

For lasting dependability, specify...

EPON RESSINS

When you are looking for outstanding reliability, even under severe operating conditions, you can count on Epon resins to give you the excellent electrical and mechanical performance you require.

For example-Epon resins have truly amazing adhesive qualities-form strong bonds to metal, glass, and plastic. They assure air-tight, moisture-tight enclosure for delicate components and vacuum tubes. Even when exposed to solder-bath temperatures, Epon resins retain their dimensional stability.
Epon resin-based insulating varnishes and potting compounds, in addition to prov iding
excellent moisture sealing, have outstanding resistance to attack by solvents and chemicals, even at high temperatures.
When reinforced with inert fibrous filler, Epon resins produce base laminates of superior dielectric properties that can be sheared, punched, drilled, and bath-soldered.
Solvent-free Epon resin adhesive formulations require contact pressure alone and cure at room temperature, or with low heat for accelerated curing.
Will Epon resins solve a production problem for you? For a list of resin formulators and technical literature write to:

SHELL CHEMICAL COMPANY

PLASTICS AND RESINS DIVISION
110 WEST 51ST STREET, NEW YORK 20. NEW YORK
Centrol District
6054 West Touhy Avenue 20575 Center Ridye Road Shell Flusting SS New York CIRCLE I ON READER-SERVICE CARD

POTting

sealing
encapsulating

LAMINATING

COVER: To illustrate the development of the Compactron, this issue's featured New Product, ELECTRONIC DESIGN's Art Department conceived a drawing of a single tube envelope which performs four individual functions. The schematic drawings show a triode, a pentode, and two diodes, one of which is drawn larger than the other since it represents a power rectifier. The asterisks are symbols to call special attention to the four individual functions now performed by one tube.

Selected Topics In This Issue

Circuit Design

Generate Variable Delays With DC-Controlled Flip-Flops Designing Hard Tube Delay Multivibratorsp 52

Computers

Simple Analog Circuit Solves Heat-Flow Problems
Computer Memory Uses Superconductivityp 32

Instrumentation
Impulse Generator-RFI Measurement Tool.
Sweep-Frequency Techniques
for Measuring High-
Frequency Impedances
p 64
Highly Sensitive Bolometer in Works
p 34
Electronics in A.Bomb Detectionp 38

Materials

U-Shaped Laminations Help Cut Transformers' Size and Weight
Optical Materials Find Applications in Dual Infrared Radar System

JUL 211960

Sidelights of This Issue B 848012 Who Tested That Bomb?

The possibility of a ban on nuclear esting has raised the old question of how to find out who is testing what, where, and how. On page 38, News Editor Manfred Meisels explores the possibilities for the development of new systems and new devices for the detec tion of illegal blasts. "It was a digging job," he says. "Most of the stuff was available, but was filed away or pigeonholed in old Congressional committee reports, foundation surveys, industry reports, and the like." Meisels job was to get it all out, dust it off, and wrap it up into one package. We think it is a pretty thorough job of detailing precisely where the designer can aid the seismologist and rocketeer.

Measuring Heat Flow Through Solids
A constantly recurring headache for engineers in many fields of design is the problem of determining the heat flow through one or more solid materials to a constant temperature sink. Heat flow provides a limit to the power capacity of transistors and to the frequency response of thermal detectors such as bolometers and barretters. Sometimes, the heat may vary. On page 60, Richard J. Allen and Emil C. Muly combine to present a simple analog technique to solve this problem quickly.

RFI-New Developments

In ED's Feb. 3 issue, we began a series on RFI which has had a resounding success in many areas of industry and government. In this issue, Joseph Lorch, president of Empire Devices of Amsterdam, N.Y., discusses the impulse generator and its calibrating qualities in RFI measurement. Its versatility and application to both narrow-band and broad-band measurements are discussed logether with the requirements for fieldintensity meters. The story is on page 68, and on page 71 , the reader will find a list of titles and issue dates for previous articles in this continuing series.

Coming Next Issue

This year's WESCON will usher in the "Soaring ' 60 's" when it opens next month in Los Angeles. For a complete preview of the big show ard conference at the Sports Palace, see the Aug. 3 ELECTRONIC D SIGN

The design engineers at Victor's Electric Car Division sought a way of making their Dyna-Powered Maintenance Truck accelerate automatically and smoothly through the three forward speeds. The answer: Two G-V Red/Line Thermal Relays, each providing a two-second delay between steps. This assures smooth, even acceleration every time. A third Red/Line Relay shuts off the dynamic brake after a fixed time interval, conserving battery power. So, at Victor, G-V Red/Line Timing Relays are "paying off".

More and more companies are finding the reliable performance of G-V Red/Line Timing Relays makes them best for their products. G-V Red/Line Relays will "pay off" in your product, too. Your customers appreciate the importance of high quality, reliable compo nents. G-V Red/Line Timing Relays are spe cially designed for industrial applications. They have the precision, reliability and long life needed to "pay off" in industrial use
Your G-V distributor has them in stock now. Call him or write for Bulletin 131 today.

G-V CONTROLS INC. Livingston, New Jersey

ELECTRONIC SEAM WELDING

fastens with parent-metal strength.
Here's the newest technique in electronic welding automatic spot or seam welding from the same power supply! Weldmatic's new Model SA-3010 Varimatic Seam Weld Control connects to 115 volts a.c. and any Weldmatic power supply to give you these six advantages:
Structural seam welds with original parent-metal strength
30 to 180 welds per minute at a
continuous adjustable rate
Ideal preliminary fastening of metals
prior to final assembly
Quick fastening of strips and protective
plates (Thermocouples, etc.)
Joining of very thin (1 mil)

UNITEK Corp.
WELDMATIC DIVISION • 950 Royal Oaks Drive, Monrovia, California CIRCLE 3 ON READER-SERVICE CARD

CONTENTS FOR JULY 20, 1960 VOL. 8 NUMBER

Special This Issue

Design for Peace: Electronics in A-Bomb Detection
New field opens up for electronics systems design

Can You Believe What You Read?
An Editorial

Generate Variable Delays With DC-Controlled Flip-Flops

Remote-controlled delay generators with no crosstalk or loading problems-
A. Corbin

Designing Hard Tube Delay Multivibrators
A step-by-step design procedure for a cathode-coupled one-shot multivibrator.
A typical example is included to demonstrate the design-R.F. Roller
Design Considerations for Nonlinear Function Generators
A methodical approach to providing nonlinear functions-C. G. Riley

Simple Analog Circuit Solves Heat Flow Problems
A bench-top analog computer, simplicity itself, that any design engineer can assemble from stock components-R. J. Allen, E. C. Muly

Sweep-Frequency Techniques for Measuring High-Frequency Impedances 6 Techniques for accurate impedance measurements with a wide-angle view of impedance vs frequency-K. Simons

The Impulse Generator-An RFI Measurement Tool
The impulse generator offers distinct advantages over a signal generator when used for RFI testing; its merits and applications are discussed-J. Lorch

U-Shaped Laminations Help Cut Transformers' Size, Weight
Units range from 2 to 30 per cent smaller and lighter

Optical Materials Find Applications In Dual Infrared-Radar Systems
Materials are among the few accepted for both radar and infrared use
Two-Tube Radio, Ten-Tube TV On Way With Multi-Function "Compactrons" 74 Twelve-pin, multi-function tubes are available for entertainment and industrial devices

What Job Should You Seek? Test Yourself And Find Out

GE engineers and Deutsch and Shea personnel men make up a test-yourself
scheme for young engineers

Russian Translations

German Abstracts
Precision Audio Frequency Measuremen
Information And The Human Memory 159

ELECTRONIC DESIGN Digest

Radar Interference With Microwave Communications 160

ELECTRONIC DESIGN
Mayden Publishing Co., Inc. 830 Third Avenue, New York 22, N.

ELECTRONIC DESIGN News

Military Meeting Stresses Systems Needs
CW. Non-Doppler Ranging System for Samos
Optical Maser Developed by Hughes Gives $10-\mathrm{Kw}$ Coherent Light Output NBS Accuracy Standards Called Inadequate
Pre-Planned Workshop Sessions Will Be Feature of WESCON
Navy Bureau of Weapons Seeks New Design Ideas
Five States Testing Infrared Traffic Control
Shipboard Digital Computer Is Keystone of ASROC System
Industry Growth Continuing, Navy Survey Shows
Magnetic-Tape Recorder Monitors 65 Different Variables In Fligh
Anti-Sub Advisory Group Adds Two Committees
Generator Uses Reactor Core Heat
RCA Computer Memory Uses Superconductivity
Highly Sensitive Bolometer In Works
Electronics In A-Bomb Detection

Design Decisions
Performance Of Wideband Recorder Boosted
Punched Cards Program Diode Function Generator
Powerless Pilot Lamp Glows Even In Bright Daylight
Female PC Cards Improve Computer Maintainability

Ideas For Design
Digital FM Technique Delays Analog Signal On Magnetostrictive Line 146
Copper Laminate Board Ideal For RF Breadboarding
Tunnel Diode Is Sensitive Level Detector
148
Four-Resistor Decade Uses Standard Rotary Switch
48 -

Washington Report22

New Products .. 76

Services For Designers .. 136

New Literature ... 142
Patents .. 150
Books 152
Standards And Specs 164
Careers .. 166

Advertisers' Index .. 174
$N_{B} P$ (1) BPA

ETRRNIC DESIGN is published bi weekly by Hoyden Publishng Company, inc., 830 Thy Avenve. New Yerk 22, N.Y.
Richard Goscoigne. Chairman of the Boord, Jomes S. Mullholland Jt., President, Prived ot Hildreth Presss. Bristol, Conn

ELE :TRONIC DESIGN • July 20, 196076

Production Products .. 132
Production Products 132

Military Meeting Stresses Systems Needs

Tunnel-Diode Amplifiers, Military's Stake in Education, Bulk Semiconductors for Microwave Devices Also Featured

T
HE LATEST directions in needs and concepts for military systems and devices were outlined in a broad range of papers at the recent National Convention on Military Electronics in Washington, D. C.

Highlights of this fourth annual meeting, which drew some 2,000 registered and nearly 4,000 total conferees, included:

- Steps forward in many phases of satellite and space technology.

Contract award for service application of a parametric amplifier was announced by Microwave Associates during the military electronics convention. An L-band unit, similar to this, will be incorporated into all presently operating AN/MPS-11A acquisition radars by the U.S. Marine Corps. Meeting the specified sensitivity improvement of from 10 db to 3 db or less, this unit dramatically increases range of the 12 -year old system to meet jet-age requirements.

- Concentrated efforts on advanced communication techniques to meet the needs of complex systems and new space requirements.
- Widespread activity in electronic simulation equipment for all the services.
. Much work in camera tubes and other sur-veillance-type equipment.

Among papers of special interest to design engineers were those on the use of bulk semiconductor devices in microwave applications, and design considerations in using tunnel diodes in amplifiers.

A panel discussion on education moderated by Prof. Jerrold R. Zacharias, Massachusetts Institute of Technology, and including top representatives of each of the three services also drew much engineer interest at the three day conference.

Recent advances in the application of bulk semiconductor devices to microwave devices was reported during the convention by five Signal Corps scientists. Laboratory results indicate that an entire new family of microwave devices may evolve, they said.

For several years, it has been known that microwave energy can be modulated when a semiconductor rod is inserted in a waveguide, the authors said. Experiments indicate several different types of device possibilities for amplitude and phase modulation.

Wide Range of Wave-Guide Tests

Basic work was performed in the laboratory using 10 kmc energy, with slabs of semiconductor material of various thicknesses oriented in different ways with respect to the wave guide. Conductivity of the slab was varied during these experiments by some physical means. In one case, uniform injection of excess minority carriers was accomplished through wires soldered to the slab. In other cases, conductivity was varied by light impinging on the semiconductor. Conductivity variation between $\sigma=2$ and $\sigma=10$ caused a corresponding change in $E_{o} / E_{\text {in }}$ from about 56 per cent to about 10 per cent.

When the semiconductor slab is oriented so that its long dimension is parallel to the direction of the waveguide, internal reflections were found to be smaller than when the slab is oriented at right angles to this direction. The result of reduced internal reflections is that absorption by conductivity changes of the semiconductor is the more pronounced factor in causing modulation of the transmitted signal. Because of this, amplitude modulation is accomplished with little or no corresponding phase modulation. The ability to minimize the phase shift by proper choice of geometry was verified experimentally.
In much the same way, proper choice of the geometry and orientation of the semiconductor slab can also lead to phase shift with minimum amplitude modulation. In one case, a slab 0.8 x $0.8 \times 1.5 \mathrm{~cm}$ was inserted in a waveguide with its long dimension across the waveguide. A 30 per cent phase shift was accomplished with very little change in attenuation. This experiment was accomplished by the injection of current in a manner not entirely uniform.

The experiment was further checked by flooding the sample with light to increase its conductivity. Again it was verified that increased conductivity induced by the light source could actually cause an increase in transmission, rather than an expected decrease, at the same time the phase shift was changing.

Gain Variation with Source or Load Conductance
 oscillation

The ability to modify microwave energy by lectrical or light energy by means of a semiconductor, leads to the possibility of several other devices. For example, if the PIN diode is reversed bias, conductivity modulation can occur at higher frequencies than when biased in a forward direction. The design for an amplifier has worked out using this principle. Furthermore, since these principles apply to the infrared as well as the microwave region, various infrared modulators, phase shifters and detectors could possibly be arranged to carry out new electrooptical functions.

Problems in Tunnel-Diode Use

Lumped parameter high-frequency tunneldiode amplifiers are feasible, however they do not necessarily represent an improvement over existing transistor amplifiers in the same frequency range according to Thomas \mathbf{O}. Krueger, electronics engineer, Solid State Development Div., U. S. Army Signal Research and Development Laboratory, Fort Monmouth, N. J.
Many new factors must be considered in the use of tunnel diodes in amplifiers, Mr. Krueger said. Some of the problems which exist in practical amplifiers applications include:

- Temperature effects on negative conductance may cause instability. This effect is more serious with germanium than with silicon or gallium arsenide devices.
- Instability can be caused by small changes in source or load impedance.
v Very low impedance levels, on the order of 10 to 50Ω, create termination and impedance transforming problems, particularly if the amplifier is used as the first stage of a receiver.
Advantages offered by the tunnel diode if these problems are solved include low power consumption, very-high-frequency operation, and small size.
One of the primary considerations of the tunnel diode amplifier designer is the lead impedance. If this impedance, plus that of the rest of the circuit external to the device, becomes greater than the negative resistance of the diode,

Tunnel diode tuned amplifier equivalent cirvit, with G_{B} and G_{L} representing source and rad conductance, and $-g$ representing the onductance of the diode.

CIRCLE 5 ON READER-SERVICE CARD $>$
ELEGTRONIC DESIGN • July 20, 1960

Raytheon CK7576 Helps Keep Space Probes Sharp

CK7576 CHARACTERISTICS AND TYPICAL OPERATION: 235Mc GROUNDED GRID RF AMPLIFIER

Filament Voltage . . $6.3 \pm 5 \%$ volts Plate Voltage 200 volts Cathode Resistance . . . 150 ohms Peak RF Grid
to Cathode Voltage . . 14 volts
Grid Current 10 made
Pinte Current 37 madc
RF Driving Power
(Approx.) 0.5 watts Useful Power Outnut . . 3.25 watts

Effective missile operation depends on compact, reliable telemetering made possible by components such as the CK7576.

The Raytheon CK7576 is a subminiature triode providing over 3 watts output at 235 Mc in grounded grid RF power amplifier service. It offers designers of spaceborne telemetering equipment the advantages of excellent isolation between input and output circuits, high transconductance, high amplification factor, and impressive powerhandling capabilities.

If your area of design interests includes airborne communication and navigation applications make it a point to investigate the CK7576 as well as the other versatile types in Raytheon's full line of subminiature tubes. For technical information, please write to: Raytheon, Industrial Components Division, 55 Chapel St., Newton 58, Massachusetts.
For Small Order or Prototype Requirements See Your Local Franchised Raytheon Distributor.

RAYTHEON COMPANY

INDUSTRIAL COMPONENTS DIVISION

Measure 10cps to 110 Mc with one compact meter

Comprehensive range for only $\$ 1895$. Never before has so broad a range been offered for so low a price - a combination made possible by closely integrating a simple heterodyne converter with a top-notch 10Mc counter. Frequencies up to 10 Mc are measured by direct counting. To measure frequencies above 10 Mc , the operator simply rotates reference frequency selector until panel meter shows strong deflection, then reads counter indication. Measurements take less than a minute to make. Accuracy far exceeds FCC requirements over communications range. Possible error is $.00004 \%$ or less from 1 Mc to 110 Mc .

Frequency measuring range
Frequency meas
10cps to 110 Mc
10 cps to
Sensitivity
100 mv rms into 1 M ohms 10 up to 10 Mc
100 mv rms into 100 ohms 100 my rms into 100 ohms
up to 110 Mc Accuracy Accuracy
Oscillator accuracy
\pm Oscillator stability 3 parts in 10^{7} per week Recording facility
Rear jack carries code signa Rear actuate Beckman printer Dimensions:
$83 / 4^{" 1} \times 19^{\prime \prime}$ panel, $17^{\text {n }}$ deep Weight
Ready for rack. approx 47 Ready for rack: approx 47 ID
In cabinet: approx. 60 ibs. Price $\$ 1895$

Write for technical bulletin on Model 7175.

Beckman

MIT's Dr. Zacharias said that high school children must be taught more about wave theory and mid-20th-century physics than is known to most of the people attending the convention, who are admittedly scientists and engineers of a professional caliber. This means, according to Dr. lacharias, that it must be made digestible. This is a tough assignment, he said, since one must first understand it well.
Dr. Zacharias described a program in which he is involved, using every learning aid available, not just teachers. Kits, movies, and laboratory de, ices are used in this program.
Because the children who will be coming along 10 or 15 years hence will come up through the semiconductor route, physics will be much more important to them, he said. Therefore they have to learn some real physics and before the learning process can really be effective, these students must be motivated, he added.
Dr. Zacharias said the military has to support education just as much as it has to support an aircraft company's basic research or an electronics company.
Vice-Adm. J. T. Hayward agreed in general with Dr. Zacharias. He went on to say the Navy has several programs already in aiding education, citing the Naval Academy, the ROTC, and en-listed-men educational program. The Navy has not, however, faced up to the massive education problem. Far from being an item of cost to the defense effort, Admiral Hayward said that the cost of the loss due to lack of technically trained people is far greater than that of the program.
Maj. Gen. Marcus F. Cooper stated that the Air Force leans heavily toward on-the-job training and is committed to several WADD training programs. The problem in aiding education is a budget problem, General Cooper said. When the hand is put in the pocket for any program like this, one finds many other hands already there, he alded.
Maj. Gen. Earl F. Cook cited experiments in which the Army supplied lesson plans intended for high-school graduates in the service to highscliool students at various levels in the Fort Monmouth area. The results were successful.
Summing up, Dr. Zacharias noted that all the participants in the panel discussion agreed with the basic desire to aid education. He said he wondered, however, how much could be expected in this direction. The bogey-man of Federal interference is often raised, according to Dr. Zacharias. H. noted, however, that 60 per cent of highscliool students are using the same basic physics text. There seems to be plenty of room for variation under such a situation, and his conclusion Wis that just as much variation is possible under military aid to education. - -

TAMing

${ }^{\text {OF THE }}$ SCREW

Newest additions to the Burnell Adjustoroid ${ }^{\text {B }}$
line, the microminiaturized Kernel ATE 34 and the miniatures ATE 11, ATE 0, ATE 4, represent an important contribution to printed circuit design.
These new Adjustoroids possess the exclusive advantage of flush-slotted heads which serve to eliminate adjusting screws - provide maximum economy of height - insure ease of adjustment. Besides high \mathbf{Q}, they also offer high stability of inductance versus dc.
The new microminiature Kernel ATE 34 and the miniature ATE 11, ATE 0 and ATE 4 Adjustoroids are variable over a 10% range of their inductance. Fully encapsulated. they will withstand high acceleration and vibration environments. These Adjustoroids meet specifications MIL-T 27 Grade 4, Class R and MIL-E 15305 A as well as MIL-E 5272 for humidity and thermal shock. Write for Adjustoroid Bulletin ATE-7.
SEND NOW FOR HANDY $24^{\prime \prime} \times 36^{\prime \prime}$ TOROIDAL INDUCTOR WALL REFERENCE CHART Lists more than 100 types of toroidal inductors and adjustoroids. Gives performance characteristics, mechanical specifications, including case sizes, types of sealing, etc. Attach coupon to company letterhead. And if you haven't already done sosend for your free membership in the Space Shrinkers Club.

Burnell \& Co., Inc.

Dept. D-34 10 Pelham Parkway, Pelham, New York Gentlemen:
$\square 1$ am interested in your new universal toroidal reference chart.
I am interested in a Space Shrinkers Club membership.
name.
title....
company....
address.....

Both Are 0.1 Mfd, 200V
 Capacitor
Electron Products rectangular epoxy-tube capacitors with metallized Mylar* or paper dielectric are small in size . . long on specs . . . short on price.
They meet or exceed most military environmental requirements of larger, more expensive hermetically sealed components... MIL-C-18312 and MIL-STD202...humidity, temperature and immersion cycling, shock, vibration.

Typical Specifications	Paper	Mylar
operating temperature ${ }^{\circ *}$	-55° to $+125^{\circ} \mathrm{C}$	-55° to $+85^{\circ} \mathrm{C}$
insulation resistance at $25^{\circ} \mathrm{C}$	$1,500 \mathrm{meg} \times \mathrm{mfd}$	$10,000 \mathrm{meg} \times \mathrm{mfd}$
dissipation factor at $25^{\circ} \mathrm{C}$	less than 1%	less than 1%
test voltage	$1.5 \times$ rated voltage	$1.5 \times$ rated voltage
- h higher with derating		

Special capacitors built to meet your particular requirements. Standard values are available for immediate delivery...capacitances as low as . 001 $\pm 1 \%$, up to 600 VDC rating.
Write for Electron Products engineering file ED for complete specifications, sizes, temperature characteristic curves.

ELECTRON PRODUCTS

division of Marshall Industries

430 North Halstead Street, Pasadena, California

-Trademark of DuPont 60037 © 1960 Marshall Industries circle 8 ON READER-SERVICE CARD

NEWS

CW, Non-Doppler Ranging System For Samos Measurement Will Go to $\mathbf{3 , 0 0 0}$ Miles With Accuracy Within 300 Feet, Philco Says

ACONTINUOUS-wave, nondoppler type ranging system will be used in measuring slant range to Samos reconnaissance satellites.
A system to provide the range measurement out to 3,000 miles with an accuracy of 0.05 nautical miles has been designed by Philco Corp.'s Western Development Laboratory, Palo Alto, Calif. Some details of the cw ranging system were disclosed at the recent National Convention on Military Electronics in Washington by Frank C. Lanza of the laboratory.
Several of the systems are being built and installed for use in the Samos program, and later in the Midas program. The laboratory is subcontractor to Lockheed Aircraft Corp. for the satellite package in both of these programs.
The planned system will use four low-frequency tones to modulate a telemetry carrier in the 1.5 to 2.5 kmc region. The low-frequency signals are synchronized and phase coherent. The modulated signals
are sent to the satellite, and returned by a transceiver, so that the phase difference between the modulation of the returning signals and present modulation is proportional to the transit time and therefore the range to the vehicle.

Tracking will begin when the satellite comes within 3,000 miles of the station in slant range, and will continue over the station to 3,000 miles on the opposite side. Other instrumentation will be necessary to provide azimuth and elevation measurements.
The lowest frequency tone is selected so that its period is longer than the round-trip transit time to the satellite at maximum range, plus the time added in the vehicle transceiver and by the range measurement equipment.
The highest frequency is selected to provide the accuracy required. For 0.05 miles the highest modulating tone must be about 25 to 30 kc , according to Mr. Lanza.
This choice means that phase stability must be held to about 4

Basic Philco Western Development Laboratory cw ranging system provides range output in three forms-binary for computer use, decimal for readout, and analog for an oscilloscope.

ELECTRONIC DESIGN • July 20, 1960
degrees, which does not offer excessive circuitry problems, he explained. It also keeps required telemetry bandwidth well within 200 kc .
Intermediate frequencies, used along with the lowest frequency to resolve phase measurement ambiguities, should be separated as much as possible from the highest frequency. Practical compromise ratios between 10:1 and 15:1 arc being used in the Samos ranging system.
To complete a range measurement the equipment must select the proper cycle of the highest modulating frequency for making the final phase difference measurement. The number of frequencies required to resolve this ambiguity is determined by the maximum range of the system and the highest modulating frequency selected.
The Philco system uses a specially designed temperature controlled crystal oscillator with stability of 2 parts in 10^{6}. A synchronous frequency divider is used to provide the three lower frequency tones, so that stability of all four frequencies is the same.
Phase coherent circuits filter and phase lock the ranging tones to the desired phase angle. A precision phase compensator is used to compensate for the time delay in the range loop.
The phase locked, compensated tones modulate the subcarrier, which is fed to a multiplexer and crimmand transmitter.
Prior to modulation the ranging tcnes are sent to an ambiguity resilver which selects the proper c) cle of the highest frequency to st urt the range measurement. This p oper cycle is the one which starts

SAT... SILICON SURFACE ALLOY TRANSISTORS

	applications	freq. (mim.)	special properties
2N495 2 N 498 2 W 1 I 2M1118A 2 W19 2N1429	Amplifier, Switch, Control Switch Amplifier, Switch, Control Amplifier, Switch, Contro Switch Amplifier, Switch, Control Amplifier, Switch, Control	$f_{\text {max }}-8 \mathrm{mc}$ $\mathrm{fr}-7.2 \mathrm{mc}$ $\mathrm{I}_{\max }-8 \mathrm{mc}$ $f_{\text {max }}-8 \mathrm{mc}$ fr-7.2mc $\mathrm{I}_{\text {max }} 18$ mc $f_{\text {max }}-18$ mc	VCE=25v, To-1 case vory low V saturation, $\mathbf{T} 0-1$ caso olectrices equivalent of 2 NA 85 . TO-5 case hlgh bota version 2 N1118 oloctrical oquivaloent of 2 N496. T0-5 caso low cost, high beta, TO-1 case low cost, high beta, 10-5 case
SADT... . SILICON SURFACE ALLOY DIFFUSED-BASE TRANSISTORS (All TO-8 cases)			
2 N 1199	Switch	${ }_{\text {fr }}$-75 mc	superior toma
2 1 1267	mod. Froquoncy Amplifier	${ }_{\text {max-43 }} \mathrm{mc}$	low beta (video amplifitior)
${ }^{2 N 1288}$	Mod. Froquency Amplifitier	$f_{\text {max-4 }} \mathbf{4} \mathrm{mc}$	medum
2 N 1289	mod. Froguency Amplifiter	$\mathrm{f}_{\text {max }} \mathbf{4}$ mm	high beta
2N1270	High Froguoncy Amplifiter	$\mathrm{fmax}^{\text {- }} 125 \mathrm{mc}$	low dota (video amplifier)
2N1271	High Froquoncy Amplifilier	${ }_{\text {max }}$-125 mc	mealium bota
211272	High Frequency Amplifitior	${ }_{\text {max }} \mathbf{- 1 2 5}$ mc	high bota
2 W 1472	Switch	$\mathrm{ft}^{\text {-75 mc }}$	very low V saturation superior temperature stability
2 M 1863	Swit	$\mathrm{r}-100 \mathrm{mc}$	superior tomp. stability . . . igh bota

PHILCO SILICON HIGH FREQUENCY TRANSISTORS

Philco SATs and SADTs have established the industry's greatest history of reliability in high frequency silicon transistors. They were the first of this type to be made available in production quantities and have been used extensively in thousands of critical military and commercial applications. Philco also has led the industry in the development of high-speed automatic production methods which have made possible a steady reduction of prices. This leadership in both reliability and low price results in the greatest performance per dollar in the high-frequency silicon field. For complete data, application information and prices on any of these silicon types, write Department ED72060.

