, Özercan İ (2007) Effect of bosentan on the production of proinflammatory cytokines in a rat model of emphysema. Exp Mol Med 39(5):614–620

    Article  Google Scholar 

  201. Sharp CR, Lee-Fowler TM, Reinero CR (2013) Endothelin-1 concentrations in bronchoalveolar lavage fluid of cats with experimentally induced asthma. J Vet Intern Med 27(4):982–984. https://doi.org/10.1111/jvim.12119

    Article  CAS  PubMed  Google Scholar 

  202. Webb DJ, Monge JC, Rabelink TJ, Yanagisawa M (1998) Endothelin: new discoveries and rapid progress in the clinic. Trends Pharmacol Sci 19(1):5–8. https://doi.org/10.1016/s0165-6147(97)01144-9

    Article  PubMed  Google Scholar 

  203. Boscoe MJ, Goodwin AT, Amrani M, Yacoub MH (2000) Endothelins and the lung. Int J Biochem Cell Biol 32(1):41–62. https://doi.org/10.1016/s1357-2725(99)00115-6

    Article  CAS  PubMed  Google Scholar 

  204. Labram B, Namvar S, Hussell T, Herrick SE (2019) Endothelin-1 mediates aspergillus fumigatus-induced airway inflammation and remodelling. Clin Exp Allergy 49(6):861–873. https://doi.org/10.1111/cea.13367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mitchell JA, Warner TD (1999) Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br J Pharmacol 128(6):1121–1132. https://doi.org/10.1038/sj.bjp.0702897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Montuschi P, Macagno F, Parente P, Valente S, Lauriola L, Ciappi G, Kharitonov SA, Barnes PJ, Ciabattoni G (2005) Effects of cyclo-oxygenase inhibition on exhaled eicosanoids in patients with COPD. Thorax 60(10):827–833. https://doi.org/10.1136/thx.2004.035592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ramalho TC, Rocha M, da Cunha EF, Freitas MP (2009) The search for new COX-2 inhibitors: a review of 2002–2008 patents. Expert Opin Ther Pat 19(9):1193–1228. https://doi.org/10.1517/13543770903059125

    Article  CAS  PubMed  Google Scholar 

  208. Shiraki A, Kume H, Oguma T, Makino Y, Ito S, Shimokata K, Honjo H, Kamiya K (2009) Role of Ca2+ mobilization and Ca2+ sensitization in 8-iso-PGF2α-induced contraction in airway smooth muscle. Clin Exp Allergy 39(2):236–245

    Article  CAS  PubMed  Google Scholar 

  209. Robinson C, Hardy CC, Holgate ST (1985) Pulmonary synthesis, release, and metabolism of prostaglandins. J Allergy Clin Immunol 76(2 Pt 2):265–271. https://doi.org/10.1016/0091-6749(85)90640-2

    Article  CAS  PubMed  Google Scholar 

  210. Kostikas K, Gaga M, Papatheodorou G, Karamanis T, Orphanidou D, Loukides S (2005) Leukotriene B4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest 127(5):1553–1559. https://doi.org/10.1378/chest.127.5.1553

    Article  CAS  PubMed  Google Scholar 

  211. Wenzel SE, Trudeau JB, Kaminsky DA, Cohn J, Martin RJ, Westcott JY (1995) Effect of 5-lipoxygenase inhibition on bronchoconstriction and airway inflammation in nocturnal asthma. Am J Respir Crit Care Med 152(3):897–905. https://doi.org/10.1164/ajrccm.152.3.7663802

    Article  CAS  PubMed  Google Scholar 

  212. Watanabe M, Machida K, Inoue H (2014) A turn on and a turn off: BLT1 and BLT2 mechanisms in the lung. Expert Rev Respir Med 8(4):381–383. https://doi.org/10.1586/17476348.2014.908715

    Article  CAS  PubMed  Google Scholar 

  213. Babu KS, Salvi SS (2000) Aspirin and asthma. Chest 118(5):1470–1476. https://doi.org/10.1378/chest.118.5.1470

    Article  CAS  PubMed  Google Scholar 

  214. Eum S-Y, Haile S, Lefort J, Huerre M, Vargaftig BB (1995) Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin 5-dependent bronchial hyperresponsiveness. Proc Natl Acad Sci 92(26):12290–12294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Factor P (2003) Gene therapy for asthma. Mol Ther 7(2):148–152. https://doi.org/10.1016/s1525-0016(03)00003-0