RUSH - is the middle name of those highly trained and expe rienced personnel in Photocircuits" prototype and short run division.
In 1959 alone Proto-Circuits perple handled over one thousand separate printed circuit projects replesenting tens of thousands of circuit Imards - many delisered in 48 hours or less.
Proto-Circuits offen the absolute maximum in semice with no limitations on sophistication. From schematic to fully assembled and tested boards your prototypes and short runs are made with production methods and materials.

Test your equipment as soon as it comes off the drafting board. Contact your loceal Photocircuits Application Engineer or call us collect for further information: in New York, ORiole 6-8000: in California. KEllogg 2-3338.

Optical Maser Developed by Hughes Gives 10-KW Coherent Light Output

An optical maser capable of generating a coherent output in the visible light spectrum has been developed at the Hughes Research Laboratories, Culver City, Calif., by a group under the direction of Dr. Theodore H. Maiman.
The experimental device, dubbed a "laser" (Light Amplification by Stimulated Emission of Radiation) has been operated both as an amplifier and as an oscillator at red light frequencies (6943 angstroms). Peak outputs of 10 kw have been obtained at 1 -msec pulses and operating frequency is thought to be tuneable over a band of 100 kmc . The device is about the size of a water glass.
The laser consists essentially of a chromedoped ruby cylinder surrounded by a high-intensity gas-discharge light source. Polished disks near each end of the ruby cylinder interact with the cylinder to form a resonant cavity effect. Green and blue light in the output spectrum of the discharge tube excites the chrome ions above their ground energy state. The ions then undergo a non-radiative transformation to a lower. metastable energy state. In returning to the groundenergy state from this level, the ions emit coherent, visible light. Emission can be self-initiating, in which case the laser operates as an oscillator, or triggered by an input signal, as in a conventional master, so that amplification is obtained. Spontaneous emission continues, however, even in the amplifying mode, thus resulting in a noise temperature of $15,000 \mathrm{~K}$.
Output is restricted to a band less than one angstrom wide at room temperature operation. At liquid nitrogen temperatures, laser bandwidth is narrowed by a factor of approximately 25 . Noise temperature, however, is not appreciably decreased.
The output is highly coherent. Emission by all ions occurs in phase and the radiation is highly polarized. This permits focusing the output into extremely narrow parallel beams (less than 0.01 deg. wide) and suggests applications for the laser in light beam radars, space communications and high resolution optical instruments.
In addition to the resonant cavity type described, a traveling wave laser is also thought feasible. Both types can be designed for cw output. Peak power far higher than the present 10 kvy is also thought possible. The present device is only one percent efficient and an improvement of 10 is believed feasible.
The laser was developed by Hughes under an ei tirely company-supported program.

MADT ${ }^{\text {® }}$ transistors from Sprague*

for the highest r-f operating frequency of all mass-produced transistors
for the fastest switching time of all mass-produced transistors
for storage temperatures up to $100^{\circ} \mathrm{C}$

DESIGN AROUND SPRAGUE MICRO-ALLOY DIFFUSED-BASE TRANSISTORS

available now at sensible prices you can afford!

Sprague Germanium Micro-Alloy Diffused-Base Transistors, well-known for their rugged vhf performance, are now priced below other trausistors with comparable electrical characteristics. In many areas, this permits designers to improve circuit techniques without necessarily increasing costs. Expanded production facilities enable us to ship quantity orders on short notice. Add to this their ultra-fast switchine time, and you have three good reasons why Sprague MADT ${ }^{\text {® }}$ Transistors have achieved their high level of acceptance.
With Sprague Transistors, circuits in vhf amplifiers and oscillators can now operate with collector currents as high as 50 ma ... with power dissipation up to $50 \mathrm{mw} .$. with collector to base voltages to $15 v$. They have been application tested through the entire military electronics vhf spectrum.
The application table may well suggest the use of one or more Micro-Alloy Diffused-Base Transistor types in your latest circuit designs.
*Sprague micro-alloy, micro-alloy diffused-base, and surface barrier transistors are fully licensed under Philco patents. All Sprague and Philco transistors having the same type numbers are manufactured to the same specifications and are fully interchangeable.

MICRO-ALLOY DIFFUSED-BASE TRANSISTOR APPLICATIONS	
Type	Application
2N499	Amplifer, to 100 mes
2N501	Ulira High Speed Switch (Storage Temperature, 85 C)
2N501A	Ultra High Speed Switch (Storage Temperature, 100 C)
2N504	High Gain If Amplifier
2N588	Oscillator, Amplifer, to 50 mes

For complete engineering data on the types in which you are interested, write Technical Literature Section, Sprague Electric Co., 347 Marshall St., North Adams, Massachusetts.

You can get off-the-shelf delivery at factory prices on pilot quantities up to 999 pieces from your local Sprague Industrial Distributor.

SPRAGUE*

BPRAGUE COMPONENTS:

CAPACITORS - RESISTORS - MAGNETIC COMPONENTS - TRANSISTORS • INTERFERENCEFILTERS • PULSE NETWORKS MIGH TEMPERATURE MAGNET WIRE - CERAMIC-BASE PRINTED NETWORKS - PACKAGED COMPONENT ASSEMBLIES CIRCLE II ON READER-SERVICE CARD

product othe pioner

HIGH-FREQUENCY FEATURES

-IN A NEW LOWFREQUENCY OSCILLOSCOPE

Abstract

\square A comprehensive performer - simplifying many procedures previously requiring specialized oscilloscopes. The $401 \cdot \mathrm{~B}$ provides highfrequency type concepts with low-frequency operation. The 401-B features identical amplifiers - enabling equal-ordinate, calibrated plots for accurate measuring on both axes. Its wide range of sweep speeds, provisions for single sweeps with rearming facilities, selection of auto or driven sweep, an "electronic shutter" and other unique features - all helping to create versatile displays on a new high brilliance 5 kv cathode-ray tube establish the $401 \cdot \mathrm{~B}$ as a true general purpose, high performance oscillo. scope. Write for complete details.

OUWOM 401-B

NeWs

NBS Accuracy Standards Called Inadequate

Speakers at Boulder Meeting Call for Revamping

The CALIBRATION needs of industry are in many cases far beyond the capabilities of the National Bureau of Standards, Sperry Gyroscope's Lloyd B. Wilson told the 1960 Conference on Standards and Electronics Measurements at Boulder, Colo.
Mr. Wilson, the first speaker at the three-day conference said that in metrology, many industries had been forced to adopt their own calibration standards. This, he said, would be acceptable if all
companies had the same procedures and equipment. But standards of each of hundreds of companies may not be compatible with each other or with the military, he said.

Compatibility Lack 'Frightening'

Referring to the lack of national compatibility, Mr. Wilson said it was "shocking, even frightening that we are building a space age technology on such shaky foundations." He cited recent Navy, Air

Force, EIA, and Areospace Industries Association studies as having revealed urgent need for improved calibration and standards.

Losses in Time and Money
Part of the fault, he said the surveys showed, lay with the financial limitations imposed on the NBS. In once case, he told the convention, proper power-calibration services on the part of NBS would have saved several hundred thousand dollars. In another case cited, he said almost \$1 million could have been saved if $60-$ to $80-\mathrm{db}$ attenuation calibration had been available for the Ku band with accuracy within a few tenths db.

Russian Creativity Stifled, But.

In the welcoming address to the conference, Dr. F. W. Brown, director of the NBS Boulder Laboratories, reported that in the USSR all standardization is under rigid, centralized control. During a recent visit, he said he saw great attention paid to standards and measurements. He saicl the Russians have five major $R \& D$ centers dersted to metrology and 100 calibration centers.
Top accuracy standards are not always essen-"-Dr. A. G. McNish before 811 registrants 1) the NBS Conference on Standards and Electronic Measurements.

THT

 UNIVERSAL TRANSISTOR

FAIRCHILD'S $2 N 1613$

DIFFUSED SILICON PLANAR TRANSISTOR

GUARANTEED USEFUL BETAS FROM $100 \mu \mathrm{~A}$ to 0.5 A :
$15 @ 1 \mathrm{~mA} 20 @ 1 \mathrm{~mA} 30 @ 150 \mathrm{~mA} 15 @ 500 \mathrm{~mA}$ Guaranteed minimum Beta over a 5,000 to 1 range of collector current makes the 2 N 1613 the most versatile transistor presently on the market.
WIDE RANGE OF APPLICATIONS: in Fast Switching
(logic and high current): Amplifiers (low level, low noise, wideband. VHF power).
RELIABILITY IN A NEW DIMENSION: The Planar

Transistor is the most thoroughly proven transistor ever introduced commercially, with over $5,000,000$ transistor hours plus $300^{\circ} \mathrm{C}$. stabilization on all units.
SOME IMPORTANT PARAMETERS: 7 db -Noise Figure: 100 megacycles-Gain-bandwidth product; $0.0005 \mu \mathrm{~A}$ ICBO typical at $60 \mathrm{~V}, 25^{\circ} \mathrm{C}$.
IMMEDIATE AVAILABILITY: Quantities from 1.999 from franchised Fairchild distributors at factory prices.

545 WHISMAN ROAD / MOUNTAIN VIEW, CALIF. / YOrkshire 8-8161 For full specifications, write Dept. B

A WHOLLY OWNEO SUBSIDIARY OF FAIRCHILD CAMERA AND INSTRUMENT COMPANY

Tus of electronic standards at the Radio onda ds Laboratory of NBS. For come parameters : status at specific frequencies may differ from the ius ucross a band of frequencies. NBS should be macied for exact information on calibration servsav silable at specific frequencies.

NEWS

This strict control and centralization, he said, mav stifle creativity, but it brings results. "We don t work this way," he said, "so we have a gre t responsibility imposed on us."

Management must recognize the importance of a standards laboratory. Harvey W. Lance, of NES Boulder said. It should provide adequate facilities, adequate equipment, and proper environment and should not be an adjunct to the toul crib, he told the meeting.

Mr. Lance decried the use of reference standards as working standards. Many companies have been forced to use their reference standards in the shop to meet accuracy requirements of equipment. In other cases, inadequate accurate "standards" have been used because there were none better.

In another presentation, Dr. Alvin G. McNish. chief of the metrology division of NBS-Washington, indicated that NBS-caliber standards are not always essential. He cited the case of six wooden meter sticks he had purchased at local hardware stores and calibrated against the NBS standard At 20 C and 45 per cent R.H., their average error was 200 ppm . These meter sticks are certainl not acceptable as national standard, commented Dr. McNish, but as carpenters' tools they are perfectly suitable.

Dr. McNish challenged the position that in every case a standard must be 10 times as accu rate as the instrument to be tested. This is often the case, said Dr. McNish, but in many cases a much smaller ratio can suffice. He showed that measurement accuracy normally doesn't suffer by a factor of 10 even when a calibration is traceable to a standard three echelons away.

During an evening session, Mr. F. L. Hermach also of NBS-Washington, developed this concept further and showed that errors from different sources are rarely maximum in the same direction at the same time. Hence, the confidence limit of a calibration is not dictated by the sum of all possible contributing errors, but rather by the worst individual error, he said.

In another paper, Col. Richard F. Stolle of Wright-Patterson AFB used the analogy of the boy racing from a haunted house to dramatize the progress this country has made in standards and calibration. The boy had just broken the 4 minute mile when a pursuing bony finger tapped his shoulder and a spectral voice panted "That was quite a mile we raced."
"Yes," gasped the boy as he started to break his own record, "but it's that next mile I'm worried about."
"So it is with us," Col. Stolle said. "We've made a lot of progress, but it's that next mile I'm worried about." - \quad •

Pre-Planned Workshop Sessions

 Will Be Feature of WESCONTo augment the usual technical sessions at the Angust 23rd-26th Western Electronics Show and Convention in Los Angeles, special workshop sessiuns have been planned, according to Richard G. Leitner. Chairman of the Technical Programs. Selected authors will be invited to participate in the WESCON workshop sessions, Leitner said. The workshops will be based on material developed during the morning sessions, and will include such subjects as "Stereo-Multiplexing Methods," Information Theory and Modulation Methods," and subjects on microminiaturization, air-traffic control, space science, and bio-instrumentation systems.
A series of four workshops, each three hours long, promises to be of particular interest. These are: "Management of Manned Machine Systems," R. L. Clark, Dept. of Defense, Moderator; "Analysis of Manned Machine Systems," Lieut. Col. Anthony Debbons, Rome (N.Y.) Air Development Division; "Synthesis and Design of Manned Machine Systems," D. T. McRuer, Systems Technology Inc.; "Operation and Training With Manned Machine Systems," J. Lyman, University of California at Los Angeles.
Purpose of the sessions, according to Mr. Leitner, is to enable the audience and speakers to go into greater detail on the subject material of interesting papers.

No Recruiting at Show

"There will be no recruiting at WESCON functions," WESCON manager Don Larson said. He reported that over 100 replies to letters sent out to exhibitors indicated unanimous agreement of WESCON's "no-recruiting policy."
Recruiting, the bane of electronic shows, suffered a blow with the mailing of 2,000 letters to principal exhibitors, signed by WESCON's Chairman, Walt Peterson. Response to this letter has been good. according to Mr. Larson. "We've had such wonderful response from companies," he said, "that we're sure recruiting at WESCON functions will be non-existent." There is no penalty attached to violation of the policy, Mr. Larion added. "It is strictly a gentlemen's agreement."
Careers Inc. will establish a "California Southland Careers Center" at the Shrine Auditorium about a mile from the WESCON location in the Los Angeles Sports Arena, reported Careers presiden William Douglass. As at IRE in March, Mr. Dor glass takes the position that a career center doe not run counter to show policy, since it kee 's recruiting off the show grounds.

Centralab's $1 \frac{1}{2}$ watt sub-miniature Wirewound Variable Resistor

Centralab's Model 3W is the smallest $11 / 2$ watt variable resistor on the market- $1 / 3$ smaller than otherwise similar units! Designed especially for high reliability applications, it meets the environmental and electrical specifications of MIL-R-19. The Model 3W is recommended for high temperature operation up to $125^{\circ} \mathrm{C}$. Its completely closed construction is designed for sealing or potting.

SPECIFICATIONS:
Dimensions: $11 / 66^{\circ}$ maximum diameter over encapsulation. $3 / 6^{\prime \prime}$ depth.
Shaft: $0.125^{\prime \prime}$ diameter stainless steel.
Terminals: Gold-plated nickel silver.
Resistance range: 4 ohms to 30 K ohms $=10 \%$, linear taper.
Rating: $11 / 2$ watts at $40^{\circ} \mathrm{C}$.
Complete specifications on the Model 3W variable resistor are given in Centralab Technical Bulletin EP-891. Write for your free copy.

The Electronics Division of Globe-Union Inc. 960G E. Keefe Avenue - Milwaukee 1, Wisconsin Centralab Canada Ltd. - Ajax, Ontario

COMPREHENSIVE

MICROWAVE COMPONENT

CAPABILITIES

This modern three-quarter-acre plant has significantly expanded the services and production capabilities of Microwave Associates' experienced Waveguide Components Division. This new research and production facility is one of the most completely equipped on the east coast. A large $3^{\prime} \times 2^{\prime}$ capacity dip-brazing unit as well as complete plating and other shop facilities are now handling both large volume and customengineered orders. Components are precisionmachined and produced in beryllium-copper, cast and fabricated aluminum, and cast magnesium.

Over 500 microwave components for applications from 1.12 to $90.0 \mathrm{kMc} / \mathrm{s}$ are standard items. Our Sales Engineers will gladly discuss current work in sophisticated components and RF packaging with you.
a few of the many components manufactured here
New High-Power Varactor Harmonic Generators - excellent suppression of unwanted harmonics and record power levels are available from these solid-state harmonic generators.
New Cast Bends - Zero bend radius - $90^{\circ} \mathrm{E}$ and H plane bends in S through Ka bands... Each bend is compensated to a VSWR of 1.05 over its entire waveguide band.
Sidewall Hybrid Couplers (3db) and H-Plane Folded Hybrid Tees - Cast in aluminum and berylliumcopper are available in S through Ka-band models.
Two New Catalogs - Waveguide Components Shortform Catalog (CSF-60) gives data on over 500 items of waveguide components and test equipment.
Pressure Window Catalog (12 pages) contains electrical and mechanical data on a complete line of glasskovar, mica, and special pressure windows plus valuable installation and testing tips.

NEWS

Navy Bureau of Weapons

Program Asks Industry's Help; Classified Data To Be Available

ELECTRONIC designers will benefit from a new program soon to be implemented by the Bureau of Naval Weapons for speeding the flow of design ideas from industry. Under procedures due to become effective by the year's end, qualified firms and individuals will be given access to classified documents spelling out the Navy's equipment needs, design problems and long-range planning.
In clearing its decks of previous dissemination schemes, BuWeaps has established the following objectives for its new Long-Range Scientific and Technical Planning Program:

- Keep scientific groups well-informed of the operational and technical problems confronting the bureau in planning and developing future systems.
- Encourage scientific groups to provide technical assistance to the bureau in order that more effective long-range research and development plans may be prepared.
- Promote the solution of specific technical problems of interest to the bureau.

Stimulate Navy-Industry Teamwork

Two categories of information will be made available under the program by the Bureau of Weapons. These are: (1) the Research and Development Planning Documents and (2) the Research Problem Document.
The Research and Development Planning Documents contain the Navy's long-range plans and requirements for weapons systems and for various technical areas. Weapons systems plans cover anti-submarine warfare, anti-air warfare. strike warfare, support systems and astronautics. Technical area plans cover such topics as radar. communications, navigation, weapons and mines countermeasures and fire control systems. Some of these classified documents (certain technical area plans) are available now: others are in prepa ration and will be ready in several months. All documents will be revised periodically.

Navy Wants Feedback From Industry

Recipients of the planning documents must, in return, provide BuWeaps with an analytical critique of the plans covering adequacy and feasibility, alternative approaches for improved per formance and lower costs, and other relevant

ELECTRONIC DESIGN • July 20, 1960

pons
 Seeks New Design Ideas

suggestions. This interchange between BuWeaps and industry will help designers by giving them an "inside" view on what the Navy really needs and help BuWeaps by subjecting its plans to intelligent evaluation by industry.
The Research Problems Document describes more than 150 specific needs for components, materials and devices. Among these are: a semi-flexible wave guide in half-wave sizes for missile fuzing applications; an electrical or magnetic shutter for IR fuzes; an electrically and acoustically silent battery powered motor; digital output transducers; and gyros for use time of one minute or less more reliable, cheaper and less accurate than present components.
The Research Problem Document carries no obligation for a critical analysis by its recipients. It is designed to elicit fresh approaches and ideas for the solution of specific technical problems. BulWeaps is not soliciting proposals or bids for $R \& D$ work on the problems outlined in the Re search Problem Document. Rather, proposed solutions to a problem should be accompanied by "Test data or other evidence that an answer is in hand, or that a worth-while approach has been sufficiently explored to demonstrate a high probability of success."

How To Participate

To participate in the new BuWeaps program an applicant must:

- Have sufficient technical competence (as judged by the Navy) in the area involved.
- Possess or obtain security clearance to the appropriate level.
- Execute a Dept. of the Navy policy agreement relating to proprietary information, care of government-furnished documents and other related matters.
- Request the published list of Research Documents from BuWeaps.
A pamphlet describing the BuWeaps LongRange Scientific and Technical Planning Program in detail is available from the Chief, Bureau of Naval Weapons (Code R-2), Washington 25, D.C. Research Problem Documents can be obtained by persons or organizations with secret clearance upoo request from the Chief, Bureau of Naval We pons (Code RREN-14). - -

You are protected

 against environment-caused switch failuresWhen you select a Hermetically-Sealed or Environment-Free switch made by Control Switch Division, you have chosen from the most respected line of sealed switches in the industry.

Now, we aren't claiming to be the "official guardians" of your design...
your performance.
your reputation... And yet-the failure of single switch could wipe out a lot of your long, hard work and planning. So, when you need a switch with performance you can depend on under any unusual environment, give careful consideration to these advantages:

Hermetically-Sealed... for use in the most critical, or unknown, environments these switches are completely sealed against all contaminants, atmospheric conditions and altitude changes. Every unit is backfilled with a dry, inert gas and inspected with a massspectrometer to a leak rate limit of less than 1 micron cubic foot per hour at one atmosphere. No switch could be more perfectly sealed.

Environment-Free . . . various seals are used according to the environmental conditions expected. They are usually sealed against humidity, fumes, dust, oil, and general contaminants. The switches are miniaturized to save vital space and weight. Conforms to MIL-S-6743 and MIL-E-5272A.

And if you do not find the exact switch you need among our hundreds of standard models, we can design and produce a unit to meet your specific requirements.

Write for this new Technical Catalog on Hermetically-Sealed and Environment-Free switches.

ELECTROSNAP
hetheringion

90% smaller in volume and weight... SYLVANIA MICRO-MIN DIODES
 Sylvania Micro-Min Diodes shown actual size.

offer microminiaturization
\section*{in microwave circuitry}

One-tenth the size, one-tenth the weight-90\% smaller than their prototypes-Sylvania Micro-Min Diodes extend design possibilities where microminiaturization and reliability are essential to microwave equipment.
Sylvania Micro-Min mixer and detector diodes feature true hermetic seals \ldots withstand temperatures of $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
. meet MIL-S-19500B environmental specs for shock, vibration, lead fatigue, acceleration, moisture resistance, soldering and temperature cycling.
New packages-even smaller than Micro-Min' Diodes-are now under development at Sylvania! Our engineers can work with you in developing new microminiaturized equipment. Contact them.

If your present design requirements are for exceptionally small size, extremely lightweight and maximum reliability, specify Sylvania Microwave Micro-Min Diodes. For price and delivery information, contact your Sylvania Field Office or your local franchised Sylvania Semiconductor Distributor. For technical data on specific Sylvania Micro-Min Diodes, write Semiconductor Division, Sylvania Electric Products Inc., Dept. 187, Woburn, Massachusetts.

micro-min type	application	Prototypt
1 1n830	UHF Detector	-
1 18330A	UHF Detector	-
1N831-	S Band Mixer	1N21C*
1 Ne31a*	5 Band Mixer	1N21E*
1N832*	x Band Mixer	1233C*
1 1п833	x Band Video	1 1358
1 1918	Detector	1 198
*Available in Matched Pairs		
Photo showsSylvania micro.		
MIn Diode ${ }^{\text {ased }}$ in TRI.		
PLATEO detector		
Sanders Assoclates,		
Nashua, N. H. This do-vice illustratesnow		
easily Sylvania Micro-		
integrated into a modu-		

s
 s LVAN IA

 Subsidiar of GENERAL TELEPHONE \& ELECTRONICS
NEWS

Five States Testing Infrared Traffic Control

| NFRARED detectors for use in traffic analy iis and speed control are now being tested in five states.
The infrared traffic detectors are being pro duced by Infrared Industries, Inc., Waltham, Mass., and distributed by the Eagle Signal Co. Moline, Ill.
In operation the detectors are mounted over a lane of traffic, providing coverage for a lane of 12 to 14 feet wide, according to Norman C. An derson, Infrared Industries vice-president.
Infrared equipment has an advantage over pneumatic tubes for counting automobiles because of the short life of rubber tubes across busy roadway: At least two years of maintenancefree operation is expected. Light-source replacement can be made with a small plug-in package.
The infrared traffic detector has an advantage over radar in some traffic analysis applications because of its ability to spot stalled as well as moving automobiles.

Two infrared traffic detectors, either in a single package or in two units, can be combined to establish speed and direction of traffic, and also to indicate length of vehicles if needed.

Each device consists of an infrared source and a detector. The optics beam source radiation to-

Opened infrared traffic detector shows source, righ and detector, left.

Infrared traffic detector is shown mounted on an overpass surveying the lane of traffic below
ward the highway below. The detector's field of view is restricted so that the beam is reflected to the detector only when a vehicle enters the detection field. The device is adjusted so that the highway itself does not reflect the beam.
The possibility that extraneous radiation might excite the source is minimized by proper selection of optics and detector wavelength sensitivity. Further protection is provided by chopping the beam with a motor-driven perforated disk and making the detector circuits sensitive to this modulating frequency.
The output of the detector is transmitted to a central station where it is traced on a recording device.
Initially costs of the infrared installations are comparable to radar, according to Mr. Anderson. In fairly small quantities each unit might cost about $\$ 500$, with prices going lower for volume orders.
Present installations are in Illinois, Michigan, Califormia, Massachusetts and Connecticut.

Source and defector optics are aligned so that an obif ct passing over the road below the infrared traffic defector reflects the beam to the detector. The road itsel does not reflect the beam because it is below the rolu ne of coverage of the device.

ENDEVCO TRANSDUCER

EXTENDS THE LIFE OF A HIGH-PRESSURE EXTRUSION PRESS

At its plant in Elgin, illinois, Flexonics Corporation, manufacturers of flexible metal tubing and hose, employs a large press for the cold extrusion of metal parts. This press operates at high, critical pressures (up and beyond 300,000 psi). The key to its efficient operation and life span is the lubricant used. As extrusion problems became more complex, a better way of selecting the proper lubricant was needed. Solution: Flexonics engineers hooked up an ENDEVCO PRESSURE PICKUP with an oscilloscope to compare the performance of lubricants under actual working conditions. Out of 20 lubricants tested, one proved to be superior, which had not been considered under the "sound and feel" method of evaluation. It is now being used exclusively. At the same time, the Endevco instrumentation divulged other valuable information as to
 correct press speed, and the optimum design of tools and dies. Endevco piezoelectric transducers and amplifiers are available for environmental, flight, shock, impact testing; design studies, control applications, and many others. Write for literature.
endevco corporation, 161 EAST CALIFORNIA bOULEVARD, PASADENA, CALIFORNIA, SYCAMORE 5-0271

FC-75 SHOCK-PROOFS "HI-FI SET" FOR ATLAS MISSILE

The Atlas climbs toward outer space! Inside, a delicate instru-ment-an inertia compensated telemetering device, shown left -is at work. Manufactured by the Speidel Corporation of Providence, Rhode Island, this sealed unit contains a continuously operating magnetic tape recorder that is capable of reporting, via telemetry as required, pre-selected conditions that a missile might encounter, i.e.: temperatures, strains, stresses, vibrations, air pressures.
The problem: find a protective "cushion" that will isolate the telemetering device from the missile's violent motion and even a fall to earth, yet permit it to operate accurately and with great sensitivity.
The answer: 3M Brand Fluorochemical Inert Liquid FC-75. Why? FC-75 protects the tape and all associated moving parts of the tape transport from vibrations, shocks, acceleration. And, at the same time, FC-75 remains stable over the entire temperature span of the missile's effective range. It has a pour point of less than minus $100^{\circ} \mathrm{F}$., will not break down even at $750^{\circ} \mathrm{F}$.
Furthermore, FC-75 undergoes no chemical or electrical changes. It is completely compatible with various materials such as metals, plastics, elastomers, even above the maximum practical temperatures permissible with other dielectric coolants. Therefore, it will not attack the recording tape or any other part of the telemetering mechanism.
FC-75 is ideally suited for many uses in the field of missiles and rocketry because it is nonexplosive, nonflammable, nontoxic, odorless and noncorrosive. It is one of 300 specialty chemicals from 3 M serving industry and country. For complete performance characteristics, write today, specifying area of interest to: 3M Chemical Division, Dept. KAP-70, St. Paul 6, Minnesota.

Chemical division
Minnisota Miming and Manuracturine compant
3M
... WHERE RESEARCH IS THE KEY TO TOMORROW

NEWS

Shipboard Digital Computer Is Keystone of ASROC System

ASROC, the Navy's new anti-submarine Sumday punch, utilizes the first shipboard electronic digital fire-control computer. It was developed especially for the ASROC project by Librascope, Div. of General Precision, Inc.

ASROC was successfully tested and evaluated at sea last month by the Navy and fired publicly for the first time ($E D$, July $6, \mathrm{p} 8$). The computer is a completely transistorized circuit employing silicon transistors throughout.

The unit was designed to give maximum reliable performance under shipboard conditions with minimum maintenance. This goal apparently has been achieved, since test evaluation personnel have reported no failures in more than 15,000 hours of operation.

The computer collects and handles target information; performs the mathematical calculations of establishing target course, range, and speed; and computes the ballistic path. It thereby frees command and operating personnel for evaluating tactical situations and making final attack decisions.

Because the computer is a general-purpose circuit, it can be readily modified to accept new data developed from changes in the characteris-

The ASROC fire-control system is the first shipboard installation of a digital computer. Scopes are retouched in this photo since ranges and trajectory are classified information. Computer receives data on target course speed, bearing, and distance, as well as attack ships course, speed, pitch, and roll. From these and other data, the computer predicts future position of target, launcher angle, and distance missile will fly.
tic of the weapon system. Thus, if the missile payload or warhead is changed, or if new attack tactics are necessary, the computer can be programed accordingly. Even more important is the possibility that the computer might be used for other shipboard weapons systemis.
The ASROC missile itself is a small, relatively inexpensive part of the system. With improved detection gear and tracking devices, it can be fired over greater ranges than those now used. At present, it is only as good as the tracking gear aboard ship; as this improves, so does the missile.

Honeywell 800 Digital Computer Heart of Navy Training Center

A Honeywell 800 digital computer will be the heart of a $\$ 3.6$ million nuclear submarine training center being developed by Minneapolis-Honeywell in New London, Conn. The computer will be used by the Navy to simulate electronically fullscale naval battles.
Use of the computer, together with advanced electronic techniques, Navy officials said, will enable the center to provide "a startling degree of realism" in waging mock sea battles to train the crews of submarines in undersea warfare.
The computer, while generating the motion of an ocean full of ships and taking into account the particular characteristics of each type of ship, also will calculate the action of the various weapons. In the case of the homing torpedo, for example, the computer will simulate the search and attack of the torpedo homing onto its target. The trainer will occupy an entire wing of a three-story building at the Navy's Submarine School. Within the facility, the attack centers of three nuclear submarines will be duplicated to the minutest detail. Radar and sonar screens at the command posts of the submarine will show the maneuverings of many ships in the complex movements of a sea encounter.
Periscopes for each sub trainer will simulate the view of targets on the surrounding horizon as seen from the periscope of a submerged submarine.
Each target, actually a tiny model on a mock sea viewed by closed-circuit TV, will be automatically positioned to present the correct aspect to the periscopes.
In addition to the simulated submarines, the training facility will have a master instructor's con ole where training problems can be presented to ivaluate new tactics and crew performance.
The changing tides of the encounter will be procected on a giant screen in a War Game Room whe e all phases of the action will be monitored.

V3s Iransistorimed Voltmotor-Ratiometor

V34 Transistorized Voltmoter-Ratiometer
val All-Electronic Digital Vormeter

781 Inderstrial onmmoter

VBA Low-Cost Voltmoter

50 Voltace comparator

OFFERS YOU THE ONLY COMPLETE LINE OF

DIGITAL INSTRUMENTS...BY PURPOSE... BY PRICE

M24 Multi-Purpase Instrument - Measures DC voltage from. $\pm .0001$ to ± 999.9, DC voltage ratio to $\pm .9999$, resistance from 0.1 ohm to 1 megohm. $1 / 3$ second balancing time . with accessories,
measures $A C$ voltage or $A C$ ratio low-level $D C$ measures AC voltage or AC ratio low-level DC
completely automatic... output for data logging transistorized circuitry, mercury-wetted relays recommended for measuring and data logsing demanding best combination of reliability, accuracy,
speed and versatility - missile systems checkout, speed and versatility - missile systems checkout,
industrial electronic systems, unattended data log. ging, quality control, laboratory uses.

Complete $\$ 5,650$

V24 Voltmeter-Ratiometer - Same basic features, specifications and applications as the M24 except it does not measure resistance. Complete $\$ \mathbf{4}, 950$

R24 Ratiometer - Measures DC ratio with ranges of $\pm .9999 / 9.999 \ldots$ same basic features and applications as M24 and V24. complete \$4,650

V35 Transistorized Voltmeter-Ratiometer - This alltransistorized instrument is the first true 5 -digit voltmeter with the ractual Fifth Figure, full 5 -digit reso
lution of 0 . lution of 0.001%
± 0.0001 to ± 999.99, measures DC voltage from
DC voltage ratio from $\pm 0.0001{ }^{\text {to }} \pm 999.99, ~ D C$ voltage ratio from
± 00.0010 to
measures $A C$. measures $A C$ voltage low-level DC
automatic.
 data logsing ira recommended for uses requiring
maximum accuracy such as automatic missile chect maximum accuracy such as automatic missile check.
out; production line inspection of transistors, resistors, diodes; readout and
complate $\$ 3,750$
V34 Yransistorized Voltmeter-Ratiometer-4.digit

 switase from $\pm .0001$ to ± 999.9. $D C$ C voltage ratio
voltage
from $+00.010 \%$ from $\pm 00.01 \%$ to $\pm 99.99 \%$
measures $A C$ voltage, low-level DC with accessories, measures $A C$ voltage, low-level DC irauirtput fol
data logging, designed for uses requiring Series 30 reliability without the need
v44 All-Electronie Digital Voltmeter - 500 readings per second . . . measures DC voltage from ± 0.0001 o. $\pm 999.9 .$. completely automatic . output for which exceptionally high speed is essential. Complete $\$ \mathbf{6 , 5 0}$

81 Industrial Voltmeter - This 4-digit instrument s an outstanding value for applications requiring 1.01% accuracy at lowest cost. designed for
visual readout only, does not contain printout con visual readout only, does not contain printout con-
nections or oil bath switches ... features simple,
 ± 0.001 to $\pm 999.9-\mathrm{AC}$ and iow-level DC with ac. curacy withoui printout - production testing, instrument calibration, laboratory
testing, receiving inspection. completo $\$ \mathbf{1}, \mathbf{4 2 5}$

781 Industrial Onmmeter - Companion to the 481 , this 4-digit ohmmeter equals the performance of other units costing twice as much... measures 0.1 ohm to 10 megohms. accuracy of $\pm 0.05 \%+\frac{1}{20}$ times faster than using a wheatstone bridge. . pletely automatic. Used for last, easy resistance inspection, production, qual- $\$ 1,425$

54 Lam.cest yoltmeter - Only full a-digit voltmeter in the prise range of 3 -digit meters and laboratory quality pointer meters... measures OCC voltage from ± 0.001 to $\pm 499.9 \ldots$...AC and low-level DCC with
 for measuring applications that require the speed. ease, and accuracy of a digital voltmeter wothout selection. \ldots applications include transducer and test equipment calibration, quality control, production line and receiving inspec- complete $\$ 985$
tion, laboratory uses.

So Voltage Comparator-This transistorized go/no-go voltage comparator provides a precise, fast, reliable means to determine if a voltage is within prescribed imits-and to transmit go/no-00 commands to elecsican s voltage tolerance by colored bulbs and con-
tact closures within 90 milli-seconds. manal tact closures within 90 milli-seconds... manual
limit settings

rom | limit settings rom |
| :--- |
| to |
| 999.9 volts. |$=0.001 \quad$ complete $\mathbf{\$ 1 , 7 7 5}$

51 Comparison Amplifier - Automatic comparator model for applications where limits are already available in analog voltage form from are ared or au-
tomatically programmed voltage dividers. tomatically programmed voltage dividers, woltage
range from -50 volts to +50 volts with a limit sensitivity of 500 microvolts. complete $\$ 950$

Hundreds of Combinations

A wide range of accessories are available from NLS Tor easy, plug-in combination with the basic units
pictured. This provides you with several hundred pombinations provides you with several hundred best answers your measuring and data logging prob-
lems. $A C$ /DC Converters with or without automatic ranging - AC Reference Voltage Converter
for AC ratio measurement

- Remote Readouts

Transistorized Input Scanners

- Dran Printers
- Flexowriter Systems
- Electric Typewriter Systems

Output to operate almost any device requiring con. tact closures in parallel decimal form. For Additional Infermation in contact your nearest
NLS representative or write inis for complete catelog
section on specific instruments of interest to you section on specific instruments of complete catalog Specifications and prices are subject to change with. Specification
out notice.

Originator of the Digital Voltmeter
non-linear systems, inc.
DEL MAR (SAN DIEGO), CALIFORNIA
CIRCLE 20 ON READER-SERVICE CARD

Do you need STABLLITY?

Potter Instrument Company design engineers had a requirement for a power resistor on their new hi-speed Model 906II Digital Magnetic Tape Handler; they specified Dalohm Type PH Resistors.
Why? . . . Because Dalohm PH resistors meet all tough requirements and provide the most important feature-INHERENT STABILITY.

PH-10-1
10 watts

from DALOHM
 Better things in smaller packages

DALE PRODUCTS, ING.
1328 28ih Ave., Columbus, Nebr.

TYPE PH RESISTORS
 - WIRE WOUND - POWER - PRECISION

These rugged Dalohm resistors are ideal for power applications that also call for precision tolerances. Mounting is through hole in chassis for maximum heat dissipation.

- Rated af 10,25 and 100 watts.
- Resistance range from 0.1 ohm to 60 K ohms, depending on type.
- Tolerances $\pm 0.05 \%, \pm 0.1 \%, \pm 0.25 \%$, $\pm 0.5 \%, \pm 1 \%, \pm 3 \%$.
- Temperature coefficient 20 P.P.M.
- Operating femperature range from $-55^{\circ} \mathrm{C}$ $10+275^{\circ} \mathrm{C}$.
- Welded construction from terminal to terminal.
- Sealed in silicone in a radiafor finned black anodized aluminum housing.
- Small in size; ranging from $13 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}$ dia. $1033 / 4^{\prime \prime} \times 13 / 4^{\prime \prime}$ dia.
For complote information reques! Bullotin R-36

WASHINGTON \& REPORT

 inllan $\sqrt{6}$

Ephraim Kahn

GOVERNMENT USE OF COMPUTERS is described in detail in the Budget Bureau's first annual automatic dataprocessing inventory, which lists most agencies that use computers, their locations, and the models that they have or want. (In some cases, agencies may not have decided, and these are indicated, too.) The inventory, which covers fiscal 1959, does not make the Budget Bureau Peel that it can identify actual trends in computer use on the basis of a single year's report. It notes, however, that possible future trends may be recognizable in the agencies' forecasts of need and use for fiscal 1960 and 1961.

TIPS ON COMPUTER USE have been given to government agencies by the Budget Bureau. It has outlined to agency heads the kinds of data and use studies that should be made before automatic data-processing systems are selected and installed. It has also noted that "suitable presentations, orientations, and briefings have proved of considerable value" in convincing Cabinet-level officers of the justification of such major expenditures.

TOUGHER INVENTORY CRITERIA for items to be kept in the military's mobilization reserve have been established by the Defense Department. Electronics' items do not appear likely to be heavily affected. Support of "operational effectiveness under combat conditions"will govern selection of mobilization reserve stocks. This is to include essentials for survival of personnel, for the effectiveness of combat forces (and their supply), and items which would shut down or seriously impair the operations of weapons systems or essential equipment if they were not available.

MILITARY BUDGET FOR FISCAL 1962-almost a year away-is already in the first planning stage. Odds are that the military's fiscal planners will be confronted with some tough decisions. As things stand, it will cost more to maintain today's manpower in years to come. There's no reason to expect any significant drop in equipment prices. On the contrary, conservative planning dictates allowance for a moderate inflationary factor as well as for cost hikes that are attributable to new and more complex weapons systems. Unless the military budget is increased, it looks as though a choice will have to be made between cutting manpower and trimming weapons.

* CIRCIE 21 ON READER-SERVICE CARD

MORE ELECTRONIC INTERFERENCE with civilian airspace users is sure to result from the growing complex of electronic air defense control systems and from good-sized maneuvers, according to Maj. Gen. M. A. Preston of the Flight Operations Office of the Air Force. Efforts will be made, of course, to minimize interference with civil air operations. But some is inevitable.

SUBSTANTIAL SAVINGS will stem from joint studies of problems in Air Force procurement made by the Air Materiel Command, the Electronic Industries Association, the Aerospace Industries Association, and the National Security Industrial Association. Biggest changes are expected in pricing, auditing, and application of the make-or-buy policy-the three areas which came under heaviest fire from industry during industry-military conferences.

USE OF GOVERNMENT-OWNED FACILITIES in defense production will probably get a searching and broad probing by a House Armed Services Subcommittee. The Budget Bureau has stressed that use of privately owned plants and equipment in working on government contracts is preferable to using government facilities. In fact, the Army and Navy were told how to weight contracting proposals so as to take into account certain apparent cost-savings that occurred when government plant was to be used.

WEAPONS SYSTEM CONTRACTING is defined by the Senate Preparedness Investigating Subcommittee. In a report on the B-58 "Hustler" bomber, the group asserts that "the compelling pressure of time" was the "most important reason for the swing toward a single weapon system manager." The report also asserts that this particular weapon system program "could not have been implemented under the outmoded methods of development and production utilized on previous programs not under the management weapons system concept.

PROGRESS IN MILITARY SUPPLY MANAGEMENI-in the direction of purchase by a single agency of related classes of items -is noted by the House Committee on Government Operations. Electrical and electronic products invite single management, the report notes, "because of the vast number of items, the high dollar value of procurement and inventory, the rapid obsolescence of equipment and associated parts, its vital relationship to communications and the operation of most new weapons, the large and rapidly growing technology, and the important industries that supply the items." The document notes that within those classes fall about 25% of the 3.6 items in the military supply systems, that $\$ 1.5$ billion a year is spent to buy them, and that inventory is worth $\$ 2.5$ billion all told.

CIRCLE 21 ON READER-SERVICE CARD \geqslant
ELE STRONIC DESIGN • July 20, 1960

Herre's How DaLohiM Achieves ...

Stability is inherent in DALOHM resistors because of advanced design and careful workmanship.

CHECK THESE DESIGN FEATURES:

1. Complete welded construction from terminal to terminal.
2. Black anodized aluminum housing rapidly dissipates heat through chassis or heat sink.
3. Space saving design achieved by having vertical mounting through hole with both terminals coming out end to allow rapid, simple wiring.
4. Fins increase cooling surface.
5. Completely encapsulated in hi-temperature silicone material.

Here are some of the extra steps we take

to build stability into DALOHM resistors:

- Accurate tension control during winding
- Winding pitch limited to $\mathbf{2 0 0 \%}$ - $\mathbf{2 7 5} \%$ rather than $\mathbf{5 0 0 \%}$ allowable in MIL SPECS
- Greater effective wire coverage than required by MIL SPECS
- A wider selection of wire diameters is used
from DALOHM
Better things in smaller packages DALE PRODUCTS, INC. 1328 28th Ave., Columbus, Nebr. to achieve the rosistance ranges advertised. This permits solection of a wire diameter for any value that will use only a narrow portion of the resistance range obtainable for that diameter of wire. This gives longer life stability within the temperature and power ranges specified.

For complete informotion requess Eulletin R-36

Magnetic Materials from General Electric

MAGNETIC POTENTIAL

Here's how to move into the bonus area of high performance and savings as well.

G-E Directional Grain process for manufacturing Alnico 5 magnets gives you the bonus area of available energy for your loudspeaker applications. The advantages are important. G-E speaker magnets give external energy products of 0.5 to $0.75(\mathrm{BH}) \mathrm{m} \times 10^{6}$ greater than regular Alnico 5. In addition, residual induction is improved and increased efficiency means cost reductions in the magnetic circuit return path.

Send for specifications on the superiority of G-E Alnico 5 D.G., and information on the complete line of permanent magnets. Write: Magnetic Materials Section, General Electric Company, 7820 N. Neff Road, Edmore, Michigan.

MAGNETIC MATERIALS SECTION

GENERAL (76) ELECTRIC

carboloy cemented carbides - man-made diamonds - magnetic materials - thermistors - ihyritee - vacuum.melted alloys CIRCLE 23 ON READER-SERVICE CARD

Conventional Magnet

Alnico 5 D.G. Magnet
Schomatic representation of the effect of control. ling erystal orientation on magnetic structure.

General Electric D.G. crystal controlled magnat produced by controlling heat flow from casting.

Conventional Alnico magnet with random erystal structure.

NEWS

Electronics Used to Simulate 'Cocktail Party Effect' in Voices

The ability of a human listener to pick out a ne voice from a surrounding babble-the "cock ail party effect"-has been simulated by a gating :ys. tem developed by investigators at Bell Telephune Laboratories, New York, N.Y.

Humans are able to enhance the effective intensity of a particular voice by 5 to 15 db by sup. pressing the background noise level. Using a gating system, two Bell Labs investigators E. E. David Jr., and J. F. Kaiser, achieved a 9-db enhancement in effective signal level against a background of a single interfering talker. A 5-db enhancement was achieved against a two-talker background.
This was done by cross-correlating the outputs of two microphones to generate a gating wave, which was applied to the combined output of the two microphones. The effect of the gating was to raise the intensity of the combined signal only when energy from the desired voice arrived simultaneously at both microphones. Otherwise, the gate suppressed the combined signal.
Noise or interfering speech signals passed through the gate if they occurred simultaneously with the desired speech signal. However, in the experiments, these events were rare and the pattern or discontinuity, of the undesired signal was disrupted, reducing its interfering qualities.

CHANGES IN PRICES AND AVAILABILITY

SILICON FLUID AND EMULSION PRODUCTS have been reduced approximately 4 per cent in price by General Electric Co.

MESA SWITCHING TRANSITORS have been reduced in price by Sylvania Electric Products. Inc. of Woburn, Mass. Types 2 N711 have been reduced from $\$ 7$ to $\$ 1.95$ each for lot purchases of from 100 to 999 units.

STANDARD MICROMODULES have been reduced $1 / 3$ in price by the Radio Corp. of America of Somerville, N.J. Since RCA announced the availability of micromodules in March of last year they have introduced some 15 different micre module configurations, all of which will be at fected by the price change.

ELECTRONIC DESIGN • July 20, 1960

Hot Germanium Transistor Too Good for Press Conference

A hot germanium transistor operated just too well at a recent press conference. As part of a demonstration of a new thermoelectric transistor cooler, General Thermoelectric Corp. of Princeton, N. J. immersed a small transistor amplifier in boiling water. The comipany planned to show how, without a thermoelectric cooler, the boiled transistor would die.
The germanium transistor should have quit amplifying at 85 C. Obstinately, it continued to amplify at 100 C . The amplified signal showed no attenuation on a scope display.
Sales manager Sol Meister of Needco Cooling Semiconductors, Ltd. (a Montreal firm which developed the high-efficiency cooler) assured the audience that the signal would soon die. After a minute of heavy silence he tried to coax the unwilling transistor to die. He jiggled the transistor in the vessel of boiling water then began to rap the side of the vessel-gently at first-then not so gently. Finally, to his aid came Mr. Roman Post, president of Needco. Mr. Post began rapping the water vessel while Mr. Meister turned to the scope which he began to adjust methodicallyfirst the vertical controls, then the sweep. At last he approached the scope screen which he began to tap-gently at first. The scope was working well. So was the transistor.
The name of the transistor manufacturer was not disclosed.

Experimental Ion Engine
 A NASA-Hughes Project

Design and development of an experimental ion engine is in progress for the National Aeronautics and Space Administration.
The engine, under development by Hughes Aircraft Co. of Culver City, Calif., departs from conventional rocket engines in that there is no combustion. Propulsion is provided by an ionized cesium stream, which is electrically accelerated and focussed.
In the space of a few inches, the ion stream develops a speed of more than $100,000 \mathrm{mph}$. The cylindrical ion engine measures only about 0.8 -in. long and 4 in . in diameter.
This laboratory engine will develop only about 0.04 lb of thrust. If test data prove the program fe: sible, later engines will be built to develop gri ater thrust.

Ultimately, engines of this type will drive spacecrift, but will require a nuclear auxiliary power so ree such as SNAP-8 now under development.

PUTTING MAGNETICS TO WORK

How to build a better (audio signal) trap!

Magnetics Inc. permalloy powder cores give filter designers new attenuation and stability standards-and miniaturization to boot!

The art of trapping unwanted frequencies has been advanced during the past year with a succession of improvements in molybdenum permalloy powder cores by Magnetics Inc. Most audio filter designers now work with smaller cores, more stable cores and cores whose attenuation characteristics are ultra-sharp. Do you?
Do you, for example, specify our $160-\mathrm{mu}$ cores when space is a problem? With this higher inductance, you need at least 10 percent fewer turns for a given inductance than with the $125-\mathrm{mu}$ core. What's more, you can use heavier wire, and thus cut down d-c resistance.
What about temperature stability? Our linear cores are used with polystyrene capacitors, cutting costs in half compared to temperature stabilized moly-permalloy cores with silvered mica capacitors. Yet frequency stability over a wide swing in ambient temperatures is increased!

And what do you specify when you must rigidly define channel cut-offs, with sharp, permanent attenuation at channel crossovers? Our moly-permalloy cores have virtually no resistive component, so there is almost no core loss. The resultant high Q means sharp attenuation of blocked frequencies in high and low band pass ranges.
Why not write for complete information? Like all of our components, molybdenum permalloy powder cores are performance-guaranteed to standards unsurpassed in the industry. Magnetics Inc., Dept. ED-82, Butler, Pa.

A magnetic-tape flight performance recorder with flexible playback capability has been demonstrated to Federal Aviation Agency officials by Minneapolis-Honeywell Regulator Co. of Minneapolis, Minn.
The device, consisting of three major compo nents, can monitor as many as 65 different vari ables, including altitude, speed, heading, vertical acceleration and time once each second. The additional conditions can be monitored once a minute and are at the option of the airline.
A standard instrument for data reproduction has also been developed to provide a means of utilizing several methods of processing and display of recorded information on the ground. This instrument contains pushbutton data channel selection and the basic playback channel electronics

The following playback techniques can be used:

- An aircraft instrument-type display to reproduce in-flight situations simultaneously such as air speed, altitude, heading and acceleration
- Using a Visicorder, either analog or the ac tual digital pulses recorded on the magnetic tapi can be reproduced on continuous recording channels or the digital data can be converted to analog form and be recorded continuously.
- A standard digital counter and printer can be used. The ground playback signals are serially introduced to the digital counter, which in tum provides print-out signals for tabulating the digi. tal data pertinent to any recording channel.

ELECTRONIC DESIGN • July 20, 1960

with Continuing, Navy Survey Shows

purely research-and-development or component companies were asked to report information. The survey implies that there is no need for expansion of production facilities at this time, reports a Navy source. Although planned production for 1960 totals less than $\$ 11$ billion, maximum production for the year, on a one-shift basis, could reach more than 14 billion.
Maximum production capability for 1960 is about $\$ 1.5$ billion greater than that reported for the preceding year.
The survey is called "Manufacturers of Electronic Equipment Facilities Data, Ratings, and Production Capabilities." • •

- Complete analytical processing of the volume of raw data acquired during many hours of flight time can be comprehensively analyzed in a largescale digital computer.
Large airlines can channel the data through their computers while smaller airlines can also take advantage of the fight information through the use of inexpensive standard electronic playback equipment.

Magnetic tape fight recorder gets final check abo rd a Minneapolis-Honeywell airplane. An engineer installs a spool of magnetic tape which will re core for 150 hours. The M-H recorder is capable of mon 'oring as many as 65 different variables.

Capabilities of the Electronics Industry

A statistical summary of Section I of the Office of Naval Material report "Manufacturers of Electronic Equipment Facilities Data, Ratings and Production Capabilities."