    Article  CAS  PubMed  Google Scholar 

  216. Hansen G, Berry G, DeKruyff RH, Umetsu DT (1999) Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest 103(2):175–183. https://doi.org/10.1172/jci5155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Proud D, Leigh R (2011b) Epithelial cells and airway diseases. Immunol Rev 242(1):186–204

    Article  CAS  PubMed  Google Scholar 

  218. Proud D, Leigh R (2011a) Epithelial cells and airway diseases. Immunol Rev 242(1):186–204. https://doi.org/10.1111/j.1600-065X.2011.01033.x

    Article  CAS  PubMed  Google Scholar 

  219. Cook-Mills JM, Deem TL (2005) Active participation of endothelial cells in inflammation. J Leukoc Biol 77(4):487–495. https://doi.org/10.1189/jlb.0904554

    Article  CAS  PubMed  Google Scholar 

  220. Silvestri M, Bontempelli M, Giacomelli M, Malerba M, Rossi GA, Di Stefano A, Rossi A, Ricciardolo FL (2006) High serum levels of tumour necrosis factor-alpha and interleukin-8 in severe asthma: markers of systemic inflammation? Clin Exp Allergy 36(11):1373–1381. https://doi.org/10.1111/j.1365-2222.2006.02502.x

    Article  CAS  PubMed  Google Scholar 

  221. Santos RF, Oliveira L, Carmo AM (2016) Tuning T cell activation: the function of CD6 at the immunological synapse and in T cell responses. Curr Drug Targets 17(6):630–639. https://doi.org/10.2174/1389450116666150531152439

    Article  CAS  PubMed  Google Scholar 

  222. Semitekolou M, Xanthou G (2018) Activated leukocyte cell adhesion molecule: a novel regulator of allergic inflammation in the airways. Am J Respir Crit Care Med 197(8):973–975. https://doi.org/10.1164/rccm.201801-0196ED

    Article  CAS  PubMed  Google Scholar 

  223. Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Kamarck ME, McClelland A (1989) The major human rhinovirus receptor is ICAM-1. Cell 56(5):839–847. https://doi.org/10.1016/0092-8674(89)90688-0

    Article  CAS  PubMed  Google Scholar 

  224. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA (1989) A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56(5):849–853. https://doi.org/10.1016/0092-8674(89)90689-2

    Article  CAS  PubMed  Google Scholar 

  225. Cuss FM, Dixon CM, Barnes PJ (1986) Effects of inhaled platelet activating factor on pulmonary function and bronchial responsiveness in man. Lancet 2(8500):189–192. https://doi.org/10.1016/s0140-6736(86)92489-x

    Article  CAS  PubMed  Google Scholar 

  226. Pretolani M, Vargaftig BB (1993) From lung hypersensitivity to bronchial hyperreactivity. What can we learn from studies on animal models? Biochem Pharmacol 45(4):791–800. https://doi.org/10.1016/0006-2952(93)90161-o

    Article  CAS  PubMed  Google Scholar 

  227. Chu X, Ci X, He J, Wei M, Yang X, Cao Q, Li H, Guan S, Deng Y, Pang D, Deng X (2011) A novel anti-inflammatory role for ginkgolide B in asthma via inhibition of the ERK/MAPK signaling pathway. Molecules 16(9):7634–7648. https://doi.org/10.3390/molecules16097634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Maruoka S, Hashimoto S, Gon Y, Takeshita I, Horie T (2000) PAF-induced RANTES production by human airway smooth muscle cells requires both p38 MAP kinase and Erk. Am J Respir Crit Care Med 161(3 Pt 1):922–929. https://doi.org/10.1164/ajrccm.161.3.9906059

    Article  CAS  PubMed  Google Scholar 

  229. Miike S, Kurasawa K, Saito Y, Iwamoto I (2000) Platelet-activating factor activates mitogen-activated protein kinases through the activation of phosphatidylinositol 3-kinase and tyrosine kinase in human eosinophils. J Leukoc Biol 67(1):117–126. https://doi.org/10.1002/jlb.67.1.117