Number of Electronics Employes	Number of Companies	Total Electronics Employes (1959 Average)	$\begin{gathered} \text { Max. Prod. } \\ \text { Per Yr. } \\ \text { 1 shift } \\ (\$ 000,000) \end{gathered}$	$\begin{gathered} 1959 \\ \text { Sales } \\ (\$ 000,000) \end{gathered}$	Planned Production 1960 (\$000,000)
1-50	144	3,578	241.8	57.4	83.4
51-100	87	6,937	244.8	92.9	122.5
100-200	109	15,163	446.9	208.3	272.1
201-500	109	33,853	1,079.2	530.9	672.0
501-1,000	49	35,147	1,000.2	527.2	611.7
1,001-2,000	36	47,513	1,222.5	720.6	875.0
2,001-5,000	31	92,569	2,537.0	1,470.3	1,615.6
5,001.	20	343,163	7,329.8	5,988.1	6,646.3
Tofal \qquad Current Year Total-Preceding Year	$\begin{aligned} & 585 \\ & 578 \end{aligned}$	$\begin{aligned} & 577,923 \\ & 513,636 \end{aligned}$	$\begin{aligned} & 14,102.3 \\ & 12,635.1 \end{aligned}$	$\begin{aligned} & 9,595.7 \\ & 8.591 .3 \end{aligned}$	$\begin{array}{r} 10,898.6 \\ 9,359.0 \end{array}$

Number of Electronics Employes	Planned Production 1960 Military ($\$ 000,000$)	1/1/60 Total Military Backlog (\$000,000)	1/1/60 Mil. Backlog Prime Confracts (\$000,000)	1/1/60 Mil. Back-log-SubContracts ($\$ 000,000$)	```Average Sales in }195 per Employe $```
1-50	42.2	20.7	14.3	6.4	16,039
51-100	66.4	34.2	20.0	14.2	13,396
101-200	148.8	86.2	48.3	37.9	13,737
201.500	353.9	207.3	112.8	94.5	15,681
501-1,000	405.5	267.9	162.9	105.0	14,999
1,001-2,000	484.2	380.9	268.1	112.8	15,165
2,001-5,000	1,099.0	1,045.3	798.9	246.4	15,883
5,001-	3,256.6	3,624.1	3,000.0	624.1	17,449
Total-Current Year	5,856.5	5,666.6	4,425.3	1,241.3	16,603
Total-Preceding Year	5,139.9	5,534.1	4,499.2	1,034.9	16,083

Number of Electronics Employes	1íióo Av. Mil. Backlog per Employe \$	Ratio Mil. Backlog to 1959 Sales	1960 No. of Cos. Reporting 100\% Planned Mil. Prod.	1960 No. of Cos. Reporting 100\% Planned Civ. Prod.	No. of Cos. Applied for Cert. of Necessity	No. of Cos. Having V Loans
1.50	5,681	36	24	28	14	2
51-100	5,161	37	17	16	12	2
101-200	5,280	41	17	11	18	7
201.500	5,739	39	16	13	35	6
501-1,000	7,623	51	14	1	27	3
1,001-2,000	7,541	53	7	3	24	3
2,001-5,000	10,768	71	9	1	22	3
5,001.	10,101	61	0	1	19	2
Total-Current Year	9,380	59	104	74	171	28
Total-Preceding Year	10,149	67	111	79	171	38

ELE TRONIC DESIGN • July 20, 1960

How to compensate for temperature variation in a transistorized flip-flop

This flip-flop circuit, designed by Texas Instruments, uses sensistor ${ }^{\text {B }}$ silicon resistors in the cross-coupling network to compensate for increases in h_{FE} with temperature. At $125^{\circ} \mathrm{C}$, it resolves $100 \mathrm{~m} \mu \mathrm{sec}$ input pulses arriving at a 5 mc rate whereas a fixed resistor version was limited to 3.6 mc . In addition, at $+125^{\circ} \mathrm{C}$ the circuit will operate at a resolution rate greater than 5 mc if the input pulse can be greater than 10 volts when the pulse width is decreased from $100 \mathrm{~m} \mu \mathrm{sec}$.
Another advantage of sensistor silicon resistors in a flip-flop using high $\mathrm{h}_{\text {FE }}$ transistors is the reduction in input voltage required to trigger at high temperatures. For instance, the sensistor silicon resistor circuit requires only 10 volts to trigger whereas the fixed resistor circuit required 14 volts.

sengístor silicon Resistors

Sensistor silicon resistors are temperature-sensitive devices that feature a positive temperature coefficient of $+0.7 \%$ per ${ }^{\circ} \mathrm{C}$. This predictable rate of resistance change makes sensistor resistors ideal for temperature compensation from $-50^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ at frequencies up to 20 Kmc .
The sensistor silicon resistor, developed by TI, provides circuit design engineers with a lightweight temperature compensating and sensing device. Commercially available for over two years, the devices have been used successfully for bias stabilization in a-c coupled stages and in the first stages of d-c amplifiers; and have found wide application in amplifiers, power supplies, servos, telemetry, magnetic amplifiers, computer switching, and thermometry.

In addition, specify from this complete line of TI precision film resistors.

MOLDED				
$\pm 1 \%$ tol				
$\begin{gathered} \text { TI } \\ \text { type } \\ \text { number } \end{gathered}$	$\begin{array}{\|c} \text { wattage } \\ \text { rating } \\ \text { watts } \end{array}$	$\begin{gathered} \text { MIL } \\ \text { dosis. } \\ \text { nation } \end{gathered}$	standard resistance rames	max. mended voltage volts volis
CDM\%	4	RN600	$10 \mathrm{Ohm-1} \mathrm{Meg}$	350
COMS	3	RN65B	$10 \mathrm{Ohm}-1 \mathrm{Mes}$	500
CDM $/ 2$	\%	RM708	100 mm -5 Mes	750
COM 1	1	RN758	$10 \mathrm{ohm} \cdot 10 \mathrm{Meg}$	1000
CDM 2	2	RN80B	$50 \mathrm{Om} \cdot 50 \mathrm{Meg}$	2000

Write on company letterhead for your copy of "Transistor Bias Compensation with senssiter Silicon Resistors."

INSTRUMENTS
INCORPORATED
semiconoucton.components oivision most office eox 312 . oallas. texas

Anti-Sub Advisory Group

Three-Volume Report Published; Contains Widespread Proposcls

THE ANTI-SUBMARINE Warfare Advisory Committee of the National Security Industrial Association has added two new task committeesDecoys and Countermeasures and Training and Technical Manuals-to the five existing task committees organized to coordinate industry and government ASW efforts.
This action was taken at a meeting of the Central Planning Committee of the Advisory Committee, which was held in Rochester, N.Y., last month. In another action the committee elected Hugh Boyd, of Goodyear Aircraft, as chairman of the Planning Committee.
The committee met to consider how best to implement the recommendations of the advisory committee, which recently released to the navy and industry a three-volume report on anti-submarine warfare which also took into account the rising need for oceanographic electronics. Among the recommendations and endorsements included in the report were:

- Underwater test ranges for evaluation of torpedoes and other ASW missiles to keep pace with submarine development. The committee endorsed establishment of longer, deeper range facilities.
- Special-purpose underwater detection vehicles, equipped with data processing and communication equipment. The committee recognized these as best for ASW work, even though submarines can be used in this capacity. Without giving details, the committee identified the units and recommended consideration of a program to provide adequate numbers of the special-purpose, mobile, manned, sonar, underwater vehicles.
- Oceanographic research, especially in such subjects as ocean-depth contours, currents, tides and wave motion, temperature versus depth for various depths and locations, salinity versus depth and location, and anomalies in gravity and mag. netic forces in the ocean.
- Mobile search platforms, placing major emphasis on the ability to survey rapidly an area of ocean to determine positively the presence or absence of submarines.
- Increased acceptance by the Navy of the fixed ammunition concept. The committee explained it feals that planners of Navy equipment must design to eliminate complex testing and

jup

Adds Two Committees

hed; oscls
maintenance because the ever-increasing complexity of modern weapons places an insupportable burden upon Navy training and technical maintenance ability. Citing the modern acoustichoming torpedo, the committee stated there is no present technical reason why the Navy should continue to burden itself with shipboard overhaul and maintenance of torpedoes. New design should provide a completely sealed torpedo with no need or possibility of test or adjustment.

- Establishment of an ASW information center is a centralized source taking advantage of recent advances in library science and data-access techniques, to eliminate much repetitious work within the Navy and industry.
- Endorsement of present fleet assistance in contractor testing of ideas and equipment. The committee referred to the importance of obtaining quantitative data for development from live submarine targets under service environment and expressed a hope that the Navy will look favorably on the industry's acquiring and operating its "wwn target submarines.
- Other recommendations called for greater flexibility in research and development contracts let by the Navy so the technical direction of a program can be changed, if necessary, as it progresses; encouraged service and maintenance contracts with industry to achieve optimum performance of equipment; and strongly advised that more contracts be written for feasibility studies to explore practibility of projects and for preliminary experimentation before specifications are written.
The two new task committees formed by the ASW Advisory Group make a total of seven such rommittees now functioning. The five original troups are: Detection and Classification, Submaines, Communication and Control, Aircraft, Surace Vessels, and Weapons and Fire Control.

Comparison with ordinary chlorinated solvent proves:

FREON ${ }^{\circledR}$ solvents won't damage metal, elastomers or plastics . . . are safer for degreasing precision equipment

"Freon" solvents give you an effective and remarkably safe means of cleaning electric motors, ultra-precision mechanical and electronic equipment, and component parts. They minimize swelling of elastomers and plastics
will not soften paint, wire coatings or insulators. "Freon" solvents are also non-corrosive to metals without inhilbitors. In addition, "Freon" solvents leave no residue when they
dry and can be recovered and reused readily.
"Freon" solvents are safe for personnel, too. They are non-explosive and non-flammable. "Freon" is virtually non-toxic. Vapors are odorless and will not cause nausea or headaches.

PREE 12-PAGE BOOKLET explains the unique properties of "Freon" solvents and how they minimize cleaning hazards.

solvents
 The committee's report cautioned against expecting a major technological breakthrough in the SW field in the near future. It suggested that step by-step improvement in present techniques and quipment will result in more real gain than an e realized from operating with inferior quiy nent while waiting for the 'perfect' system a m terialize."

FLECTRONIC DESIGN • July 20, 1960

NEWS

Generator Uses

ATHERMIONIC and a therm, electric generator have be nn built into a nuclear fuel assemtly by Westinghouse engineers and inserted into a reactor to produce electricity from the high tempera. tures at the reactor center.
The experiment, according to IDr. William E. Shoupp, technical director of Westinghouse's atomic power department, was conducted by Peter J. McCoy at the Westing. house Testing Reactor in Waltz Mill, N.J., and produced about 1 w . Dr. Shoupp said the experiment was designed to determine the feasibility of such a "dual" generator without consideration of optimum efficiency or high power output.
The scientist said much power is lost in nuclear-powered generating stations since the temperatures at the center of the reactor drop from about $4,000 \mathrm{~F}$ to 600 F at the out side, where contact is made with the cooling water. To use the heat energy at the higher temperatures, Westinghouse built a fuel element with the thermionic generator in its center and a thermoelectric generator surrounding it.
This took advantage of the fact that a thermionic generator oper-

manufactured by
connector ouvision

Amphenol's aggressive research and development program in electrical interconnections has, in a short time, produced significant results. A materials"breakthrough" in resilient dielectrics has resulted in a line of environmentally resistant connectors that operate at $400^{\circ} \mathrm{F}$ continuously for 1000 hours. Advanced Micro Min connectors with contacts on $.050^{\prime \prime}$ centers and the Micro Mod connectors introduced in this advertisement are the first of many new product developments for micro-miniature circuitry.
A central staff of engineers, physicists, chemists and metallurgists - scientific manpower unrivalled in the connector industry - is concentrating on materials research and advanced product development, seeks to anticipate customer requirements up to five years in the future. Divisional staffs continue to develop specials and standards to current requirements.

Watch Amphenol for continued new product excitement! For micro-miniature modular circuitry,
Amphenol's new 12 contact Micro Mod connectors are now available for evaluation. .380 square and weighing only 0.73 grams (pair), Micro Mod connectors can be obtained in standard and special constructions.

Send for catalog sheets on Amphenol Micro Mod and On Amphenol Micro Min connectors.

Thermoelectric and thermionic generators are placed in tandem for power from core.

Reactor Core Heat

ates most efficiently at about 3,500 F and has a minimum level of operation at $2,700 \mathrm{~F}$, while the thermoelectric generator functions best at temperatures between 600 and $1,800 \mathrm{~F}$. By putting the two types of generators in tandem, the heat passing through the thermionic generator flows through the thermoelectric unit. The elements are wired in series to give a combined output over a wide temperature range.

Westinghouse said the six-month experiment had determined the feasibility of such a device and that development would continue toward the goal of improved efficiency. $=$ =

Thermoelectric Power for BuShips

Engineers at the Westinghouse Pittsburgh facility test one of the two 2,500 w sub-generators which make up "the largest thermoelectric power plant ever constructed." Development for the Navy's Bureau of Ships, the generator is intended as an experimental unit for materials evaluation. It is said to deliver 5 kw by direct conversion of heat into electricity. The generator is fired by kerosene and operates at $1,200 \mathrm{~F}$. Of modular construction, the unit reportedly can supply a wide range of output voltages and currents.

CIRCLE 29 ON READER-SERVICE CARD

FOR SYSTEM DESIGN

DIGITAL

TECHNIQUES

TECHNIQUES

Combined by Link to give you Dialog* Systems Utilizing Available Components and Building Blocks
Link can help you with your systems design utilizing the best combination of analog and digital techniques and will be able to minimize the cost by the utilization of already designed building blocks.
Dialog system components, for control, computation and simulation, utilizing analog or digital hybrid system design philosophy, are available for your systems design from Link.

dIGITAL CIRCUIT MODULES

Logle cireuits
Counter Flip-Flop
Power Latch
Power Inverter
Multiple Input "AND" Circuits Multiple Input "OR" Circuits Delay Line

Pulse Gonuration and Amplification Cirents

Power Driver
Indicator Driver
Clocking Pulse Generator

Data Handling Circuits
Write Amplifier
Read Amplifier
Read Head Selector
Read Head Diode Assembly Core Register Assembly
Core Driver
Decoding Matrix
Housing
Card Cage With Locking Bar

ANALOG BUILDING BLOCKS AND SERVO COMPONENTS

servo Systemı

Rectilinear Servo Motor With Drive Amplifier Standard Servo Assemblies, AC or DC
operational Amplifiers
Transistorized Standard Operational Amplifier Operational Amplifirer Transistorized Low Drift
Operational Amplifier Miniaturized Electronic Tube Operational Amplifier ouper Ampllifers
Tranter Ampliliters
Transistorized Standard Buffer Amplifier
d 25 Volt
Operational Amplifier

Computation Ampllifiers
Transistorized Resolver Driver Amplifier
Summing Amplifier, Model 301 Linear Phase Detector Phase Detector, Model 303 Servo Amplifiers
Transistorized 400 cps Servo Amplifier-20 Watt Universal Electronic Tub Universal Electronic Tube Servo Amplifier, Model 300

Electronic Multipliers

Time Division Multiplier Sine-Cosine Generator

Write to Dept. ED. Industrial Sales Department, for specific details on the many advantages of Dialog Components and Building Blocks for systems design.
*dialog (Link Digital-Analog Systems, Components and Building Blocks)

Another example of Link /Ability GENERAL PRECISION. INC. Other Divisions: GPL, Kearfott, Librascope,

NEWS

RCA Computer Memon

A COMPUTER memory made from a con in uous sheet of superconductive materia is under development at the Princeton, N.J. research center of Radio Corporation of America. In the device, persistent currents store digital data and coincident current is used for selection.
The advantage of using persistent supercur rents for storage, as outlined by RCA researchers, is that they provide steady-state indication of the stored state without requiring steady-state power dissipation to maintain the state. Forming the superconductor in a continuous sheet emphasizes this, as well as other advantages of superconducting memories.
The memory planes in the RCA storage unit are made by evaporation in high vacuum (10^{-6} mm hg) through metal masks. The masks are made by a photo-resist and etching process de. scribed as simple by RCA scientists, who report that they are able to produce inexpensive masks that have sharp edges.
Selection logic for the memory will be provided by thin-film cryotrons, RCA reports.

Computer Recognizes Various Shapes

The computer shown above is capable of recognizing line drawings of geometrical shapes. The light at the top of the apparatus illuminates the shape, which is seen by a scanner from below a clear plastic table Photo-cells are mounted on the ends of 32 metal rods pointing up. When a button is pressed, the rods unfold simultaneously, so that each photo-cell is given a radio motion and crosses one boundary of the drawing. Them crossings occur at different times for each photo-celThe differences are used in a special logic circuit 10 determine the shape. The device was developed by Bel Telephone I aboratories of Murray Hill, N.J. (ED, Mof 25, p7)

113

con in-

 eria is resér rch - In the ata and upercurzarchers. n of the e power ling the phasizes percon-
age unit

 $1 \mathrm{~m}(10$ asks are cess deorepor ve mask be pro-Shapes
JRCA's continuous-sheet memory was one of the developments described at a symposium on superconductive techniques for computing systems, which was held recently in Washington.
Other developments described:

- Progress with cross-field cryotrons at General Electric Co., Schenectady, N.Y. G.E.'s crossed-fil cryotron is composed of a wide superconductive tin "gate" film that can be made resistive by passing a current through a much narrower "grid" film, which crosses the gate at right angles and is insulated from it. GE deposits these elements on top of an insulated "shield" plane to increase operating speed. Company researchers reported depositing operating circuits to densities equivalent to 18,000 per cu ft.
- Two types of cryosars-using compensated and uncompensated materials-were reported built by scientists of MIT's Lincoln Labs, Cambridge, Mass. A. L. McWorter, of Lincoln Labs, said at the symposium that both types use germanium operating at 4.2 K , but that efforts are aimed at using indium-doped silicon at 77 K .

First Perceptron Displayed

The Mark I Perceptron, Cornell Aeronautical Laboralory's pattern recognition machine, has publicly displayed its ability to distinguish between the 26 letters of the alphabet. The sensing unit in the foreground conoins a 20×20 array of photocell sensors mounted in a phenolic base plate. Each sufficiently activated sensor actuactes a transistor-driven relay, which in turn supplies excitatory and inhibitory signals randomly to an array of tronsistor-driven relay circuits operating as associaton units. These units are dc-amplifier driven relays that drive response units, with signals whose amplitude is coultrolled by a memory device in each association unit. Values are stored in the memory devices by training , ith an operator.

Spark for the edge of outer space:

BENDIX IGNITION ON NORTH AMERICAN'S X-15

The X-15 project is a truly national research effort by the Air Force, Navy, and National Aeronautics and Space Agency. In manned flight, the X-15 will scorch through uncharted skies at speeds of more than 4,000 miles an hour.

This edge-of-space craft will take its pilot closer to
the stars than any human has ever dared to venture. 50,000 pounds of thrust will be provided by the most powerful single-chamber rocket engine ever built for manned flight. The ignition system was specially designed and produced for this installation by Bendix ${ }^{\text {® }}$. . . foremost name in ignition.

Scintilla Division
 SIDNEY, NEW YORK

Canadion Affiliate: Aviation Electric Lid, 200 Laurentien Blvd, Montreal 9, Quobec. Expert Soles and Senteen Bendix momational Divilion, 205 East 42nd St, Now Yofk 17, N. Y.

For those applications requiring long life and low sound levels.
.. the Dean and Benson quiet blower compromise and development have accomplished this with no ance, Whatever your performance, life or sound specification - the quiet series has the cooling problem arises, remember 60 for the 60 's.
All models available with 110,220 , or 440 volt motors. Call our experienced sales engineering staff to discuss your requirements today.

Write for your copy of our new Engineering Handbooks on the following:
A
400 cycle A.C. Blower Series
C 28 volt D.C. Blower Series
B 60 cycle A.C. Blower Series
D 2" POWAIR Blower Series

DEAN \& BENSON RESEARCH

Division of Benson Manufacturing Co., Kansas City 1, Mo.

- Blowers - Heat Exchangers - Cooling Systems

NEWS

Coaxial cable feeding superconducting bolometer is adjusted by Bogoljub Lalevic at the Franklin Institute Laboratories, Philadelphia. Entire assembly is operated in double Dewar flask. Outer hlask contains liquid air.

Highly Sensitive Bolometer in Works

Microwave Measurements to $10^{-16} \mathrm{~W}$ Possible

MICROWAVE power measurements down to $10^{-15} \mathrm{w}$ may soon be possible with a superconducting rf bolometer in development at the Franklin Institute, Philadelphia.
Tests to date indicate a sensitivity of $10^{-10} \mathrm{w}$ or better, and work is continuing to close the gap between this figure and the $10^{-15}-\mathrm{w}$ sensitivity theoretically predicted for the device. The very best laboratory instruments now available are good down to 10^{-9} w. Measuring accuracy of 3 per cent, consistent with that obtainable by present methods, is thought by Franklin Institute's scientists to be feasible for the superconducting bolometer.

The bolometer is being developed under a contract with the Signal Corps Laboratories for use in calibrating signal generators at extremely low power levels. Accordingly, the instrument is being tested at frequencies below $1,000 \mathrm{mc}$. However, there should not be any diff. culties in applying its principle to the ultra-sensitive measurement of rf power over the entire microwave spectrum.
In its present form, the bolometer ele ment consists of a $0.001-\mathrm{in}$. diam quart filament about 4 cm long coated with 200 angstrom-thin layer of tin. The fila ment is enclosed in a vacuum chamber which is, in turn, immersed in a flask of

Experimental setup for superconducting if bolometer. The device op. erates at 1.9 K . The almost perfect thermal conductivity of liquid helium at this temperature enables temperature control to $10^{-5} \mathrm{~K}$. Connection to the bolometer case is via a cooxial cable. Bolometer resistance is meas ured by voltage drop developed across the filament by a smalli current from the standard cell. This vollage is determined with extreme accuracy by the galvanometer-po. tentiometer combination.

Operating point of the if bolometer lies within the superconductive transition region. A very small temperature increase causes a marked rise of electrical resistance thus permitting ultra-sensitive measurement of if power. Transistion region shown here is for tin and has been lowered to 1.9 K by a magnetic field. Indium and lead could be similarly used but would require a stronger magnetic field to shift their transition regions below 2.19 K , at which helium becomes a "superliquid."
liquid helium maintained at a temperature of 1.9 K. A magnetic field of about 150 gauss applied to the bolometer lowers the tin's superconducting transition region from its normal 3.85 K down to 1.9 K . Within this transition region (about 5×10^{-3} K wide) a very small temperature change of the bolometer due to its absorption of rf power causes an appreciable, easily measured change in resistance. A temperature change of as little as $10^{-4} \mathrm{~K}$ produces a detectable effect.

"Superliquid" Helium Used

The ultra-fine temperature control necessary to observe such small effects is made possible by the unusual properties of liquid helium at temperatures below 2.19 K . In this region, helium assumes a "superliquid" state and becomes an almost perfect thermal conductor. Heat applied at one point is immediately distributed throughout the rest of the fluid.
A servo-controlled heating element works against continuous pump cooling of the helium to maintain the desired temperature within $10^{-5} \mathrm{~K}$. Temperature input to the servo is from a carbon thermometer; the high thermal conductivity of the helium eliminates local hot spots and gives immediate feedback from heater to thermometer.

Superconducting Connectors Required

Electrical connection to the bolometer is made through a $1-\mathrm{mm}$ diam lead pellet at each end of the filament. The difference in the thermal coeffi(ients of expansion between tin and quartz tends

HIGH SPEED CORE MEMORY WITH PROVED PERFORMANCE

Low in cost and high in performance, Telemeter Mag. netics Type RQ memories solve the problem of designing economical, high speed storage for computers and data processing systems. These reliable units, offering five microsecond cycle operation, are available on an off-the-shelf basis in a wide range of capacities and word lengths. A combination of economy, speed, and reliability is achieved through modular design, utilization of advanced solid state circuits, and quantity production of memory building blocks such as Digi-Pak and Drive-Pak modules.

- Type RQ memories are available in capacities from 512 to 16,384 words with word lengths from 8 to 56 bits. Larger capacities available on special order. - Type RQ memories now in service are establishing new records of reliability. This is a natural result of TMI's completely integrated engineering and production facilities, from ferrite material to complete memory systems, permitting lower manufacturing costs while achieving high performance. To discuss your needs with a TMI applications engineer, write or call today.

TEIEMETER MAGNETICS, Inc P. O. Box 329, Culver City, California offices and plant: 9937 Jefferson Blvd., Culver City, California

PIONEERS IN DEVELOPMENT AND MANUFACTURE OF CORE MEMORY PRODUCTS

WHERE DID ALL THE PRE-AMPS GO?

New low-level multiplexer features high accuracy, programming flexibility in minimum space

Where did the pre-amps go? The Radiplex 89-first true lowlevel multiplexer-eliminated them. This high-speed, 48 -channel unit represents a major breakthrough in PCM systems. Using solid-state circuitry throughout, it confines in a single small chassis equipment that would fill three 6 -foot cabinets. Yet the Radiplex 89 in operational tests has actually provided more accurate data than conventional systems.
Some of the outstanding performance features of the Radiplex 89 are: 0.025% resolution, $10 \mu v$ noise level, less than $.05 \%$ crosstalk, common mode rejection ratio of $10^{6}: 1$ and up to 24 kc samples per second. Flexibility of programming is achieved with alternate programmer boards, and the unit is compatible with most coders.
For other details on the Radiplex 89, write for a technical data bulletin to Radiation Incorporated, Dept. ED-7, Melbourne, Fla.

Circled area indicates small space ($51 / 4^{\prime \prime}$ high) occupied by 48 -channel Radiplex multiplexer in standard cabinet. Unil directly above Radiplex is a Radicon analog-todigital converter.

RADIATION
INCORPORATED
CIRCLE 34 ON READER-SERVICE CARD

Test Equipment Symposium Will Be Held Sept. 14-15

Advanced instrumentation techniques will be the theme of the Fourth Annual Joint MilitaryIndiustrial Electronic Test Equipment Symposium Sept. 14-15 at the Museum of Science and Industry in Chicago.
The symposium is under the joint sponsorship of the Office of the Director of Defense Research and Engineering and the Department of the Army Signal Corps. Armour Research Foundation will serve as the host
Technical sessions will cover such areas as new concepts in measurement, latest instrumentationdesign techniques and advanced data-processing riethods. The program will be diversified to attract industrial and government representatives at both the technical and practical levels.
Stanley I. Cohn, assistant director of electronics research at Armour Research Foundation, is conference chairman. Inquiries concerning the conference should be addressed to Robert Brausch, onference secretary, Armour Research Foundaion, 10 W. 35th St., Chicago 16, Ill.
-Beam Measurement Avoids Waste

model of a device for measuring and tabulating the Poths of newly rolled l-beams demonstrates how ms may be measured accurately before sawing, in fer to avoid waste. The beam passes along rollers pre o series of three infrared scanners take its measment. The results are automatically fed into a digital puter similar to the one shown and transmitted to stee mill's hot saw plant. Shearmen then check the pute according to job orders and the beam is ed i, to segments depending on original length and omet specifications. A measuring system based on exper riment has been in operation for more than six ths \rightarrow U.S. Steel's South Works in Chicago.

MIL-S.901B reliability at 40 fathoms

must be an unqualified certainty - not a mere promise. Hi-G provides that certainty in its line of AC or DC high per formance relays which have passed the severe shock requirements of MIL-S-901B of 2000 ft . Ibs. Excellent relay stability is achieved through the rigid mechanical construction and proven design features found in every Hi-G relay.

The rotary balanced armature, permanent magnet stabilization, full length armature bearing supported at both ends, contacts closer to the header, solid pole pieces and coil, and rugged can and terminal construction are the built-In qualities that provide superior shock immunity.

Standard catalog relays are rated at an operating shock of 50 G for 11 MS. Units are available with operating shock ratings of any value up to the requirements of MIL-S-901B.
Time delay units can be designed to MIL-S-901B and to meet individual customer rating specifications.

Send your relay requirements for prompt engineering evaluation - today.

BRADLEY FIELD, WINDSOR LOCKS, CONN.

Design for Peace:

Underground and Space Tests
Create Urgent Need for

Electronics in A-Bomb Detection

Manfred W. Meisels
Assistant Editor

SPECIFIC design requirements for an elecStronic whodunit system to pinpoint nuclear test-ban violations are gradually emerging from the continuing welter of controversy and diplomatic maneuverings that surrounds this highly sensitive area. Alternating periods of optimism and despair, engendered by an almost complete lack of pertinent scientific data, have marked public reaction to the proceedings of the Geneva Conference on the Discontinuance of Nuclear Weapons Tests now entering its third year.

Now, for the first time, the U.S. Government has formulated a definite program and allocated meaningful funds to gather pertinent data and develop operating hardware for policing a nuclear test ban. These are the objectives of the recently announced Project Vela being conducted by the Advanced Research Projects Agency in cooperation with the Atomic Energy Commission, National Aeronautics and Space Agency and other government units. Almost $\$ 10$ million have been budgeted for Vela in fiscal 1960 and a many-fold increase in funding is planned as the program moves into high gear.
Vela is divided into the following areas:

- Vela Uniform. Detection of underground
nuclear explosions-\$8,535,000 this year.
- Vela Sierra. Ground-based detection of nuclear tests in space- $\$ 1,050,000$.
- Vela Hotel. Satelite-based detection of nuclear tests in space- $\$ 300,000$.
Detailed technical management of these programs has been assigned to the Air Force Technical Applications Center under the direction of Dr. Carl Romney.

Improved Equipment Is First Step

The success of Vela and indeed of any nuclear disarmament effort rests largely on the capability of electronic designers to devise instruments and techniques for an effective inspection system. Seismologists, only recently drafted from the relative calm of their earthquake laboratories, have become VIP's but their number and instruments are not sufficient unto the task of wiring the earth for sound. Only through electronic instruments and techniques can the job be done.
As a first step in obtaining accurate seismic data on a world-wide basis, some 100 seismic stations are to be equipped with high-quality seismometers, timers, recorders and other equipment.
Also under Vela Uniform, a 10 -seismometer monitoring station of the type recommended by the international panel of experts at the Geneva
conference is being installed at Fort Sill, Okla. The Geotechnical Corp. of Dallas is providing and installing the equipment. A second monitoring station, embodying improvements recommended by a U.S. seismic panel headed by Dr. Lloyd V Berkner will also be ready shortly.
ARPA is most anxious for industrial particip tion in Project Vela and will welcome good, solid engineering proposals. As Carelton M. Beyer project director for Vela, puts it, "Until now small number of devoted people with limite funds have done a fair job. With additional effor we can make significant improvements." He sug gests, however, that designers devote som time to educating themselves in seismology be fore sending their proposals to ARPA. As a stant he recommends the Berkner Report, "The Net for Fundamental Research in Seismology," ava able from the State Dept. and the transcript of ${ }_{i}$ cent Congressional hearings, which can be o tained by writing to the Joint Committee Atomic Energy.
Such reading could be most rewarding; the co of a world-wide detection system will amount several billion dollars with a heavy share going data processing, telemetry, recorders, and sie mometers. Of present Vela funds, about 20 p cent have been earmarked for development, te ing and purchase of electronic instruments.

Bomb or Earthquake?

Identification rather than detection is the major prob!em in spotting underground blasts. "To seismologists, the earth is like so much jelly; give it a swift kick and the entire mass quivers," is the comment of one ARPA scientist. The only question, and one which scientists, politicians and diplomats have debated for years, then remains "Is the kick a bomb or an earthquake?"
An earthquake relieves strain over a volume measured in cubic miles and behaves like an extended source. An explosion is essentially a point source. This difference may show up in the seismic signatures of earthquakes and explosions.
The most reliable criterion is the first motion recorded by the seismometer. In an explosion it is generally upward; in an earthquake it is generally downward. But this is not universally true. The monitoring of test explosions may give some indication of other useful differences in frequency content and amplitude.
Natural background noises in the earth, winds, waves, quarry blasts, railroad trains, and other manmade disturbances all generate a backgorund spectrum of so-called microseisms which interferes with the identification of useful signals. In addition, recently advanced theories concerning decoupling (for muffling) of an explosion within large cavities, while not fully proven, indicate that detection may be several orders of magnitude more difficult than previously anticipated. Scientists have also applied themselves to devising techniques for "spoofing" monitoring stations by deliberate explosions to either mask a real test or to overload the detection system with false alarms.
Thus, until science can recognize useful differences between the recorded signatures of earthquakes and nuclear blasts and then design seismometers and associated equipment to identify these differences, any nafion can conduct underground tests with impunity.

More effective data-collection systems capable of extracting meaningful information from a background hash of natural, and man-made noises are in early development under Vela Uniform. Systens required include:

- Improved seismometers, some with digital outputs, and deep-hole and ocean-bottom units.
- Large arrays of seismometers.
- Unmanned seismic stations.
- Throw-away seismometers.
- Data-correlating and processing systems.

The need for some of these items is governed to certain extent by diplomatic considerations. For example, the Soviet Union is reluctant to permit large contingents of seismic policemen within

New, compact PRECISION FREQUENCY STANDARD

 offers $5 / 10^{8}$ stability, just $83 / 4^{\prime \prime}$ high
(0p 100ER FREQUENCY STANDARD

Mode! 100ER offers six standard sine and four rectangular frequencies in decade steps; available simultaneously and selected on front panel.

Timing comb output pips occur af $100,1,000$ and 10,000 microsecond intervals. Timing comb simplifes "fast" measurements and calibration.

Specifications

Stability:	5/108 parts per week, $3 / 108$ short term.
Outputs:	Sinusoidal $10 \mathrm{cps}, 100 \mathrm{cps}, 1 \mathrm{KC}$, $10 \mathrm{KC}, 100 \mathrm{KC}$ and 1 MC . Rectangular $10 \mathrm{cps}, 100 \mathrm{cps}, 1 \mathrm{KC}$ and 10 KC.
Output Voltages:	Sinusoidal 5 v rms min.; rec. tangular approx. 15 v peak. Harmonics to 5 MC obtainable.
Rated Load:	1 MC and $100 \mathrm{KC}, 50$ ohms nominal; $10 \mathrm{KC}, 1 \mathrm{KC}, 100 \mathrm{cps}, 10 \mathrm{cps}$, 5000 ohms nominal.
Distortion:	(Sinusoidal) Less than 4\%.
Frequency Adjustment:	Screwdriver tune adjusts 1 ppm.
Size:	$83 / 4^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $18^{\prime \prime}$ deep behind panel. Weight 35 lbs.
Price:	\$900.00.

Data subject to change without notice. Price f.o.b. factory.

This compact, highly convenient new \dagger frequency standard not only provides stability equivalent to complex, expensive primary standards, but offers the versatility of a wide variety of outputs. Signals available include six standard sine frequencies and four rectangular signals which may be distributed by 50 ohm cables for use at many different stations on a production line or in the laboratory. A particularly useful feature is a timing comb for calibrating, and for measurement of sweeps and time intervals.
Stability of 5 parts in one hundred million per week is assured by careful aging and testing of the crystal controlled oscillator and oven.
Model 100E includes a built-in oscilloscope which may be used as a comparison device to calibrate external equipment such as oscillators through use of Lissajous figures. The scope may also be used to check internal frequency deviation of the instrument.
For complete details and demonstration, see your ${ }^{(1)}$ representative or write direct.
HEWLETT-PACKARD COMPANY
1020 A Page Mill Road - Palo Alto, California, U.S.A.
Cable "HEWPACK" - DAvenport 5-4451
Field representatives in all principal areas
Hewlett-Packard S.A. - Rue du Vieux Billard No. 1, Geneva, Switzerland Cable "HEWPACKSA" - Tel. No. (022) 26.43.36

(4ip) now offers 10 different precision oscilloscopes

its borders; hence the requirement for unattended stations which may prove more acceptable to the Russian government.

Background Noise A Major Problem

Seismic signals generally consist of compressional and shear waves propagated from the source through the interior of the earth and of surface waves which travel through constant velocity "waveguides" in the earth's crust. The wave spectrum of interest ranges from 0.1 to 10 cps ; seismometers adequately responsive to these frequencies have been available for many years. In a sense, the problem is that they are too good and respond indiscriminately to background noise as well as to the desired information. Since microseisms generally peak in a fairly narrow band, instrument designers attempt to suppress re-
sponse in the noise band while enhancing output at the frequencies of interest. The seismometer can be mechanically tuned to a particular frequency, output can be massaged by notch filters or other networks and transducers can likewise be tuned to a specific frequency range. A recent development at the Lamont Geological Observatory of Columbia University, making use of a long-period galvanometer as an electromechanical filter, has resulted in a significant reduction of background noise.
In all electronic equipment associated with seismology, considerable effort is required to reduce instrument noise to acceptable levels. Transducers, both of the velocity and displacementsensitive types, must be carefully designed with this in mind. Suitable amplifiers, essentially dc units, are limited to just a few types generally
developed by seismometer manufacturers. These are laboratory instruments not particularly suited for field use.

Digital-Output Seismometer Wanted

All seismometers consist essentially of a springsuspended mass tuned to a specific resonant period. Strain gages (often more than 100 ft long and torsion-wire suspensions have also been tried but have not been as useful as the classic design Over the years, much work has gone into the refinement of spring-suspended seismometers but the present state of electronics may well sugges the use of other principles for seismic instruments. A seismometer designed to give a digital rathet than an analog output would be particularly suitable for use with modern data-processing systems Until such instruments are available, the digital

Communications requirements for unmanned seismic stations are discussed by Bell Telephone Laboratory engineers Bruce Bogert (left), Earl Vaughan and John Johannesen. Mr. Vaughan, Director of Systems Research at Murray Hill, N.J. is in charge of Vela studies af Bell Labs. Sandia Corp. is also performing feasibility studies of unmanned stations under contract with ARPA.
seismometer must include some sort of efficient and highly accurate analog-to-digital converter.
Deep-hole and ocean-bottom seismometers offer the possibility of a relatively quiet seismic environment. Deep-hole units and their cables must operate in the corrosive fluids of a deep well at temperatures to 250 F and under pressures of about 10,000 psi. Since a relatively small instrument is indicated, electrical output would be quite low. A typical signal using a 2 -lb seismic mass would be about $10^{-17} \mathrm{w}$ and would require an amplifier with an even lower noise output.
Ocean-bottom seismometers must be designed for very low power drain to permit extended operating life. Acoustic telemetry would be employed to transmit data from the instrument.

Arrays Cut Noise

A considerable improvement of signal-to-noise ratio can be achieved by cross-correlating the responses of several seismometers deployed in an area of several square miles. Ideally, the improvement is $n^{1 / 2}$, where n is the number of seismometers. The seismometer arrays could be threedimensional, including deep-hole units. Each array would include a suitable computer for on-the-spot data reduction.
Unattended seismic stations would consist of such arrays. Each seismometer of the array should be self-calibrating, tamper-proof, and protected against the weather. A central control unit would cortain data storage and processing equipment, tin a standards, telemetry gear and the main power sul ply. These stations should be designed for

NEMg
... NJE Again Advances the State of the Art!

 31/2" Panel

This fully transistorized power supply delivers maximum power and performance in minimum panel size at surprisingly low cost. It is NJE's ultimate answer to power supply requirements. Complete with meters, it is fully capable of remote sensing and remote programming. It is the only unit that can be used easily for series or parallel operation. No fans or blowers utilized.

Output Volts Amps		Model No.	InputVolts	Power Freq.**		Static Regulation		Dimensions$H \times W \times D$	Approx. Weight Pounds	Price	
		Load*				Line*					
0.10	0.10		QR-10-10	105-125	55-65	1	$\pm 0.01 \%$ or $\pm 1 \mathrm{mv}$	$\pm \mathbf{0 . 0 3 \%}$ or $\pm 3 \mathrm{mv}$	$31 / 2{ }^{\prime \prime} \times 19^{\prime \prime} \times 16 \%{ }^{\prime \prime}$	41	5485
0.18		QR.18-6	105.125	55-65	1	$\pm 0.01 \%$ or $\pm 1 \mathrm{mv}$	$\pm 0.03 \%$ or $\pm 3 \mathrm{mv}$	$31 / 2^{\prime \prime} \times 19^{\prime \prime} \times 163 / 9^{\prime \prime}$	41	485	
0-36		QR-36-4	105.125	55.65	1	$\pm 0.01 \%$ or $\pm 1 \mathrm{mv}$	$\pm \mathbf{0 . 0 3 \%}$ or $\pm 3 \mathrm{mv}$	$31 / 2^{\prime \prime} \times 19^{\prime \prime} \times 163 /{ }^{\prime \prime}$	41	485	
0.60	0-2.5	QR-60-2.5	105-125	55.65	1	$\pm 0.01 \%$ or $\pm 1 \mathrm{mv}$	$\pm 0.03 \%$ or $\pm 3 \mathrm{mv}$	$31 / 2^{\prime \prime} \times 19^{\prime \prime} \times 163 / 3^{\prime \prime}$	41	510	

- Whichever is greater.
** Available for 400 cycle operation.
WRITE TODAY FOR COMPLETE TECHNICAL INFORMATION AND A COPY OF OUR NEW CATALOG.
NJE
CORPORATION
20 Borisht Avenue . Konilworth, New Jersey
BR. 2.6000 - TWX Cranford, NJ 51 - FAX.FFP

New Random Access Memory Package...

uses only $18.75^{\prime \prime}$ IN STANDARD 19" RACK

GENERAL CERAMICS, continuing its leadership in the memory packaging field, has made available double and triple bay random access memories with up to 4096 characters $x 32$ bits per character at cycle times up to 6 micro-seconds. Now you can get design economy since the basic G-C package requires only $18.75^{\prime \prime}$ of standard rack space-a reduc-
tion of up to 80% over typical units requiring a full six feet.
General Ceramics offers space-saving random access memory designs with varying number of characters, word lengths and logic.
Optional design features include parity checking, test cycles, indicator lights and power supply locations.

Write on your company letterhead for additional information.
Please mention your requirements; address inquiries to Section ED.

TECHNICAL CERAMICS, FERRITE AND MEMORYPRODUCTS CIRCLE 38 ON READER-SERVICE CARD

DESIGN FOR PEACE

servicing at 30 -to- 60 -day intervals and should it. corporate modular-type construction for quics repair in case of equipment failure.

Data And Telemetry Requirements

Digital data processing and communications will probably be specified despite the resultant need for analog-to-digital converters at the seis mometer. Inherently better accuracy and the convenience of readily adapting a single digital computer model to handle the differing array patterns at each station are the deciding factors here. Data storage would probably be via magnetic drums or tape. However, thermoplastic recording and film storage could win out because of their inherently larger storage capacities. Storage re quirements in seismology are high; a single instrument generates almost 3 million words of data in a 24 -hr period.
Telemetry will also be digital for maximum signal-to-noise ratio in transmission. The system would be interrogable and broadcast at daily intervals. A single $500-\mathrm{kc}$ channel could transmit some 25,000 bits per second. A $50-\mathrm{w}$ transmitter working on a standard fm band ($\mathbf{1 0 8} \mathrm{mc}, \mathbf{1 4 0 - 1 5 0}$ mc, etc.) would have a ground-to-air range of up to 500 miles. Constant-altitude balloons or hovering aircraft at the receiving end would relay the signal to monitoring headquarters.

Beware Of Countermeasures

An unmanned station is particularly susceptible to countermeasures. These may include tampering with the instruments and computers, the coupling of false signals into the cable net be tween seismometers and computer, or spurious transmissions over the telemetry antenna. High security alarm systems must be designed into the station to telemeter indications of tampering.
Throw-away telemetering seismometers would be relatively simple in comparison with fixed sta. tion units. They would be air-dropped at suspected test sites to check for aftershocks characteristic of genuine earthquakes. Data storage might consist of a short tape loop or be dispensed with in favor of continuous transmission. In either case, digital conversion is not necessary as the units are not expected to work directly into a computer network. Transmission could be fm/fm with at least four subcarrier channels needed to transmit time markers and seismic data. One or 2 w of rf pcwer and 100 mc should suffice for a 100 -mile range if phase-lock receivers are em.

ELECTRONIC DESIGN • July 20, 1960
quic

Signal-to-noise ratio of seismic records is dramatically improved through use of galvanometers as electromechanical band-rejection filters. Background noise of $1 / 7$ th cps in upper record is almost entirely removed by the insertion of a like-period galvanometer in the circuit between seismometer and recorder. Earthquake trace in lower record is clearly discernible with background noise removed. Technique was developed by Paul Pomeroy and George Sulton of the Lamont Geological Observatory.
ployed. At 10 mc the range might be extended to perhaps 500 miles. Aerial relay stations would again be employed at the receiving end.
Maximum detection capability calls for an advanced, large-scale data-processing system for efficient handling of inputs from several thousand seismometers scattered around the world. The computers required will be unique, but well within the present state of the art.

Elaborate Computers Needed

Each of the 180 control stations of the Geneva experts' system plus any additional unmanned stations which may be permitted will be equipped with a computer for immediate data reduction from its own seismometers.
The station computer must be capable of scanning large blocks of data in time and space; iterative time shifting for cross-correlation data; velocity filtering; spectra analysis, time-varying time scale correction; and the use of non-linear or time-varying operators. Multiple-channel reception and storage will be necessary. Data input to the computer may easily exceed 2,000 words per sec.
Experts believe that a suitable computer to thes. requirements will have to be designed from the tround up. High-speed, general-purpose busines: computers are designed for maximum flexibilit and are not optimized for handling any part sular group of mathematical operations. The e computers usually have only one arithmetic

the magnetic core
laminations you need, when you need them

Dies for the laminations you need in a hurry are held ready in this bomb-proof, fire-proof vault. No delays or extra costs of tooling up, on most orders. These are the finest high-precision dies, built and maintained by our own skilled craftsmen, available in a wide range of sizes and shapes . . . and one of the reasons for the consistently high level of Magnetic Metals quality.

Another reason is our stock of magnetic alloys-the largest stock in the world, making available to you the widest choice of electrical characteristics. Moreover, special, highly flexible annealing techniques
provide final assurance of the exact performance you require in magnetic core laminations.

Most of the nation's best-known transformer manufacturers gain the extra advantages of Magnetic Metals laminations. You should, too. Tell us about your application, and we'll go to work on it right away.

Magnetic (:8) Metals

transformer laminations - motor laminations - tape-wound cores powdered molybdenum permalloy cores - electromagnetic shields mlaninetic metals Compayy - Hayes Avenue at 21 st Street, Camden 1, N.J. CIRCLE 39 ON READER-SERVICE CARD

BASIC BUILDING BLOCKS FROM KEARFOTT

Size 8 Mofor Generator
This new Size 8 high performance servo motor generator features high signal output and extreme ly low null voltage. The signal-to-noise ratio of 100:1 and linearity of 0.2% make the application of this motor generator to lightweight integrator. packages most desirable. Stainless steel construction and thermal stability of this component assure its reliability and long life in the most severe environments.

electrical

CMARACTEMISTICE
Moter section Generator section
$\begin{array}{lrrr} & \text { Mus } 1 & \text { Phas } 2 \text { Guctatima } \\ & & \\ \text { Voltage (volts) } & 26 & 40 & 26 \\ \text { Frequency (cps) } & 400 & 400 & 400\end{array}$
Frequency (cps)
Current (ma)
Power Input
(watts)
oEmERATOR sEction OUTPUT
Voits at RPM (mv)
Volts at 1000 RPM (volts)
Output Impedance
(ohms)
$+j 2500$
Rated Load (ohms) 100.000
mechanical cMARACTERISTICS
No Load Speed (RPM) Stall Torque (In. OZ.) $\left(8 m-\mathrm{cm}^{2}\right)$
Theoretical Acceleration (Rad/Sec?
Weight (Oz.)

BASIC BUILDING
BLOCKS FROM KEARFOTT

QUADRATURE REJECTION CIRCUIT

Kearfott's quadrature rejection circuit is designed o operate from a preo operate from a premplifier or gain controlled amplifier into a ransistor servo amplifier. This small, light and rugged device rejects the component of the input wave which is 90° from the reference input. The component of the input sine wave which is in-phase with the reference will produce a square wave whose magnitude is proportional to load and magnitude of in-phase signal. Kearfott's highperformance rejection circuit is designed to operate in an ambient to operate in an ambient temperature at unlimited altitudes.

TYPICAL

CMARACTERISTICS
fD4816-01
Input Impedance - In phase sig. nal component (ohms)/5000 $+R_{\text {L }}$ / Quadrature component hms)/5000 (min)
Signal Frequency (cps)/400
Max. Signal Input (volts RMS)/6 Bandwidth (cps)/6
Quadrature Rejection Ratio: Rejection Ratio (min)/50:1/ 35:1/35:1
Signal Input/0.15 to $4 / 4$ to $6 /$ 0.005 to 0.15

Meets environmental require ments of MIL-E-5272.
Write for complete data.

BASIC

 BUILDING BLOCKS ACCELEROMETERSHighly precise and accurate, Kearfott two axis accelerometers are pendulous devices which sense airframe acceleration forces acting on them in aircraft and missile guidance systems, navigational computers and wherever acceleration must be measared precisely and trans. ard into electrical output signals.
The pendulum is anchored to a housing by means of a unique Hooke's joint type spring suspension. Whenever there is relative motion between pendulum and housing due to acceleration, an AC excited, air-core differential transformer type pickoff produces a voltage which is a servo error signal that is fed into an AC to DC amplifier. Feedback signal in form of DC current transmitted DC current transmitted 0 a restoring coil produces force that exactly balances force of any accelerations acting on pendulous mass.
TYPICAL
CMARACTERISTICS
Range of Measuromont: $\pm 25 \mathrm{~g}$ (ean
be adjusted upward within amplibe adjusted
fier limits.) Scalo Factor (Output): 5.000 operatine Temperature: Performance is optimized withln any $20^{\circ}{ }^{\circ}$ rance range
betwen $+50^{\circ} \mathrm{F}$ and $+160^{\circ}$. between $+50^{\circ} \mathrm{F}$ and $+160^{\circ} \mathrm{F}$. Linaapity (Output): Within $\pm 0.005 \%$
of the applied acceleration. Threshold: Less than $2 \times 10^{-7} \mathrm{~g}$. Zere stability: $\pm .000058$ day to day; less than $\pm \pm .00002 \mathrm{ov}$ var any con-
tinuous time interval.
vibration: Up to ± 58 peak from 20
to 2000 CPS. toraze Tamp
torage ${ }^{\circ}$ Tamperature: $-60^{\circ} \mathrm{F}$ to 0 Scals factor Variation: $\pm \mathbf{0 . 0 1 \%}$ randomness.
Write for complete data.

KEARFOTT DIVISION
Little Falls, New Jersey

GENERAL PRECISION. INC.
Other Divisions: GPL,Librascope, Link

WANTED A New Way to Digitize

This is the hard way to digitize analog seismometer traces for input to a digital computer. But it's still the most convenient way. With this seismic digitizer developed at the Lamont Geological Observatory, the observer manually follows a slowly revolving chart through the optical viewer. At predetermined intervals, a digital encoder synchronized with the viewing control is automatically sampled. Punched card's are thus prepared af a rate of up to 60 per min. The drum rotates at a maximum speed of $1 / 2$ revolution per hour, which is about the same rate at which the seismometer records the data originally. "We've got a whole basement full of seismic records," commented one scientist, "and could sure use a faster, automatic digitizer." The trouble is that seismic records are usually a tangle of criss-crossing, broken lines. Design ideas, anyone?
system would be effective to a distance of 60,000 miles by day and 180,000 miles at night. Sufficient posts would be provided to minimize the possibility of total cloud cover at all stations.

- Detection of the visible fluorescence created in the upper atmosphere by the thermal radiation from a nuclear explosion. A narrow-band filter and optical detector mounted behind a wide-angle ens would be used. A 10-kiloton explosion could ve defected out to several hundred thousand miles oy this method.
- Detection of additional ionization in the atnosphere by a network of backscatter radars. tome 50 installations operating at frequencies of 0.30 mc could detect a 1 -kiloton test to perhaps 000 , niles out.
- I etection of the change in cosmic radio noise losor tion in the ionosphere caused by nuclear

For quick access and closure...

LION

RETAINER

Hinged and completely removable panels are secured reliably by unique Lion Fasteners which are opened or closed by a quick $1 / 4$ turn. These mil spec (MIL-F 5591A-ASG) fasteners' have a high strength to weight ratio, lock smoothly with a positive grip, withstand vibration.

ALIGNMENT NOT CRITICAL

Both stud and receptacle "float" to accommodate misalignment. The hole, which retains the stud, is twice as large as the stud cross-section. This permits a float of .070 in all directions. The leaf spring receptacle also floats to accommodate stud positions.

WIDE VARIATIONS IN STACK HEIGHT
Total sheet thickness may vary as much as +.035 or -.015 without affecting operation. A Lion stud, specified for . 160 total thickness, for example, will accommodate any stack height between . 195 and . 145 .