    Article  CAS  PubMed  Google Scholar 

  230. Guo X, Zheng M, Pan R, Zang B, Gao J, Ma H, Jin M (2019) Hydroxysafflor yellow a (HSYA) targets the platelet-activating factor (PAF) receptor and inhibits human bronchial smooth muscle activation induced by PAF. Food Funct 10(8):4661–4673. https://doi.org/10.1039/c9fo00896a

    Article  CAS  PubMed  Google Scholar 

  231. Groneberg DA, Harrison S, Dinh QT, Geppetti P, Fischer A (2006) Tachykinins in the respiratory tract. Curr Drug Targets 7(8):1005–1010. https://doi.org/10.2174/138945006778019318

    Article  CAS  PubMed  Google Scholar 

  232. O'Connor TM, O'Connell J, O'Brien DI, Goode T, Bredin CP, Shanahan F (2004) The role of substance P in inflammatory disease. J Cell Physiol 201(2):167–180. https://doi.org/10.1002/jcp.20061

    Article  CAS  PubMed  Google Scholar 

  233. Canning BJ (2006) Neurokinin3 receptor regulation of the airways. Vasc Pharmacol 45(4):227–234. https://doi.org/10.1016/j.vph.2005.08.031

    Article  CAS  Google Scholar 

  234. Schuiling M, Zuidhof AB, Zaagsma J, Meurs H (1999) Involvement of tachykinin NK1 receptor in the development of allergen-induced airway hyperreactivity and airway inflammation in conscious, unrestrained Guinea pigs. Am J Respir Crit Care Med 159(2):423–430. https://doi.org/10.1164/ajrccm.159.2.9804125

    Article  CAS  PubMed  Google Scholar 

  235. Boichot E, Biyah K, Germain N, Emonds-Alt X, Lagente V, Advenier C (1996) Involvement of tachykinin NK1 and NK2 receptors in substance P-induced microvascular leakage hypersensitivity and airway hyperresponsiveness in Guinea-pigs. Eur Respir J 9(7):1445–1450. https://doi.org/10.1183/09031936.96.09071445

    Article  CAS  PubMed  Google Scholar 

  236. Boot JD, de Haas S, Tarasevych S, Roy C, Wang L, Amin D, Cohen J, Sterk PJ, Miller B, Paccaly A, Burggraaf J, Cohen AF, Diamant Z (2007) Effect of an NK1/NK2 receptor antagonist on airway responses and inflammation to allergen in asthma. Am J Respir Crit Care Med 175(5):450–457. https://doi.org/10.1164/rccm.200608-1186OC

    Article  CAS  PubMed  Google Scholar 

  237. Saito H (2014) Mast cell research. Chem Immunol Allergy 100:165–171. https://doi.org/10.1159/000358733

    Article  PubMed  Google Scholar 

  238. Tatemoto K, Nozaki Y, Tsuda R, Konno S, Tomura K, Furuno M, Ogasawara H, Edamura K, Takagi H, Iwamura H, Noguchi M, Naito T (2006) Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem Biophys Res Commun 349(4):1322–1328. https://doi.org/10.1016/j.bbrc.2006.08.177

    Article  CAS  PubMed  Google Scholar 

  239. Saluja R, Ketelaar ME, Hawro T, Church MK, Maurer M, Nawijn MC (2015) The role of the IL-33/IL-1RL1 axis in mast cell and basophil activation in allergic disorders. Mol Immunol 63(1):80–85. https://doi.org/10.1016/j.molimm.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  240. Curry JJ (1946) The effect of antihistamine substances and other drugs on histamine bronchoconstriction in asthmatic subjects. J Clin Invest 25(6):792–799. https://doi.org/10.1172/jci101765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Nadel JA, Davis B, Phipps RJ (1979) Control of mucus secretion and ion transport in airways. Annu Rev Physiol 41:369–381. https://doi.org/10.1146/annurev.ph.41.030179.002101

    Article  CAS  PubMed  Google Scholar 

  242. Kay LJ, Suvarna SK, Peachell PT (2018) Histamine H(4) receptor mediates chemotaxis of human lung mast cells. Eur J Pharmacol 837:38–44. https://doi.org/10.1016/j.ejphar.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  243. Hofstra CL, Desai PJ, Thurmond RL, Fung-Leung WP (2003) Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther 305(3):1212–1221. https://doi.org/10.1124/jpet.102.046581

    Article  CAS  PubMed  Google Scholar 

  244. Dunford PJ, O'Donnell N, Riley JP, Williams KN, Karlsson L, Thurmond RL (2006) The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. J Immunol 176(11):7062–7070. https://doi.org/10.4049/jimmunol.176.11.7062

    Article  CAS  PubMed  Google Scholar 

  245. Driver AG, Kukoly CA, Ali S, Mustafa SJ (1993) Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis 148(1):91–97. https://doi.org/10.1164/ajrccm/148.1.91

    Article  CAS  PubMed  Google Scholar 

  246. Huszár E, Vass G, Vizi E, Csoma Z, Barát E, Molnár Világos G, Herjavecz I, Horváth I (2002) Adenosine in exhaled breath condensate in healthy volunteers and in patients with asthma. Eur Respir J 20(6):1393–1398. https://doi.org/10.1183/09031936.02.00005002

    Article  CAS  PubMed  Google Scholar 

  247. Belikoff BG, Vaickus LJ, Sitkovsky M, Remick DG (2012) A2B adenosine receptor expression by myeloid cells is proinflammatory in murine allergic-airway inflammation. J Immunol 189(7):3707–3713. https://doi.org/10.4049/jimmunol.1201207

    Article  CAS  PubMed  Google Scholar 

  248. Young HW, Sun CX, Evans CM, Dickey BF, Blackburn MR (2006) A3 adenosine receptor signaling contributes to airway mucin secretion after allergen challenge. Am J Respir Cell Mol Biol 35(5):549–558. https://doi.org/10.1165/rcmb.2006-0060OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Brown RA, Clarke GW, Ledbetter CL, Hurle MJ, Denyer JC, Simcock DE, Coote JE, Savage TJ, Murdoch RD, Page CP, Spina D, O'Connor BJ (2008) Elevated expression of adenosine A1 receptor in bronchial biopsy specimens from asthmatic subjects. Eur Respir J 31(2):311–319. https://doi.org/10.1183/09031936.00003707

    Article  CAS  PubMed  Google Scholar 

  250. Feoktistov I, Garland EM, Goldstein AE, Zeng D, Belardinelli L, Wells JN, Biaggioni I (2001) Inhibition of human mast cell activation with the novel selective adenosine a(2B) receptor antagonist 3-isobutyl-8-pyrrolidinoxanthine (IPDX)(2). Biochem Pharmacol 62(9):1163–1173. https://doi.org/10.1016/s0006-2952(01)00765-1

    Article  CAS  PubMed  Google Scholar 

  251. Kohno Y, Ji X, Mawhorter SD, Koshiba M, Jacobson KA (1996) Activation of A3 adenosine receptors on human eosinophils elevates intracellular calcium. Blood 88(9):3569–3574

    Article  CAS  PubMed  Google Scholar 

  252. Knight D, Zheng X, Rocchini C, Jacobson M, Bai T, Walker B (1997) Adenosine A3 receptor stimulation inhibits migration of human eosinophils. J Leukoc Biol 62(4):465–468. https://doi.org/10.1002/jlb.62.4.465

    Article  CAS  PubMed  Google Scholar 

  253. Caruso M, Alamo A, Crisafulli E, Raciti C, Fisichella A, Polosa R (2013) Adenosine signaling pathways as potential therapeutic targets in respiratory disease. Expert Opin Ther Targets 17(7):761–772. https://doi.org/10.1517/14728222.2013.795220

    Article  CAS  PubMed  Google Scholar 

  254. Feoktistov I, Biaggioni I (1995) Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 96(4):1979–1986. https://doi.org/10.1172/jci118245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Forsythe P, Ennis M (1999) Adenosine, mast cells and asthma. Inflamm Res 48(6):301–307. https://doi.org/10.1007/s000110050464