SWAGED-NOSE STUD

Extra strength and smooth operation are made possible by the swaged-nose

design. All the metal in the stud goes to work. There are no thin crosspins, holes or milled slots to weaken the cross-section. Case hardening is further assurance of long, trouble-free service.

wide variety

Lion Fasteners are available in 3 sizes -No. 5, No. 2, and Miniature. An assortment of head styles is supplied -oval, flush, wing, ring, notched or knurled-according to individual requirements.
 FASTENER HANDBOOK

Sond for your free copy of Southco Fastoner Handbook No. 9. Gives complete engineoring data on Lion fasteners and other special fasteners. Write to Southco Division, South Lostor, Pannsylvania.

IlEC RONIC DESIGN • July 20, 1960

A 5000° flame takes ten minutes to penetrate a one-quarter inch piece of CDF's new Dilecto
RD. 105 laminate. The same thickness of cold-rolled steel is pierced in less than forty seconds.

Molded from graphite fabric impregnated with a heat (ablation)-resistant phenolic resin, new CDF grades RD-105 and RD-115 are being evaluated in solid propellant rocket motors.

Dilecto laminates are only one family of products from industry's largest selection of non-metallic
structural materials and electrical insulations. Vulcanized fibre, silicone rubber and mica, and thermosetting moldings are also supplied by CDF. CDF can provide both quality and true economy in selecting plastic materials best suited to your needs. Refer to SWEETS PD file or write to us for General Folder 60.

A SUBSIDIARY OF THE BHAFL COMPANY • NEWARK 107, DEL. In Canada, 46 Hollinger Road, Toronto 16, Ont.

for automatic washer and dryer controls.

Olmanslonally getable, light weight, oil.-re CIRCIE 42 ON READER-SERVICE CARD

Easily fabrieatod paper-base, punchin
grade Dilecto precision switch insulators.
shield is destroyed are of lower energy and can be detected at only 10,000 miles or so.

- Detection of soft thermal X-rays. Unshielded explosions can be detected at ranges up to 500 million miles. This method is sensitive to shielding, by perhaps a factor of 100 , but is still the best available. The penalty imposed upon a violator in carrying a shield to distances beyond the range of other detection methods, and the additional stabilizing equipment needed for efficient shielding may restrict his tests.

Typical Inspection Satellite

A typical inspection satellite would employ a combination of the above methods. Detection of a nuclear event would occur when the neutron count exceeds the natural background by a predetermined amount and for a considerable interval (perhaps 2,000 sec). Simultaneously, either the gamma-ray detector or the X-ray detector, or both, would have to be triggered.
The total system would have to ensure a negligible false-alarm rate; the Geneva criterion is one false alarm per 100 years due to natural background. The electronic logic elements aboard the satellite must thus be very carefully designed, both from the viewpoint of operational reliability and to eliminate the possibility of false alarms due to component malfunction.

A typical satellite system would include perhaps 20 vehicles orbiting under the Van Allen belts to survey the upper atmosphere; six additional satellites several tens of thousands of miles out would cover the immediate vicinity of the earth; finally, four satellites in various solar orbits could survey the most likely areas where violations might occur in the rest of the solar system.

Experts Disagree On Chances

Recent hearings before the Joint Congressional Committee on Atomic Energy brought testimony from 24 scientists expert in the various areas of the nuclear disarmament problem. Though widely divergent views were expressed, the consensus was pessimistic for a short-term development of a foolproof system, but rather more hopeful over the long run. On the one hand, Dr. Edward Teller of the Lawrence Radiation Laboratory and the "Father of the H-bomb," said: "My hunch is that further developments will go in the direction of conctalment and that it will be quite difficult for detection to catch up. . . . As for space, the Russians may be testing there at any time and any size ight now." Dr. Hans Bethe of Cornell Universi y replied, "In my opinion, the next round ough to go to the detection rather than to the conc alment. I want to leave you with the impress on that these decoupling schemes are not as si in ple as they appear." - =

Experience-the added alloy in A-L Electrical Steels

Greater permeability for
 Allegheny Ludlum's AL-4750... and it's guaranteed

promises more consistency, higher predictability for magnetic cores

AL-4750 nickel-iron strip now has higher guaranteed permeability values than ever before. For example, at 40 induction gausses AL-4750 now has 57% higher permeability than in the past, using the standard flux density test.
This greater permeability means better consistency and predictability for magnetic core users . . . and allows careful, high performance design.
This improvement in AL-4750 is the result of Allegheny Ludlum's continuing research on electrical alloys and
nickel-bearing steels. Moly Permalloy has been similarly improved in permeability. A-L constantly researches silicon steels, including A-L's well-known grain-oriented silicon, Silectron, and other magnetic alloys.

Complete facilities for the fabrication and heat treatment of laminations are available at Allegheny Ludlum. And A-L's technical know-how guarantees you close gage tolerance, uniformity of gage throughout the coil and minimum spread of gage across the coil-width.
If you have a problem on electrical steels, laminations or magnetic material, call A.L for prompt technical assistance. Write for blue sheet EM-16 for complete data on AL-4750. Allegheny Ludlum Steel Corporation. Oliver Building, Pittsburgh 22, Pa. Address Dept. ED.7. 7401

Export distribution, Electrical Materials: AIRCO INTERNATIONALINC., NYC 17
 Export distribution, Laminations: AD. AURIEMA, MYC 4

NEW PRODUCT

Crimp-Type Modular Connector

EDITORIAL

Can You Believe What You Read?

Not too long ago, we received an advance press release on the latest "breakthrough." A few ambiguities, unsupported claims, and non sequiturs in the release caused us to call the company's engineering department for clarification. Unfortunately the engineer we talked to couldn't figure it out, either. He pared the power output by a quarter, knocked the efficiency in half, and said the extreme claims were either theoretical only or obtainable under unusual conditions only.
We mentioned these facts to the company's public-relations man so that he might clarify his release before making it genrally available. For ourselves, there just were too many unanswered questions; we couldn't use the item as submitted. Unfortunately, the release went out unchanged, with the same misleading information we received in our advance draft. Sevaral respectable electronic publications published the "facts" as given to them.
More recently, a release we received reported a device having an increased efficiency of 300 per cent! Sleuthing revealed that this engineering statistic was invented by a PR man. He didn't really mean increased efficiency; he meant increased speed of doing work. Increase over what? The competitor's device? No, the promoter, when pinned down, admitted. He said he was comparing the machine's rate of doing work with that of a manual laborer.
Naturally no publication can check every story. Even if it did, its reporter may not know all the specific details of a project to catch a technical inconsistency. Electronic Design prides itself on its technical reporting. Every feature is thoroughly reviewed by an engineer. Every major news story is based on answers obtained by engineers or technically competent journalists. We evaluate the probable validity of claims of every new product. With the inauguration of our price-and-availability service we ask for additional information on about 70 per cent of the products coming in.

Despite these efforts, we know we are not 100 per cent accurate; we know less effort on our part would make us far less accurate. And how we feel about accuracy appears each issue in our accuracy-policy statement (see p 176). We are concerned with the amount of misinformation that is purveyed to engineers. Feedback from you will help. If you have reason to suspect statements made in $E D$, call them to our attention. We want you to be able to believe what you read in Electronic Design.

Portable 250 Series
ac detector with instantaneous electronic null indi-cator-you don't pass the null.
plug. in networks for rejection of hum and hapmonics, easy frequency change. ESI Dekadial $-12,005$ divisions of resolution at
your fingertips. your fingertips.
simple in line readout.
Large enough for laboratory accuracy, small enough for convenient portability. Model 250-DA, a soil measurements of impedance elements at de end measurements of impedance elements at de operated. $\$ 375$ (ac detector $\$ 200$ additional).
BRIDGES
Universal 2 OI
permanent operating instructions on anodized aluminum.
dc generator. detector with two power supply voltages, sensitive nometer.
ac generator -detector with dual beam null indicator, extremely wide sensitivity range, fast response.
inline reading -fastest brid on the market to operate.
both series and parallel equ valent circuit measurements.
RESISTANCE TO 0.1\% - 0.1200 kilohms in seven ranges; CON. DUCTANCE TO $0.1 \%-0.1200$ millimbos in seven ranges; CAPACITANCE TO $0.2 \%-0.1200$ micro. farads in seven ranges; INDUC. TANCE TO 0.3\%-0.1200 henry in seven ranges; price $\$ 995.00$.

Available from stock . . . immediate delivery on either unit

VISIT OUR DISPLAY WESCON, AUG. 23-26 BOOTHS 649-650

Elootro solontifio Industries
7524 S.W. MACADAM • PORTLAND IQ, OREGON
formerly ELECTRO-MEASUREMENTS, INC.

CIRCLE 46 ON READER-SERVICE CARD

Alfred Corbin
RCA Service Co.
Missile Test Project Patrick AFB, Florida

Generate Variable Delays With DC-Controlled Flip Flops

Producing precise controllable delays usually requires control switches intimately tied in with the pulse circuits. This makes for cross-talk and loading problems. Alfred Corbin, who has spent much of the past three years designing digital range-timing equipment, here offers a straightforward solution to remotecontrolled timing. His solution allows control switches to be placed a great distance from the timing circuitry.

DELAYS ranging from microseconds to seconds can be generated by remote-controlled flipflops. Dc switch lines can control delays selected by switches a great distance from the circuit's active components.
One such circuit, built for an airborne timing system, is shown in Fig. 1. It uses commercial, transistorized flip-flops, operating from a -12 -v supply, to provide output levels of -11 or -3 v .

The output of each flip-flop in the circuit is coupled through a diode which is biased on or off by dc on the control lines from the selector switches. At each switch position, one line is held at - 12 v , cutting off its diode, while the other diode is returned to ground through a resistor.
An input pulse sets the gate-control flip-fop FF1, opening the input gate. The gate passes the clock pulses to the variable-delay counter. An output pulse appears when a selected number of pulses have been counted. The output pulse resets FF1, blocking the input signal, and resetting the counter to zero.
Though this circuit was built to serve as a precision delay generator, it can be used, with a random input rate, as an events counter signaling the reception of n input events. The instrument's delay range is virtually infinite, being limited only by the switching time of the flip-flops in the zerodelay setting. With transistor circuits, the minimum delay can easily be held to a small fraction of a microsecond per flip-flop.

Scale-of-Sixteen Counter
 Forms Heart of Circuit

A modification of the familiar scale-of-sixteen counter is at the heart of the delay generator. The flip-flops connected as shown in Fig. 2 generate a positive-going output when they receive 16 positive-going input pulses. If the circuitry is
initially reset and the input time interval is t, the first output pulse is delayed by $15 t$.
The delay contributed by each flip-flop depends on its position in the chain. FFI contributes a delay equal to t; $F F 2$ contributes $2 t$, FF3 contributes $4 t$, and FF4 contributes $8 t$

Complementary Output

 Eliminates Normal DelayIn Fig. 3, the output from FF3 is taken from the complementary side, labeled B. This output is relatively negative when the flip-flop is reset, so it produces a positive transient when FF3 is first flipped. Hence, FF3's delay is eliminated by coupling from its B output rather than from its A output.
If a counter is connected with $A-B$ selector switches at the output of each flip-flop, the delay can be programed from zero to $15 t$ by the proper combination of switch settings. For remote control of the delay, diode switches between the counter elements, allow the use of dc control voltages as shown in Fig. 4.

Feedback Around Scale-of-Sixteen Yields Handier Scale-of-Ten

The typical feedback arrangement of Fig. 5 can be used to change the scale-of-sixteen counter to a scale-of-ten unit. With the latter configuration, counter can generate a delay from zero to 9 .
It should be noted that, though the initial delay from the reset condition to the first output pulse is made variable, the $N / 10$ counter remains basically an $N / 10$ counter. In effect, the output rate is fixed at one tenth of the input rate while the output phase is shifted in increments. By stacking two or more $N / 10$ counters, the initial delay can be varied in units, tens, hundreds, or by other factors of ten. - -
n from
atput is et, so it is first ted by rom its
selector ie delay by the For rebetween : control

Fig. 1. Modified scale-of-ten counter serves as remote-controlled, variable-delay generator.

$\rightarrow t$

Fig. 2. Basic scale-of-sixteen, flip-flop counter and its timing relationships.

Fig. 3. Drawing the complementary output from FF3 eliminates the delay which FF3 normally contributes in this counter.

Fig. 4. Over-all delay of this scale-of-sixteen counter can be controlled by de switch lines.

Fig. 5. Feedback around scale-of-sixteen counter yields scale-of-ten counter-convenient for decimal stacking.

Designing Har
Tube Delay

Multivibrators

Robert F. Roller Systems Engineering Div. Battelle Memorial Institute Columbus, Ohio

Conventional approaches to the design of cathode-coupled one-shot multivibrators involve several approximations plus trial and error techniques before an acceptable design is achieved. A straightforward method, including graphical procedures, is presented together with a working solution to a typical example.
\triangle PPROXIMATIONS, trial and error techniques and generally unsatisfactory design procedures make the design of a delay (cathodecoupled one-shot) multivibrator difficult and time-consuming. One incorrect philosophy quite commonly encountered involves the assumption of full conduction of the first stage. From the detailed step-by-step procedure described, a multivibrator with a linear delay period can be designed in a straightforward sequence.

One-Shot Multivibrator Operation
Fig. 1 shows schematically the configuration for such a circuit. Several definitions are needed before the design method can be established; these are grouped in the Glossary section.

All currents and voltages considered are steadystate values. Some overshoots will be experienced, but will not be treated here.

Normally, to produce triggering, a positive voltage spike is applied to the grid of T_{1}, or a negative voltage spike is applied to the plate of T_{1}, or to the grid of T_{2}.

The current flow through T_{2} is designated I_{2}, and has a fixed value since T_{2} normally operates at clamp level (see Glossary).

If the voltage E (Fig. 1) is increased from zero, it is found that for all voltages less than a minimum level, $\boldsymbol{E}_{\min }$, the stage cannot be triggered. This is because the drop in plate voltage which occurs upon conduction of T_{1} is insufficient to cut off T_{2}. At $E_{\text {min }}$, however, T_{2} just cuts off, when sufficient trigger potential is applied, and a minimum workable current flow through T_{1} is experi-

1. All formulas are adapted from Millman and Taub: Pulse and Digital Circuits, pp 189-194, McGraw-Hill Book Company, New York, 1956

If the voltage E is further increased, the delay period of the multivibrator will be linear until a maximum point, $E_{\text {max }}$, is reached. For all voltages $E>E_{\max }$, the multivibrator will become astable (free-running). At this potential, $E_{\text {max }}$, a current I_{1} will flow through $T_{1} . I_{1}$ must be found from tube characteristic curves, after $E_{\max }$ is calculated. $E_{\text {max }}$ is the voltage applied to the grid of T_{1} that will just keep it cut off while T_{2} conducts.

$$
\begin{equation*}
E_{\operatorname{maz}}=I_{2} R_{k}+E_{\infty 01} \tag{2}
\end{equation*}
$$

Step-By-Step Design Procedure

1. Output is normally taken capacitively from the plate of T_{2}. Determine what change of voltage is required to drive the subsequent stages. Call this $\Delta_{\mathrm{c} b 2}$. Now,

$$
\Delta_{c b 2}=I_{2} R_{L 2}
$$

Locate the clamp line $\left(E_{c}=0\right)$ on the tube characteristics and select an amount of current safetly below the maximum dissipation of the tube, and on the clamp line (see Fig. 2). Call this value I_{2}. Solve for $R_{L 2}$

$$
R_{L 2}=\frac{\Delta_{e b 2}}{I_{2}}
$$

If $R_{L 2}$ is not a standard resistance value, correct it to standard, and correct I_{2} to correspond.
2. Draw a straight line from the chosen point on the clamp line to the $E_{b \Delta}$ voltage used, along the base line. The negative inverse slope of this line is equal to $R_{L 2}+R_{k}$. Since $R_{L 2}$ has been previously determined, solve for R_{k}. Correct R_{k} to closest standard value, and correct the load line accordingly. It is generally best that $R_{L 2}>R_{k}$.
3. For maximum linearity of the delay period, $F_{L_{1}}$ should be set equal to R_{k}. Arbitrarily set $R_{L 1}=R_{k}$.
4. All components have now been calculated except \boldsymbol{R} and C. First, however, I_{o} and I_{1} are detirmined. It is necessary to know I_{1} to calculate R and $C . I_{o}$, while not necessary in this calculation is helpful in determining $E_{\text {min }}$.
Calculate I_{0} using Eq. 1. For $E_{\text {co2 }}$, use the cutoff voltage indicated for the value of $E_{\partial 0}$ used. This procedure is in error, but will yield a value of I_{o} as a first approximation.

$$
\begin{equation*}
I_{o}=\frac{I_{2} R_{k}-E_{c o 2}}{R_{L 1}+R_{k}}=\frac{I_{2} R_{k}-E_{c o 2}}{2 R_{k}} \tag{4}
\end{equation*}
$$

(Since $R_{L 1}=R_{k}$)
5. This first approximation is now substituted into:

$$
\begin{equation*}
E_{p k 2}=E_{b b}-I_{0} R_{k} . \tag{5}
\end{equation*}
$$

The value of $E_{p k 2}$ is then located along the base line, and the associated cut-off potential is then used as the new value of $E_{\text {cor }}$. Using this value, a second approximation for I_{0} is obtained. Further approximations are usually unnecessary, but could be made in the same manner if desired.
6. Draw the Tube 1 load line, which will have an inverted negative slope equal to $R_{L 1}+R_{k}=$ $2 R_{k}$. Locate the grid-to-cathode voltage associated with the tube when the current I_{0} is being drawn. Designate this voltage $E_{o 1}$. Then,

$$
\begin{equation*}
E_{\min }=E_{e 1}+I_{0} R_{k} . \tag{6}
\end{equation*}
$$

This value of $E\left(E_{m i n}\right)$ is associated with a zero delay period, and is the minimum point of linear response.
7. $E_{\text {mas }}$ is next calculated from Eq. 2:

$$
\begin{equation*}
E_{\max }=I_{2} R_{k}+E_{\text {ool }} . \tag{7}
\end{equation*}
$$

$E_{c 01}$ is determined using the tube curves and is the cut-off voltage associated with $E_{p k 1}$, as it is given by

$$
\begin{equation*}
E_{p k 1}=E_{b b}-I_{2} R_{k} . \tag{8}
\end{equation*}
$$

8. For the value of $E=E_{\text {max }}$, the current flow (when triggered) through Tube 1, I_{1}, must be delemined. First,

$$
\begin{equation*}
I^{\prime}=\frac{E_{\max }}{R_{k}} \tag{9}
\end{equation*}
$$

For this value of current (l^{\prime}), mark a point on the damp, line $\left(E_{c}=0\right)$. Then, on another grid line associated with some arbitrary value of grid bias X m rk a point for

$$
\begin{equation*}
I^{\prime \prime}=\frac{E_{\max }-K}{R_{k}} \tag{10}
\end{equation*}
$$

Conn ct these points with a straight line. Note

Fig. 2. Plate characteristics of the 5963 dual triode.
the point of intersection of this line with the load line for T_{1}. The tube will operate very close to this point when $E=E_{\text {max }}$. Load current here is designated I_{1}. A closer approximation to the operating point can be made, if desired, by applying Eq. 10, using for K values of grid bias close to the intersection point. Usually, the linearity of the characteristics is sufficient to make this unnecessary.
9. The value $T / R C$ should be kept small for reliable delays. Suggested values are 0.1 to 0.5 . The value of $T / R C$ may now be determined from the equation.

$$
\begin{equation*}
\frac{T}{R C}=\ln \frac{E_{\mathrm{bb}}+I_{1} R_{L 1}-I_{2} R_{k}}{E_{\mathrm{bb}}-E_{c a 2}-I_{1} R_{k}} \tag{11}
\end{equation*}
$$

If $T / R C$ is too large (above about 0.5), a larger value of I_{2} can be used to reduce it. Calculations, starting with Step 1, must then be repeated.
10. After determining $T / R C$, and knowing the desired maximum delay $T, R C$ may be calculated. For fast recovery, C should be small, and R should not exceed the practical limit of 5 to 10 meg. Large values of R will yield instability due to high-impedance noise pickup.
This completes the design of the multivibrator, which should operate linearly between grid potentials, $E_{\text {min }}$ and $E_{\text {max }}$.

Design Example

Using a 5963 tube, it is desired that a multivibrator be constructed which will delay for a variable period up to one msec and will give a nega-tive-going output change at the end of the delay
period of 150 v . The supply potential is 275 v .
The step-by-step procedure described will now be carried out numerically.

1. Given

$$
\begin{aligned}
& \Delta_{\mathrm{d} 2}=150 \mathrm{v} \\
& \Delta_{\mathrm{dd2}}=I_{2} R_{L 2}=150 \mathrm{v}
\end{aligned}
$$

On Fig. 2, the clamp line (a) is located, and a current below the maximum dissipation is sebected. A safe value, $I_{2}=7 \mathrm{ma}$.

$$
\begin{aligned}
& I_{\mathrm{g}} R_{L 2}=1.50 \mathrm{v} \\
& R_{L 2}=\frac{150}{7}=21.4 \mathrm{~K} \approx 22 \mathrm{~K}
\end{aligned}
$$

The nearest standard value, 22 K , was selected. I_{2} is corrected to

$$
I_{2}=\frac{\Delta_{e b 2}}{R_{L 2}}=6.8 \mathrm{ma}
$$

The clamp point (A) of Tube 2 is now marked at $I_{2}=6.8 \mathrm{ma}$ on the $E_{\mathrm{c}}=0$ line.
2. A line is now drawn from A to the base line, intersecting at $E_{b t}=275 \mathrm{v}$. The slope is found to correspond to $\boldsymbol{R}_{\mathrm{L} 2}+\boldsymbol{R}_{k}=32 \mathrm{~K} . \boldsymbol{R}_{k}=(32-22)$ $\mathrm{K}=10 \mathrm{~K}$. This is a standard value and no correction is required.
3. Arbitrarily set $R_{L 1}=R_{k}=10 \mathrm{~K}$.
4. First approximation for $I_{0 .} E_{p k 2}=275 \mathrm{v} . E_{c o 2}$ corresponding is found on Fig. 2, and is approximately -20 v .

$$
\begin{aligned}
& I_{\mathrm{o}}=\frac{I_{2} R_{k}-E_{c 2}}{R_{L 1}+R_{k}}=\frac{6.8(10)+20}{20}=4.4 \mathrm{ma} \\
&(\text { continued on } p \text { 54) }
\end{aligned}
$$

DO YOU KNOW THE SIMPLEST WAY TO STABILIZE MICROWAVE FREQUENCIES?

Short-term frequency stability as high as one part in 10°, plus substantial noise reduction, can be achieved by a VARIAN STALO which is a combination of klystron local oscillator and stabilizing cavity. The stalo cavity is a hollow shell-highly refined.
By means of passive stabilization, this cavity in many applications accomplishes the same ends as either active AFC stabilization systems or crystal-plus-electronic-multiplier circuits. But the stalo cavity, because it is passive, has extreme reliability and an infinite life. Most of them require no troubleshooting or maintenance effort-ever-once they have been properly designed and installed in a microwave circuit.
Varian offers stalo cavities to match every klystron oscillator in its present catalog, providing stabilization at any desired frequency in C-band, X-band or K-band. Application Engineering Bulletins 14 and 15, on passive stabilization and on phase locking respectively, fully explain the stalo principle of operation and application to microwave circuits. May we send you copies?

GENERAL CHARACTERISTICS OF VARIAN STALOS
(Exact specifications on individual models (trailable in catalog and data sheets)

Shor-term frequency \&t

 Long-term Long-termfrequency stability Stabilization factor . Noise reduction.
Unloaded Q Temperature
compensation compensation $\begin{array}{ll}\text { Tunability } \ldots & \begin{array}{l}\text { Der degree Centigrade } \\ \text { Fixed frequency or tunable } \\ \text { types covering as high as } \\ 10 \% \text { of freauency }\end{array}\end{array}$ 10\% of frequency
Suitable for extreme airborne service
Comparable to or less than active stabilization circuit
of similar effectiveness of similar effectiveness
As high as 1 pert in 10°
As high as 1 part in 10. As high as 120
Typically by a factor of 20 as compared to the klystron without stalo cavity
As high as 110,000
As close as one part in 10° As close as one part in -

5. Second approximation for I_{0}.
$E_{p k 2}=E_{b b}-I_{o} R_{k}=275-4.4(10)=231$,
$E_{c o 2}$ corresponding is $\mathbf{- 1 7} \mathrm{v}$.

$$
I_{o}=\frac{6.8(10)+17}{20}=4.25 \mathrm{ma}
$$

6. The Tube 1 load line is now drawn with slope equal to $2 R_{k}=20 \mathrm{~K}$. This is line (b) on Fig. 2. The grid-to-cathode voltage when $I_{c}=$ 4.25 ma on this line is (point B) -9 v .
$E_{c 1}=-9 \mathrm{v}$.
$E_{\text {min }}=E_{c 1}{ }^{\prime}+I_{0} R_{k}=-9+4.25(10)=33.5 \mathrm{v}$.
Thus, the minimum linear response is obtained when $E=E_{\text {min }}=33.5 \mathrm{v}$.
7. $E_{\text {max }}=I_{2} \boldsymbol{R}_{k}+E_{\text {co1 }} . E_{c 01}$ is associated with $E_{p k 1}=E_{b b}-I_{2} R_{k}$

$$
\begin{aligned}
& E_{p h 1}=275-6.8(10)=207 \mathrm{v} \\
& E_{\text {coi }}=-15 \mathrm{v} \\
& E_{\max }=6.8(10)-15=5.3 \mathrm{v}
\end{aligned}
$$

The operating point of Tube 1 is next located.
8. $\quad I^{\prime}=\frac{E_{\max }}{R_{k}} \frac{53}{10 \mathrm{~K}}=5.3 \mathrm{ma}$

This current is located on the clamp line, and marked point (c).

Arbitrarily set $K=-10 \mathrm{v}$

$$
I^{\prime \prime}=\frac{\mathrm{E}_{\max }-K}{R_{h}} \frac{53+10}{10 K}=6.3_{-} \mathrm{ma}
$$

On the $E_{c}=-10 \mathrm{v}$ line, locate $I^{\prime \prime}$ and mark as point D. Connect points C and D with a straight line. The intersection of this line with the Tube load line (b) gives $I_{1}=5.0 \mathrm{ma}$.

Fig. 3. Final circuit, including component values, of the one-shot multivibrator used in the design example.
9. $\quad \frac{T}{R C}=\ln \frac{E_{\text {bo }}+I_{1} R_{k}-I_{2} R_{k}}{E_{\text {bo }}-E_{c o 2}-I_{1} R_{k}}$

$$
=\ln \frac{275+5(10)-6.8(10)}{275+17-5(10)}
$$

$$
=\ln \frac{275}{242}=\ln 1.11=0.105 .
$$

10. $T=1$ msec -0.001 sec .

$$
R C=\frac{0.001}{0.105}=9530 \mu \mathrm{sec} .
$$

Arbitrarily let $R=1 \mathrm{meg}$.
$C^{\prime}=\frac{9530 \times 10^{-6}}{1 \times 10^{6}} \approx 10000 \mathrm{pf} \approx .01 \mu \mathrm{f}$.
This completes the design. The final circuit is shom in Fig. 3. ■ -

Glossary

Clamp Clamp level. A tube operating with zero bias potential between grid and cathode is said to operate "in cathode is said to operate "in clamp. This is because of grid current drawn through the grid resistor.
This current will tend to push the bias level toward zero volts. Hence, bias level toward zero volts. Hence,
the "clamp line" is the line on tube Characteristics where $E_{c}=0$. The highest value of current flow through Tube 1 for which the stage is not free-running. It is also the upper limit of the linear range of delay action.
The lowest value of current flow through Tube 1 for which the stage can be triggered. It is also the lower limit of the linear range of the delay action.
Clamp level current in Tube 2.
$E_{b u} \quad$ The applied $B+$ potential.
$E_{p k 1} \quad$ The plate-to-cathode potential of Tube 1. Usually used in conjunction with the tube characteristics to determine cutoff bias necessary to cut termine
stage off
Same as $\mathrm{E}_{\mathrm{ok} 1}$, except applying to Tube 2.
The range of bias potential E (see Fig. 1) applied to Tube 1 grid which produces a linear delay in the Tube 2 plate output waveform. The cathode-to-grid voltage required to cut off Tube 1 .
Some as $\mathrm{E}_{\text {col }}$, but applying to Tube 2.
The grid-to-cathode potential associated with Tube 1 when a current flows in Tube 1. The desired delay period, in seconds.

Tung-Sol/Chatham CROWBAR Thyratrons

 PROTECT HIGH-POWER CIRCUITS AGAINST DESTRUCTIVE ARCSAny one of a host of causes can trigger internal arcs in high power tubes with little or no warning . . . even if the tubes are well designed, operate in well-engineered circuits, and have conservative demands placed upon them. Cosmic rays, linevoltage transients, parasitic oscillations, spurious primary and secondary electrons and material whiskers are just a few of the potential sources of these highly destructive arcs.

But by engineering Tung-Sol/Chatham high reliability crow. bar hydrogen thyratrons into your design, you can safeguard against costly arc-generated breakdowns. By short-circuiting destructive currents, these zero bias "arc-busters" extinguish
the arcs before circuit elements can be damaged

Instantaneous response and the ability to carry extremely large currents make these rugged thyratrons ideally suited for this purpose. Moreover, they are able to conduct these heavy surge currents even after having been idle for long periods. Each tube contains a hydrogen reservoir which promotes long life and permits optimum gas pressure adjustment for various operafing conditions. Write for full lechnical details. Tung-Sol Electric Inc., Newark 4, N. J. TWX: NK193

Technical assistance is available through the following sales offices: Atlanta Ga.; Columbus, Ohio; Culver City, Calif.; Dallas, Texas; Denver, Colo.; Detroit, Mich.; Irvington, N. J.; Melrose Park, III.; Newark, N. J.; Philadelphia, Pa. Seattle, Wash. Conada: Toronto, Ont.

Typical application: A crowbar thyratron tube, the rising current is used to deliver a is connected in series with a suitable impedance across the filter of the high voltage power supply for a high frequency amplifier
suitable signal to the grid of the thyratron. The thyratron immediately conducts to shor arcuit the power supply, until the protective ircuit breaker opens 0.1 second later.

(5) TUNG-SOL

Design Considerations for Nonlinear Function Generators

For almost four years, Chalmers Riley has been designing analog and digital systems for missile guidance and ground support. In his work he found many applications for the type of nonlinear function generator he describes here.

Chalmers G. Riley Guidance and Control Lab. Army Ballistic Missile Agency Redstone Arsenal, Ala.

WITH THE CORRECT reference signal, the generator described here can deliver almost any type of nonlinear function. The reference can be controlled by a nonlinear potentiometer with output mechanical or electrical.
Such a nonlinear function generator can be used for a wide variety of applications. Its output can be used, for example, as an input for a servo system being analyzed; it can be used for auto-matic-pilot control of aircraft and missiles; it can represent the velocity, acceleration, trajectory, wind resistance, and heating effects of a missile in flight; and it can represent the damping and angular frequency of a servo system so the system's stability and frequency response can be measured.
The nonlinear function generator, shown in Fig. 1, generates a required function with a cor-
rect time constant. The device is basically a rate or velocity servo with a simple positioning system.

Design Must Offsel

Four Basic Error Types
In this type of motor-integrator servo there are four primary causes of error. These are:

1. Motor friction constant,
2. Nonlinear characteristics,
3. Noise,
4. Motor time constant.

There are other sources of error, such as quadrature voltage, temperature variation and gear backlash. These may be minimized by careful design and selection of components.
This type of system requires high gain to minimize steady-state error. With high gain, a step input may cause transient saturation. Nevertheless, linear operation resumes where the motor speed builds up enough for the tachometer volttage to reduce the error below the saturation level. A high-gain integrator helps to reduce the error signal.
Such a system must transfer a nonlinear func-
tion of voltage into a proportional shaft rotation. This requires a transducer to transfer the mechanical rotation to a proportional voltage. The transducer gives the reference voltage required to produce the necessary nonlinear shaft rotation.
The function generator then gives a nonlinear mechanical output. The speed of the function depends on the gear ratio between the motor and the reference transducer.
The closed-loop transfer function of the generator can be derived from the block diagram of Fig. 2. The motor transfer function is

$$
\frac{V_{m}}{\theta_{0}}=\frac{K_{v}}{S\left(1+T_{m} S\right)}
$$

The closed-loop transfer function of the system with a step input is

$$
\frac{\theta_{o}}{\theta_{i}}=\frac{G K_{\mathrm{v}} K_{p}}{T_{m}\left[S^{2}+\frac{\left(1+G K_{v} K_{3}\right) S}{T_{m}}+\frac{G K_{v} K_{p}}{N T_{m}}\right]} \times \frac{1}{S}(2)
$$

The roots may be found by the quadratic equa. tion. Then the function will be in its usual form

$$
\frac{\theta_{0}}{\theta_{i}}=\frac{G K_{v} K_{p}}{T T_{m}\left(S+T_{1}\right)\left(S+T_{2}\right) S}
$$

where $S=-\left(\frac{1+G K_{\mathrm{v}} K_{3}}{2 T_{\mathrm{m}}}\right)$

$$
=\frac{1}{2} \sqrt{\left(\frac{1+G K_{v} K_{z}}{T_{m}}\right)^{2}-\frac{4 G K_{v} K_{p}}{N T_{m}}}
$$

If $S=X \pm Y$, then $T_{1}=X+Y$ and $T_{2}=$ $X-Y$. Applying the inverse Laplace of the func tion to the equation, it becomes i=

$$
\frac{\theta_{o}}{\theta_{i}}=\frac{G K_{\mathrm{v}} K_{p}}{T_{m}}\left[\frac{1}{T_{1} T_{2}}+\frac{T_{1} \epsilon^{-T_{2} t}-T_{2}-T_{1} t}{T_{1} T_{2}\left(T_{2}-T_{1}\right)}\right]
$$

ELECTRONIC DESIGN • July 20, 1960

Simp

Fig. 2. Block diagram of the function generator helps designer derive system fransfer function.

This type of servo system, with the required input reference, can be made to produce almost any kind of nonlinear function with a controlled time constant. There are many ways to accomplish this. One way would be to use a potentiometer with a large number of taps so the reference voltage will follow a certain curve. Another method would be to use a vernistat for reference control.

Nonlinear Function Generator

Helps in Missile Guidance
In many applications it is necessary for a missile to follow a prescribed acceleration curve. An error-sensing device must be incorporated in the missile guidance to see that it follows the required acceleration curve. This can be done many different ways depending on the actual curve the missile must follow.
This curve in most cases, approaches an exponential waveform. The exact wave depends on certain characteristics of the missile frame and engine. To match this curve, an exponential generator is required.
As the missile begins to accelerate the programed acceleration starts and these two signals are compared. The difference between the programed and the actual curve is fed to a correcting servo unit.

Neglecting Motor Time Constant
Simplifies Design
Suppose that an exponential program curve is required with a time constant of 12.5 sec . To illustrate the effect of the motor time constant T_{m}, it can be considered to be zero. This is a reasonable assumption since the time constant of the tenerated exponential is approximately 350 times freater than that of the motor.
If the assumption $T_{m}=0$ is made, Eq. 2 reluces to
$=\frac{G K_{v} K_{p}}{\left(1+K_{3} K_{v} G\right)\left(S+\frac{G K_{v} K_{p}}{\left(1+K_{3} K_{0} G\right) N}\right)} \times \frac{1}{S}{ }^{(6)}$
If the open-loop frequency response curve of the system were plotted it would show that the stien. was slightly unstable. However, the ta-

COMPACT TRANSISTORIZED VOLTAGE REGULATED DC POWER SUPPLIES IN WIDE VOLTAGE AND CURRENT RANGES. Proven and improved design features endow these eleven new KEPCO models* with excellent voltage regulation, stability and response characteristics, plus unusual compactness and longevity:

| * | DC
 MODEL
 VOLPUTS | DC
 OUTPUT
 AMPS. |
| :--- | :---: | :---: |\quad REGULATION

FOR DETAILED SPECIFICATIONS ON MORE THAN 100 STANDARD MODEL POWER SUPPLIES
SEND FOR KEPCO CATALOG B-601

Visit us at booths 422-423 - WESCON SHOW - Auguse 23-26, Los Angoles, Calif.

CANNON ELECTRIC COMPANY, 3208 Humboldt St., Los Angeles 31, Calit.
chometer will furnish negative feedback to give the necessary damping factor for stabilization. in fact, a motor-tachometer can be used instead f an inertially damped motor. An inertially damp d motor would introduce three time constants to the system which would not only increase the tims. constant error but would make the calculatio is more cumbersome.

The inverse Laplace when reduced to its nalural form is

$$
\begin{gather*}
\frac{\theta_{\rho}}{\theta_{i}}=N\left[1-e \frac{-\left(G K_{v} K_{p}\right) t}{\left(1+K_{3} K_{v} G\right) K_{n}}\right] \\
T=\frac{\left(1+K_{3} K_{v} G\right) N}{G K_{v} K_{p}} \tag{8}
\end{gather*}
$$

where
However, if the assumption $K_{3} K_{v} G \gg 1$ were made

$$
T=\frac{N K_{3}}{K_{p}}
$$

Gear Ratio and Reference Play Dominant Role

Eq. 9 shows that only two factors play an im. portant part in determining the time constant of the the exponential-the gear ratio N and the reference signal $K_{p} . K_{3}$ is the scale factor of the tafer chometer which is constant. The amplifier gaiu and motor constants have very little effect on the exponential's time constant.
If the exponential's time constant were not to pres, critical, this method, along with the assumption in made, would be the most straightforward desig However, if these assumptions cannot be made th calculations become more cumbersome as show by Eq. 5 .
The foregoing derivations can be used to desif a typical system. A typical requirement might to design a program to generate an exponeniu with a time constant of 12.5 sec . The motor shy is to drive an error sensing device. With this formation and available materials the followif constants can be used.
Motor constant $=K_{v}=12.2 \mathrm{rad} / \mathrm{sec}$ (Keart
801 Motortach)
Gear ratio $=N=\mathrm{rad} / \mathrm{rad}$
Amplifier gain $=G=200 \mathrm{v} / \mathrm{v}$
Motor time constant $=T_{m}=0.0345 \mathrm{sec}$.
Tachometer scale factor $=K_{3}=0.03 \mathrm{v} / \mathrm{rad}$
Reference potentiometer scale factor $=K_{\text {, }}$,
$1.2 \mathrm{v} / \mathrm{rad}$
First the gear ratio can be determined with motor time constant T_{m} assumed to be zero $K_{3} K_{v} G$ much greater than 1.

$$
N=\frac{T K_{p}}{K_{3}}=\frac{12.5 \times 1.2}{0.03}=500
$$

ELECTRONIC DESIGN • July 20,
$=500\left(1-\epsilon^{-t / 12.48}\right)+0.018 e^{-t / 0.00047}$
(No assumptions).
It is noteworthy that, in each equation, the maximum magnitude of the exponential is equal o the gear ratio. Since the motor time constant is included in the third equation, a new term is introduced.
However, this term is so small in comparison with the others it can be neglected. Also in the hird equation, there are two time constants, T_{1} and $T_{2} \cdot T_{2}$ is so small it can be neglected. T_{1} difers from 12.5 sec by almost the amount of the notor time constant
A system identical to the one shown in the exmple has been constructed. The system was first reset, by a dial, to the desired acceleration and hen a relay switch was thrown for program opertion. The results gave an exponential with a time onstant that was less than 10 per cent off the esired results. It took approximately six time onstants for the system to null.
Since the curve was not a true exponential, and e time constant has an error, other means were cessary to correct this. The time constant can regulated by biasing the reference voltage). This is a logical place for vernier control. is can be done by adding a pot in series with reference pot. Then the time constant can be iusted to within two per cent.
This accuracy can be increased if quadrature cection and temperature stabilization are used. e curve can be made to match an exponential making the reference pot nonlinear. However, s requires external taps on the pot.
The mechanical output of the function can be to an error sensing device, such as a control Ierential transmitter (CDX). This is a device tvill compare a shaft rotation or position with electrical signal to give an electrical difference. difference can be fed to a correcting servo ch would continuously compare the two res and correct the difference. - :
If the assumption $K_{3} K_{v} G \gg 1$ were not made the error from 12.5 sec would be 0.17 sec .
$T=\frac{\left(1+K_{3} K_{\mathrm{v}} G\right) N}{G K_{\mathrm{v}} K_{p}}=\frac{(1+0.03 \times 12.2 \times 200) 500}{200 \times 12.2 \times 1.2}$
$=12.6 \overline{\mathrm{sec}}$.
With this information and the previous derivations the three exponentials can be written as
$=500\left(1-e^{-t / 12,5)}\right.$ for $T_{m}=0$
$=500\left(1-\epsilon^{-t / 12,67}\right)$ for $T_{m}=0$ and $K_{3} K_{r} G \gg 1$

Ledex Digimotor.

IS MAJOR ADVANCE IN STEPPING MOTOR FIELD

Uni. directional has flasge or foot meuntir

The new Ledex Digimotor is a stepping motor or indexing device with exceptionally high reliability and torque-to-size ratio. Its new design concept gives it features never before available. Size 5 stock models come in a variety of shaft positions and in any duty cycle within a wide operating voltage range. It is jam proof, permanently lubricated. has magnetic anti-overcoast, and operates at "whisper" noise level.
New Ledex Digimotor Switches are rotary selector switches with all advantages of the Digimotor drive plus other special features.

Ledex. Inc. was formerly G. H. Leland, Inc. CIRCLE 51 ON READER-SERVICE CARD

Other Ledex products include Rotary Solenoid, Rotary Solenoid Selector Switch, Hermetically Sealed Selector Switch, and Syncramental Stepping Motor. Mechanical applications include actuation of valves, vanes, printers, shafts. Switching applications include circuit selecting, stepping, counting. programming and sequencing. Write for literature, mentioning application, to Ledex, Inc. (formerly G. H. Leland, Inc.), Dayton 2, Ohio; Marsland Engineering, Ltd., Kitchener, Ont.; NSF Ltd., 31 Alfred Place, London, Eng.; NSF GmbH, Nurnberg, Germany.

Simple Analog Circuit Solves Heat Flow Problems

Richard J. Allen, Emil C. Muly*
Missiles and Electronics Div.
The Martin Company
Baltimore, Md

The problem of determining the heat flow through one or more solid materials to a constant temperature sink is often encountered by the electronic designer. Heat flow provides a limit to the power capacity of transistors and to the frequency response of thermal detectors such as bolometers and barretters. In many practical problems, the incident thermal energy of the heat source may vary periodically. A knowledge of heat flow is therefore required to determine the time constant and thermal phase shift through the conducting mass. In this article, authors Dick Allen (above) and Bud Muly present a beautifully simple analog technique to solve these problems quickly.

Fig. 1. RC ladder network-basic building block of the analog computing circuit.

T- HERE are several approaches to solving the problem of one-dimensional heat flow. One approach uses rigorous mathematics to solve the partial differential equations for the particular boundary conditions. While this leads to precise results, it becomes, at times, extremely unwieldly.
A more practical approach is the analog solution. While it is not at all novel, it is often either overlooked or considered unavailable to the designer. An electrical circuit is set up with param-

eters analogous to the thermal parameters of the problem. The vision of using large computers and costly programing time quite often discourages further interest in this approach. However, the problem, even in its more complex forms, may be solved quite rapidly by using an easily assembled "computer" comprised solely of conventional elec. trical laboratory equipment. This flexible computer circuit will also solve for the thermal phase shift and time constant.

General Heat Flow Equation-

 Basis For The AnalogThe equation of heat conduction is given as follows:

$$
\nabla^{2} T=\frac{1}{\alpha^{2}} \frac{\partial T}{\partial t}=\frac{C}{K} \frac{\partial T}{\partial t}
$$

Where
$T=$ the temperature $=T(x, y, z, t)$
Now with Dept. of Electrical Engi-
neering, Northwestern University,
neering, Nort,

Fig. 3. Decade capacitors and resistors, with power supply and scope form a desk-top computer.
$a^{2}=$ the thermal diffusivity of the material
$t=$ time
$C_{v}=$ specific heat/unit volume
$K=$ thermal conductivity
For the case of one-dimensional heat flow, the heat-conduction equation reduces to:

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}=\frac{C_{\mathrm{v}}}{K} \frac{\partial T}{\partial t} \tag{2}
\end{equation*}
$$

Taking Laplace Transform in time, we obtain

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}-\frac{C_{v}}{K} S T=0 \tag{3}
\end{equation*}
$$

If we make the approximation to the space deriva-

$$
\begin{gather*}
\frac{\partial T}{\partial x}=\frac{T_{n-1}-T_{n}}{\Delta x} \tag{4}\\
\frac{\partial^{2} T}{\partial x^{2}}=\frac{T_{n+1}-2 T_{n}+T_{n-1}}{(\Delta x)^{2}} \tag{5}
\end{gather*}
$$

the heat-flow equation then becomes
$\frac{K}{(\Delta x)^{2}} T_{n+1}=\left(C_{n} S+\frac{2 K}{(\Delta x)^{2}}\right) T_{n}-\frac{K}{(\Delta x)^{2}} T_{n-1}$. (6)

Electrical Analog

Of The General Equation

Solving for the nodal voltages of the RC ladder netivork, Fig. 1, yields an expression of the form

$$
\begin{align*}
& \frac{V_{n+1}}{R}=\left(C S+\frac{2}{R}\right) V_{n}-\frac{V_{n-1}}{R} \\
& \text { where } n=2,3, \ldots \tag{7}
\end{align*}
$$ The similarity with Eq. 6 for the heat flow prob-

lem is quite apparent. The analogies are

$$
\begin{aligned}
R & \sim \frac{\Delta x}{K} \\
C & \sim C_{v}(\Delta x) \\
V_{i} & \sim T_{i} .
\end{aligned}
$$

This is also evident from the nomenclature. Electrical resistivity is analogous to the inverse of thermal conductivity, $1 / K$ (or thermal resistivity). Electrical capacity, C, is analogous to thermal capacity, C_{v}, and electrical potential, \boldsymbol{V}_{b}, is analogous to thermal potential or temperature, T_{i}.

Table 1 lists the thermal conductivity and specific heats (heat capacity) of a number of materials in general engineering use. For setting up the analog, the values of K and C_{v} are obtained from this table. The value of Δx is obtained from the thermal circuit itself.

A schematic illustration of the analogous situations is shown in Fig. 2. If an electrical circuit is constructed of components with values proportional to the thermal quantities, scaled where necessary to obtain practical values and if a voltage source is applied which is also related to the thermal source, the solution to the heat flow problem can be computed. The circuit may be readily assembled with components available in almost any electrical laboratory. A computer of this construction is shown in Fig. 3.

A voltage supply with a wave form similar to the input temperature variation is used for transient response. A dc bias may be added to provide the steady-state component. The voltage

Table 1. Thermal Conductivity and Specific Heats of Common Engineering Materials at Room Temperature		
Material	K Normal Conductivity $\left[\frac{c a l}{c m-\sec -C}\right]$	C Specific Heat $\left[\frac{\mathrm{cal}}{\mathrm{gm}}\right]$
Aluminum	0.480	0.214
Asbestos	0.0006	0.195
Chromium	0.161	0.111
Copper	0.92	0.0928
Germanium	~ 0.137	0.074
Glass		
Crown (window)	0.0025	0.161
Flint	0.002	0.117
Iron	0.174	0.109
Lead	0.082	0.0308
Mica	0.0018	0.206
Polystyrene	0.006	0.182
Quartz (fused)	0.030	0.188
Rubber (synthetic)	0.00045	0.453
Silicon	0.20	0.176
Silver	1.001	0.056
Solder (60-40)	0.135	0.0407
Teflon (tetroflvorethylene)	0.0028	0.137
Tin	0.147	0.0556
Zinc	0.265	0.0936

waveform is then monitored with an oscilloscope at the various nodes. The amplitude of the display gives the temperature profile at that point. The time shift between the input and output waveform gives the phase shift, while the decrease in amplitude, as a function of increased input frequency, yields the thermal time constant.

Approximations and Accuracy Of The Analog

In developing the electrical analog, the distributed parameters of the material, as represented by the differential equations, were approximated by a number of lumped-constant cells as indicated by Eqs. 4 and 5. Since the derivative results from a limit process, a larger number of smaller cells will approximate the derivative more closely. As in any substitution method, the accuracy of the values of the substituted parameters will deter-

Fig. 4. Approximation of electrical circuits to the actual thermal circuit's characteristics improves with the number of cells.

Table 2. Analogue Solution to Sample Problem

Wave Form	Test Point	Vertical Scale (v/cm)	Scale Horizonfa
¢1. 1	Point A	0.2	$2 \mathrm{msec} / \mathrm{c}: 1$
	Square wave	5	$2 \mathrm{msec} / \mathrm{cm}$
HFAK	Point A	0.2	$2 \mathrm{msec} / \mathrm{cm}$
Ha	Square wave	5	$2 \mathrm{msec} / \mathrm{cm}$
NNTN	Point A	0.1	$500 \mu \mathrm{sec} / \mathrm{cm}$
1 1	Square wave	5	$500 \mu \mathrm{sec} / \mathrm{cm}$
cran	Point A	0.1	$200 \mu \mathrm{sec} / \mathrm{cm}$
H1T	Square wave	5	$200 \mu \mathrm{sec} / \mathrm{cm}$
NAM $\times 1$	Point B	0.05	$200 \mu \mathrm{sec} / \mathrm{cm}$
$\pm 4-1$	Square wave	5	$200 \mu \mathrm{sec} / \mathrm{cm}$
Wh,	Point C	0.05	$200 \mu \mathrm{sec} / \mathrm{cm}$
$\square-10$	Square wave	5	$200 \mu \mathrm{sec} / \mathrm{cm}$
10.10	Point D	0.05	$200 \mu \mathrm{sec} / \mathrm{cm}$
ITH10	Square wave	5	$200 \mu \mathrm{sec} / \mathrm{cm}$
	Point E	0.05	$200 \mu \mathrm{sec} / \mathrm{cm}$
-1710	Square wave	5	$200 \mu \mathrm{sec} / \mathrm{cm}$

Fig. 5. Schematic representa tion of the thermal conductor and the parameters involved in heat flow.
mine the accuracy of the analog solution.
In using the analog solution, the approximation of the derivative yields an error as illustrated in Fig. 4. However, since the designer usually knows the general form of the curve, judicious selection of the number of cells can be made to improve the first approximation.
By far the largest error results from the fact that many of the values of the constants which must be substituted into this expression to obtain quantitative results are not known to a high degree of accuracy. This eliminates the need for the mathematical closed form which, as will be shown in the example to follow, can become awkward to handle and time-consuming.

An Example

To see how useful a tool this amalog treatment can be, let us look at a sample problem which has been solved using both the mathematical and the analog approaches. Fig. 5 is a schematic diagram of a thermal conductor (actually a solid-backed bolometer operating at 4 K) providing a simple heat flow problem which has been analyzed in a rigorous mathematical fashion. ${ }^{1}$ The results of the analysis and the parameters of the problem are presented in summarized form for comparison
with the analog treatment. Let C be the specific heat per unit volume of the region $Q ; K$, the thermal conductivity of $Q ; n$ be the diffusivity of Q; G be the total heat capacity of region $P ; a$, the area of the receiving face and let l be the thickness of $Q(0.1 \mathrm{~cm})$. The incoming radiation was assumed sinusoidal and having the form $W=$ $W_{o} e^{i w t}+1$, where W_{o} is a constant and w is the angular frequency.

Three Assumptions Made

The following three assumptions have been made in the solution of the problem: The heat flow is one-dimensional and in the direction perpendicular to the receiving face. The element P has a high thermal conductivity so that its temperature is always uniform and equal to that of the adjoining region Q. The temperature of S is constant.
The solution of the heat flow equation is

$$
\begin{align*}
T= & \exp (q t)\left\{A \exp \left[(q / n)^{\frac{1}{2}} x\right]\right. \\
& \left.+B \exp \left[-(q / n)^{\frac{1}{2}} x\right]\right\}+D x+E \tag{8}
\end{align*}
$$

Where A, B, D, E, and q are to be determined from the boundary conditions. Determining the constants and substituting them, the equation for the temperature distribution then becomes
$T=\frac{\left\{\exp \left[(q / n)^{\frac{1}{x}} x\right]-\exp \left[(-q / n)^{\frac{1}{2}} x\right\} \omega_{0} \exp (\omega t)\right.}{K a\left(q^{\prime} n\right)^{\frac{1}{1}}\left\{\exp \left[(q / n)^{\frac{t}{4}} l\right]+\exp \left[-(q / n)^{\frac{3}{l}}\right]\right\}}$

$$
\overline{+G q\left\{\exp \left[(q / n)^{\frac{1}{i} i}\right]-\exp -(q / n)^{i} i\right\}}+\frac{\omega_{o} r}{K a}
$$

The first term represents how well the element P is able to respond or follow variations in the intensity of the incident radiation. The second term gives the mean temperature rise.
For the purpose of this example, the incident radiation is treated as modulated with a square wave instead of the sine wave used in the mathematical approach. This will not hamper the comparison of the two techniques. If anything, the treatment of the square modulation for the mathematical approach would prove more difficult than that of the sine wave modulation.