    Article  CAS  PubMed  Google Scholar 

  256. Holt PG, Strickland DH, Wikström ME, Jahnsen FL (2008) Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol 8(2):142–152. https://doi.org/10.1038/nri2236

    Article  CAS  PubMed  Google Scholar 

  257. Coverstone AM, Seibold MA, Peters MC (2020) Diagnosis and management of T2-high asthma. Journal Allergy Clin Immunol Pract 8(2):442–450. https://doi.org/10.1016/j.jaip.2019.11.020

    Article  Google Scholar 

  258. Muehling LM, Lawrence MG, Woodfolk JA (2017) Pathogenic CD4(+) T cells in patients with asthma. J Allergy Clin Immunol 140(6):1523–1540. https://doi.org/10.1016/j.jaci.2017.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Herrick CA, Bottomly K (2003) To respond or not to respond: T cells in allergic asthma. Nat Rev Immunol 3(5):405–412. https://doi.org/10.1038/nri1084

    Article  CAS  PubMed  Google Scholar 

  260. Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Pagé N, Olivenstein R, Elias J, Chakir J (2001) IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 108(3):430–438. https://doi.org/10.1067/mai.2001.117929

    Article  CAS  PubMed  Google Scholar 

  261. Temann UA, Laouar Y, Eynon EE, Homer R, Flavell RA (2007) IL9 leads to airway inflammation by inducing IL13 expression in airway epithelial cells. Int Immunol 19(1):1–10. https://doi.org/10.1093/intimm/dxl117

    Article  CAS  PubMed  Google Scholar 

  262. Temann UA, Ray P, Flavell RA (2002) Pulmonary overexpression of IL-9 induces Th2 cytokine expression, leading to immune pathology. J Clin Invest 109(1):29–39. https://doi.org/10.1172/jci13696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Baatjes AJ, Smith SG, Watson R, Howie K, Murphy D, Larché M, Denburg JA, Inman MD, O'Byrne PM (2015) T regulatory cell phenotypes in peripheral blood and bronchoalveolar lavage from non-asthmatic and asthmatic subjects. Clin Exp Allergy 45(11):1654–1662. https://doi.org/10.1111/cea.12594

    Article  CAS  PubMed  Google Scholar 

  264. Joetham A, Schedel M, O'Connor BP, Kim S, Takeda K, Abbott J, Gelfand EW (2017) Inducible and naturally occurring regulatory T cells enhance lung allergic responses through divergent transcriptional pathways. J Allergy Clin Immunol 139(4):1331–1342. https://doi.org/10.1016/j.jaci.2016.06.051

    Article  CAS  PubMed  Google Scholar 

  265. Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H (2012) IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol 188(3):1503–1513. https://doi.org/10.4049/jimmunol.1102832

    Article  CAS  PubMed  Google Scholar 

  266. Gorski SA, Hahn YS, Braciale TJ (2013) Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS Pathog 9(9):e1003615. https://doi.org/10.1371/journal.ppat.1003615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Akbari O, Faul JL, Hoyte EG, Berry GJ, Wahlström J, Kronenberg M, DeKruyff RH, Umetsu DT (2006) CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N Engl J Med 354(11):1117–1129. https://doi.org/10.1056/NEJMoa053614

    Article  CAS  PubMed  Google Scholar 

  268. Hamzaoui A, Kahan A, Ayed K, Hamzaoui K (2002) T cells expressing the gammadelta receptor are essential for Th2-mediated inflammation in patients with acute exacerbation of asthma. Mediat Inflamm 11(2):113–119. https://doi.org/10.1080/09629350220131971

    Article  CAS  Google Scholar 

  269. Murdoch JR, Lloyd CM (2010) Resolution of allergic airway inflammation and airway hyperreactivity is mediated by IL-17-producing {gamma}{delta}T cells. Am J Respir Crit Care Med 182(4):464–476. https://doi.org/10.1164/rccm.200911-1775OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding Source None.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatti, G.K. et al. (2021). Various Cellular and Molecular Axis Involved in the Pathogenesis of Asthma. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_3

Download citation

Publish with us

Policies and ethics