Setting Up The Analog

To solve the problem by the analog method, a ladder network analogous to the situation is set up, which is that given in Fig. 1. The values of R, C and V are determined by the proportional relations given following Eq. 7, and from the numerical values of the thermal parameters, such as given in Table 1. In this case, the values differ slightly fromi those listed due to the different temperature range of the problem, a factor to note

before applying the listed values to all situations. At the temperature of interest, the value of specific heat of the material under question (that is aluminum), is $5.33 \times 10^{-5} \mathrm{cal} / \mathrm{gm} \operatorname{deg~K} .^{\bullet 2}$
In addition to the knowledge of the value of specific heat and thermal conductance of the aluminum, the (ρ) or mass density must also be known. This will allow us to change the specific heit mass into specific heat/volume. The mass density for aluminum is $2.70 \mathrm{gm} / \mathrm{cm}^{3}$. It was decided that the analog could be given by the use of 5 RC network combinations. This meant that Δx then became 0.02 cm .
Therefore,

$$
\frac{\Delta x}{\bar{K}}=0.00 \cdot \frac{2}{-}
$$

$C^{\prime} \rho \Delta x=28.8 \times 10^{-7}$
Seiling the computer as follows:
$i_{0}=0.0027 \times 10^{5}=270$ ohms
$C_{a}=28.8 \times 10^{-7} \times 10^{-1}=0.288 \mu \mathrm{f}$, computer tirie, $T_{",}$, then becomes

$$
T_{a}=10^{-4} T
$$

${ }^{\circ} \mathrm{T}$ is is specific heat/unit mass-while the thermal condu tivity is $7.41 \mathrm{cal} / \mathrm{cm}$ deg Ksec. ${ }^{3}$

Results

Table 2 represents the results obtained from the analog. The test point A gives the value of the temperature directly at the $P-Q$ interface and, as such, gives the thermal frequency response of the bolometer. The points B, C, D, E and F represent the temperature at points spaced 0.02 cm apart in the bolometer and give a temperature profile across the bolometer itself. The waveforms also indicate the thermal phase shift. Fig. 6 is a plot of the data obtained at point A giving the frequency response to incident thermal radiation upon the bolometer.

References

1. Fray, S. J., and Robert, L. M., "A Simple Theory for Solid-Backed Bolometers," Journal of Scientific Instruments, Vol 33, March 1956.
2. Dillinger, J. R., "Low Temperature Physics and Chemistry, Proceedings of the Fifth International Conference on Low Temperature Physics and Chemistry," The University of Wisconsin Press, 1958.
3. Communicated by R. B. Scott, National Bureau of Standards Cryogenic Engineering Laboratory, Boulder, Colo.
10 MC COUNTER-TIMER

IT'S UNIVERSAL

- Low power - 50 watts \quad Greater reliability \quad Ease of maintenance - Low power - 50 watts - Ease of maintenance plug-in eonstruction
Period, 3 sec 10 sec sec
Ratio of 2 frequencies -10
R 10

6801
7ヨa0~

Ken Simons

Jerrold Electronics Corp.
Philadelphia, Pa.

(A)

Fig. 1. Measurement by bridging loss is possible because a matched line has the same im. pedance at any point along the line.

Fig. 2. Series-loss measure ments may be more convenien than bridging-loss measure-ments-depending on impedance level and physical configuration of the tested circuit

EOR MEASURING high-frequency impedances sweep-frequency techniques can offer a great convenience. They can often avoid the need for expensive specialized equipment. They can help avoid oversights which can result from a single-frequency view.

When the impedance to be measured is part of a resonant system with a bandwidth less than about 10 per cent of center frequency, two measurement techniques are particularly useful-measurement by bridging loss and measurement by series loss.

Measurement by Bridging Loss

The impedance seen at the input of a section of transmission line which is terminated by its characteristic impedance is the characteristic impedance, as illustrated in Fig. 1A. For low-loss lines it is a pure resistance.

Fig. 3. A sweep-frequency technique for accurate atenuation measurement.

Looking back into a line fed from a matched source, the equivalent circuit is a constant voltage in series with a resistor equal to the characteristic impedance Z_{0} (Fig. 1B).
Along a matched transmission system, at any point where the line from the source joins the line to the load, the circuit looks like a resistive source feeding a resistive load.
When a given impedance is bridged across an otherwise matched system, the loss of energy transferred to the load is the same as the loss that is cilculated when that same impedance is bridged across the load in the equivalent circuit (Fig. 1C).
In general, where the unknown impedance has both resistance and reactance, it is necessary to know both the magnitude and phase angle of the los introduced to determine the unknown constan'ts. Where suitable equipment is available to
measure both quantities, it is possible to relate the resistance and reactance of the unknown to the magnitude and phase angle of the loss. However, in many practical situations, other factors indicate that the unknown is either a pure resistance or a pure reactance.

In these cases, the magnitude of the unknown is determined by a simple attenuation measurement. The relationships can be calculated as shown in Appendix 1 or read from Nomogram 1 which relates bridging loss to attenuation.

Measurement by Series Loss

Bridging is not the only way an unknown impedance can be connected into a matched system. One may also open the center conductor at a junction and insert the unknown in series as shown in Fig. 2.
The loss that is introduced is a measure of the impedance in this case also. For unknowns that are purely resistive or purely reactive, the loss can be calculated as in Appendix 1 and the resulting relationship drawn up in the form of Nomogram 2.

Measurement Technique

For reasonable accuracy, certain precautions are essential:

- Accurate impedance measurement depends on accurate attenuation measurement. The comparison technique of Fig. 3 is one of the recommended approaches.

Fig. 5. Techniques for minimizing harmonic errors. (A) shows the use of a low-pass filter; (B) suggests configurations with attenuation minima at resonance; (C) suggests use of a tuned amplifier or receiver following the test jig.

In this technique, a high-speed coaxial switch compares the insertion loss of the circuit under test with that of a standard variable attenuator. For a $60-\mathrm{cps}$ sweep rate the switch should operate 30 times a second.
The scope display shows a horizontal line as well as the response curve of the circuit under test. The line crosses the response curve at points where the attenuation of the standard equals the attenuation of the circuit under test. The accuracy of this measurement is limited chiefly by the accuracy of the standard attenuator.

The use of carefully matched fixed attenuator pads with 5 or $10-\mathrm{db}$ loss will guard against impedance mismatch in associated equipment and will increase accuracy. Such pads are only useful where the unknown has moderate loss or measuring set-up includes a high-gain rf amplifier.

- Any convenient physical arrangement can be used for a test jig if the system characteristic impedance is maintained. Two connectors mounted on a metal sheet can be used as shown in Fig. 4. The sheet should be several times larger than the spacing between the connectors to minimize stray coupling from the circuit under test to the rest of the universe.
Where the unknown circuit is itself coaxial (as when a short piece of cable is being tested) it is most convenient to use a "Tee" connector to attach the unknown to the junction.
- Harmonics or other spurious components in the output of the sweep-frequency generator can
cause errors, particularly when the unknown gives an attenuation maximum at resonance. Fig. 5 shows ways to minimize the effects of spurious signals.
When the measurements are made within an octave band, a low-pass filter cutting off at the upper end of the octave can be used to reduce harmonic errors. Where there is a choice in circuit configurations, the use of those that give attenuation minima at resonace will help reduce the effects of harmonics. Finally, a tuned amplifier or receiver of moderate bandwidth (that is, a television or radar receiver) can be used to minimize harmonics as well as to increase system gain.

Applications of Measurement Techniques

Tuned Circuit Q. (Fig. 6). A convenient way to measure the unloaded Q of a resonant circuit is to determine its resonant resistance by the bridging or series loss method. The Q is then found by comparing this resistance with the reactance of either reactor at resonance, calculated from a known L or C value. The choice of bridging or series connection, and series or parallel resonance is determined by the impedance level and physical configuration of the circuit being tested.
As an example, a coil, space-wound with 15 turns of 16 -gage copper wire, is connected in series with a 15 pf TCZ ceramic capacitor. Its bridging loss as a series resonant circuit connected across a $75-\mathrm{ohm}$ system is 31 db at 35 mc . For 31 db , Nomogram 1 indicates a series resistance of 1.1 ohms. The reactance of 15 pf at 35 mc is 303 ohms, so the circuit Q is $303 / 1.1$ or 275 . Attenuation of Short Cables. (Fig. 7). The input resistance of a short section of transmission line

Fig. 6. Test configuration for setup of Fig. 3 and scope waveform for measuring Q. Bridging loss is measured at resonance where $X_{D}=X_{L}$ and R is read from the nomogram. Q is given by X_{L} / R.

Fig. 8. Setup for measuring the input impedance of a vacuum tube.

Fig. 7. Setup for measuring loss of short cable sections. At an impedance maximum, A is defined as $\left(R_{\text {m }}-Z_{0}\right) /\left(R_{\text {in }}+Z_{0}\right)$. The loss in db is then $10 \log A$. At an impedance minimum $A=\left(Z_{0}-R_{\text {in }}\right) /\left(Z_{0}+R_{\text {in }}\right)$. Again, cable loss is $10 \log A$.

As an example, the input resistance of a $3-\mathrm{ft}$ section of RG-6/U, open at the far end, is measured by the bridging method and found to give a bridging loss of 31 db at its quarter-wave resonant frequency of 160 mc . Nomogram 1 shows this to correspond to a resistance of 1.1 ohms. This gives an attenuation for this sample of $10 \log (75-$ $1.1) /(75+1.1)$ or 0.12 db , which is a loss of 4.0 db per 100 ft .

Input Impedance of a Vacuum Tube. (Fig. 8). The input impedance of a vacuum tube at high frequencies can be measured simply by making this impedance part of a series resonant circuit by connecting an inductor in series with the grid. Connecting the other end of the inductor as a bridging load across the measuring circuit allows rapid determination of the bridging loss, and thus of the total series resistance.
The measured resistance includes the losses of the inductor R_{L} as well as those of the tube $R_{\text {in }}$ R_{L} is small if a high Q inductor is chosen, but it can be measured quite accurately by replacing the tube with a high-frade air trimmer, set to give resonance at the same frequency, and measuring the bridging loss of the resulting circuit.

Appendix 1

Calculation of Bridging Loss

Equivalent circuit in Fig. 9.
For $\mathbf{Z}_{x}=$ a pure resistance " \boldsymbol{R}_{x}."
n. sistance
onus

Fig. 9. Equivalent circuit for bridging-loss measurements.

Fig. 10. Equivalent circuit for series-loss measurements.

Fig. 11. Main and reflected waves in a transmission line with characteristic impedance $\mathbf{Z}_{\mathbf{0}}$.

Nomogram 2 for Series-Loss Calculations

$$
\begin{array}{lr}
e=E \frac{R_{x}}{R_{0}-2 R_{x}} & e_{\operatorname{maz}}=\frac{E}{2}\left(\text { when } R_{x}=o\right) \frac{e_{\max }}{e}=\frac{R_{x}}{2 R_{o}}+1 \\
e_{\max }=\frac{E}{2} & \\
\frac{e_{\max }}{e}=\frac{R_{e}}{2 R_{x}}+1 & \text { Insertion loss due to } R_{x}=20 \log \left(\frac{R_{x}}{2 R_{v}}+1\right)
\end{array}
$$

Insertion loss due to $R_{x}=20 \log \left(\frac{R_{o}}{2 R_{x}}+1\right)$
For $Z=a$ pure reactance " i_{x} "

$$
\begin{gathered}
e=E \frac{j x}{R_{o}+2 j x} \\
\frac{e_{\max }}{e}=\sqrt{\left(\frac{R_{o}}{2 x}\right)^{2}+1}
\end{gathered}
$$

Insertion loss due to $x=20 \log \sqrt{\left(\frac{R_{0}}{2 x}\right)^{2}+1}$
Calculation of Series Loss
1:quivalent circuit in Fig. 10.
For $Z_{x}=$ a pure resistance " \boldsymbol{R}_{s} "

$$
e=E \frac{R_{0}}{2 R_{0}+R_{\pi}}
$$

EI CTRONIC DESIGN • July 20, 1960

For $\mathcal{Z}_{x}=$ a pure reactance " \mathbf{j}_{x} "

$$
\begin{aligned}
& e=E \frac{R_{o}}{2 R_{0}+j x} \\
& \frac{e_{\max }}{e}=\frac{j x}{2 R_{e}}+1
\end{aligned}
$$

Insertion loss due to $x=20 \log \sqrt{\left(\frac{x}{2 R_{*}}\right)^{2}+1}$

Appendix 2

Input Resistance and Attenuation for

A Resonant Length of Transmsission Line
When a line, like the one in Fig. 11, with characteristic impedance Z_{0}, is open or shorted at the far end, the reflected voltage or current wave at the input terminals is reduced compared with the main wave. Since the reflected wave makes
one trip down and one trip back to reach the input terminals, it is reduced by twice the attenuation of the line.

Calling the round trip attenuation a as a current or voltage ratio:

$$
e_{p}=a e_{m}, \quad i_{p}=a i_{m}
$$

At a frequency where the input impedance is a maximum

$$
\begin{aligned}
R_{\text {in }} & =Z_{0}\left(\frac{1+a}{1-a}\right) \\
a & =\frac{R_{\text {in }}-Z_{0}}{R_{\text {in }}+Z_{i}}
\end{aligned}
$$

The one-way attenuation of this section in db is

$$
\text { Attenuation }=10 \log \frac{R_{\text {in }}-Z_{0}}{R_{i n}+Z_{0}}
$$

At a frequency where the input impedance is a minimum

$$
\begin{gathered}
R_{i n}=Z_{\bullet} \frac{1-a}{1+a} \\
a=\frac{Z_{\bullet}-R_{i n}}{Z_{\bullet}+R_{i n}}
\end{gathered}
$$

The one-way attenuation of this section in db is Attenuation $=10 \log \frac{Z_{\bullet}-R_{\text {iq }}}{Z_{\bullet}+R_{\text {in }}}$

The Impulse GeneratorAn RFI Measurement Tool

For accuracy, simplicity and speed during RFI tests, an impulse generator is the calibrating tool to use. Its versatility and application to both nar-row-band and broad-band measurements are discussed together with the requirements for field intensity meters.

Joseph Lorch

President, Empire Devices Inc. Amsterdam, N. Y.

$F_{\text {n }}$- OR MEASUREMENT of broad-band and narrow-band intererence, the impulse generator offers advantages of accuracy, compact size, equipment simplicity and lower cost compared to a signal generator. In addition, the impulse generator does not require the frequent recalibration necessary for signal generators during extensive field use. The wide range versatility of the impulse generator can be noted in that two units can cover the range from 150 kc to $10,000 \mathrm{mc}$.

Narrow Vs Broad-Band Interference

There are essentially two types of radio frequency interference, namely narrow-band and broad-band interference. Narrow-band interference covers a frequency spectrum narrower than the pass-band of the receiver or test instrument
and is normally a modulated or unmodulated continuous wave (cw). Narrow-band interference is produced by undesired transmission of transmitters (for example, harmonic or parasitic output) or by receivers (for example, local oscillator radiation). Broad-band interference covers a frequency spectrum in excess of the bandwidth of the receiver or test equipment and is produced by switching transients in electrical and electronic equipment (switches, relays, commutators). Broadband interference is most commonly of the impulsive type.
The effect of broad-band interference on a receiver is a function of the bandwidth of the receiver. Therefore, for measuring purposes, it is necessary to express broad-band interference in terms of microvolts per unit bandwidth, such as

112. F

$\mu \mathrm{v} / \mathrm{kc}$ bandwidth or $\mu \mathrm{v} / \mathrm{mc}$ bandwidth. It is generally recognized that the best practical way of expressing broadband interference is by its peak value. A signal of one $\mu \mathrm{v} / \mathrm{mc}$ bandwidth is defined as the peak value of that broad-band signal which, when applied to the input of a receiver having an equivalent noise bandwidth of one mc, produces the same output on this receiver as a cw signal of one $\mu \mathrm{v}$ applied to the receiver input at the center of the receiver's pass band.

Conducted and Radiated RFI Measurements

Radio interference of both the narrow-band and the broad-band type may be measured in one of two principal manners: as conductive or as radiated interference. For conducted measurements, the power or control leads of the test

Fig. 1. Typical set-up in a shielded room includes (1) field intensity meter (2) power source ($110 \mathrm{v}, 50-400 \mathrm{cps}$) (3) earphones (4) additional tuning units (5) switching unit (6) dipole antenna with balun (7) tripod (8) test sample (9) dc power source (10) ac power source (11) line stabilization networks and (12) metal top bench.

Fig. 2. Three types of impulse generators. (a) $1,000-10,000 \mathrm{mc}$, variable repetition rate ($2.5-2500 \mathrm{pps}$) (b) $150 \mathrm{kc}-1000 \mathrm{mc}$, fixed repetition rate (60 pps) (c) $150 \mathrm{kc}-1000 \mathrm{mc}$, variable repetition rate ($2.5-2500 \mathrm{pps}$)
sariple are connected to the input of the measuring instrument, usually by means of a special cou pling network. For radiated measurements, an antenna or pick-up device is placed at a prescribed distance from the test sample. Radiated measurements, to be meaningful, must be taken in in area which is relatively free of interference. For this reason, some military specifications favor measurements in a shielded room. A typical set-up in a shielded room is shown in Fig. 1.
The Signal Corps prefers to take measurements without the use of a shielded room. It copes with the problem of area interference by placing an antenna sufficiently close to the test sample so that the interference, if any, emanating from the lest sample becomes of high amplitude compared to the area interference.

Available Impulse Generators Flat to $10,000 \mathrm{Mc}$ Basically the test instrument for RFI measurement is a field intensity meter which consists of a calibrator, a pickup device, a receiver, and an indicator. A proper calibrator is the most important component of an interference meter and the most versatile calibrator is the impulse generator. This device generates an exceedingly short pulse whose spectral components are flat throughout the operating range of the interference meter. To provide a flat spectrum to $1,000 \mathrm{mc}$, the width of the pulse generated is a maximum of 5×10^{-10} sec or 0.5 musec. For a spectrum flat to 10,000 mc , the pulse width is $5 \times 10^{-11} \mathrm{sec}$.
In spite of its impressive performance, the impulse generator itself is a relatively simple, highly reliable device. It produces a pulse electromechanically by discharging a charged line through a set of contacts. The line uses distributed constants and determines the pulse width; the discharge frequency becomes the pulse repetition rate. The impulse amplitude is determined by the line charging voltage and, in some types of impulse generators, by an rf step attenuator placed in the output circuit of the impulse generator. The output of the impulse generator is calibrated in terms of $\mu \mathrm{v} / \mathrm{mc}$ bandwidth.

RFI Measurement by Substitution Method

An impulse generator is an ideal device for measuring broad-band interference by direct substitution. In this method, the receiver serves only 10 amplify and indicate the unknown signal level. Having observed the indication caused by the unknown signal, the operator substitutes the calibrated voltage obtained from the impulse generator and varies this voltage until its indication in the receiver output matches that previously obtained from the unknown signal. The output level setting of the impulse generator, in $\mu \mathrm{v} / \mathrm{mc}$ bandiwidth, represents the amplitude of the unmown signal. This method of measurement is

Crystal controlled corrected phase modulation $\pm 75 \mathrm{KC}$ deviation. Operational temperature range $-20^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$. Dimension $2.6^{\prime \prime}$ diam. $\times 3.0^{\prime \prime}$ thick or $2.6^{\prime \prime} \times 2.6^{\prime \prime} \times 3.0^{\prime \prime}$ thick.

manufacturing company inc., southampton, Pa. TELEMETRY COMPONENTS AND SYSTEMS

.3's Unique "White Rooms" Improve Miniature Ball Bearing Reliability!

In these rooms the most infinitesimal air-borne contaminants are scientifically whisked from the air away from superprecision miniafure ball bearing parts. New Departure introduced the White Room nearly twenty years ago. And today, New Departure's concept is a pace-setting standard in miniaturization industries. At N/D, miniature ball bearings are completely assembled in properly humidified, temperature controlled atmospheres that approach fantastic levels of cleanliness. The most advanced air filter systems available are employed. In addition, pressurized access air locks and individual counter-top pressurized chambers are used by N/D's skilled technicians during
final assembly and statistical inspections. Air-borne particles rarely ever touch bearing surfaces.
All N/D White Room equipment is of the most recent development and design-incorporating the highest order of today's technological know-how and reliability methods. These are just a few reasons why more and more major missile contractors rely on New Departure Miniafure and Instrument ball bearings. If you are working on a new miniature ball bearing application where reliability is critical, include an N/D Sales Engineer in your design discussions. Call or write Department L.S., New Departure Division, General Motors Corporation, Bristol, Connecticut.

THOR
MACE
titan
hawk ATLAS
SNARK
NIKE B BOMARC NIKE ZEUS SPARROW I SPARROW II SPARROW III NIKE HERCULES SIDEWINDER REGULUS ॥ VANGUARD PERSHING BULL PUP POLARIS corvus falcon

Fig. 3. These two noise and field intensity meters cove a frequency range of 150 kc to $10,000 \mathrm{mc}$. Empire De vices' NF- 105 (a) and NF 205 (b) serve the range from 150 kc to $1,000 \mathrm{mc}$.
exceedingly accurate, simple, and rapid since it does not require prior calibration of the receiver it need not take into account the receiver bandwidth and thus avoids the use of calibration charts. The impulse generator output is reliable in amplitude and needs no field recalibration.

The impulse generator's versatility is not lim. ited to measurement of broad-band interference. By taking the receiver bandwidth into account, it can be used as an equally reliable calibrator for cw measurements as well.

Requirements for RFI Field Intensity Meters
The receiver portion of an RFI field intensity meter must:
(1) be well shielded to prevent entry of stra! signals
(2) provide rf input attenuation to avoid input circuit overload
(3) possess a high degree of rejection of un. desired signals
(4) demonstrate a relatively flat frequency response over its useful range and
(5) assure a high degree of stability so that data can be reliably compared over a long period of time.

The indicating circuits must be capable of reading the carrier intensity of unmodulated or modu-

RFI Articles Previously Published In ELECTRONIC DESIGN

RFI-An Up-to-Date Survey, R. Schulz
Feb. 3, 1960 p 26
RFI Check-List, L. Thomas Feb. 3, 1960 p 38
Interference Troubleshooting With Clamp-On Devices, T. H. Herring
Feb. 3, 1960 p 47
RFI Gasketing, O. P. Schreiber Feb. 17,
1960 p 46
Dissipative Filters for Switching Circuits, R. Schulz Feb. 17, 1960 p 50 Prediction of Receiver Intermodulation, W. Rogers March 16, 1960 p 98 Prediction of Transmitter Intermodulation, C. Blakely March 16, 1960
Methodology for Interference Prediction, W. Floyd
FCC Control of RFI, J. Deitz March 30,
1960 p 56
Generation of High Power Sin ${ }^{2}$ Video Pulses, A. P. Standing May 11, 1960 p 60
Optimum Shielding of Equipment Enclosures, A. Albin
Feb. 3, 1960 p 48
since it
lated narrow-band signals; it must also permit the measurement of the peak value of a broad-band voltage.

Pickup Devices

The pick-up devices can assume a large variety of shapes, mostly depending on the frequency range to be covered.
The best known antenna used both for field intensity and screen room measurements is the dipole antenna. This type of antenna is satisfactorily employed over the frequency range from 20 to 1,000 mc . In order to apply its balanced output to the unbalanced input of the receiver, a balanced-tounbalanced broad-band transformer is used. The dipole antenna includes movable arms which are usually adjusted to the operating frequency of the receiver.
At frequencies below 20 mc , loop antennas and rod antennas are employed. For interference measurements, the rod antenna is normally used, while for field intensity measurements, the loop antenna is preferred. Since the output impedance of both the rod and the loop antennas varies widely with frequency, built-in matching transformers adapt thes antennas to the 50 -ohm receiver input imped: nce.
A: frequencies above $1,000 \mathrm{mc}$, horn antennas are tsed, although broadband antennas similar to thos employed at lower frequencies are equally appl ed. - -

Standby time is no problem with the new, cool (all-transistorized) Mincom C-100. No blowers necessary - and the new Mıncom Model C. 100 Instrumentation Recorder/Reproducer is particu. larly new in its simplicity and reliability. Six speeds record frequencies from 50 cps to 100 kc . Only 500 watts input for 14 -track system. No mechanical brakes. Only 0.1% flutter and wow. Instant push-button speed control, no belt changes. Interested? Write Mincom for specifications today.

3 M
 . Where mesearch is the key to tomorrow

MINCOM division Minnisota Minima and Manuracturimg company
2049 south barrington avenue - los angeles 25, california - teletype: west los angeles 6742 CIRCLE 55 ON READER-SERVICE CARD

FANTTEEL

FANSTEEL METALLUREICAL CORPORATION, Morth Chicago, Ilinois. u.s.A.

Left: one of the four nests of squared " U " shape laminations that are used to complete a transformer. Center: the transformer's coil and leads have been added. Right: the unit is completed with the addition of the nested laminations that have been secured by welds.

U-Shaped Laminations Help Cut Transformers' Size, Weight

7 RANSFORMERS that are lighter and smaller than conventional units with identical operating characteristics are now reported possible through the use of interleaved, nested "U"-shaped laminations. These new laminations, which form the transformer's core, allow the magnetic lines of force to flow continually with the grain of the steel used in the core, rather than across the grain.
Called Flexi-core transformers, they are made by Sylvania Electric Products Inc., Ipswich, Mass. The units range from 2 to 30 per cent smaller and lighter than types now in use, depending upon the electrical characteristics required, according to a company spokesman.

The formed core, which is the heart of the new transformers, consists of nests of laminations made of fabricated steel strips from a continuous roll, said Mr. O. Howard Biggs, divisional vice president, Research and Engineering. Each of these cores consists of two " U "-shaped nests of strips. Two nests are fitted together, with the strips at the top of the "U's" inter-
leaved. The resulting unit is a hollow rectangle, square or other shape.
A "core" type transformer uses one of these hollow units; in a shell-type transformer, two of these units are placed together so that a center post is formed.

Since the magnetic lines of force flow with the grain of the steel, the resistance of the magnetic circuit is reduced. Thus a Flexi-core transformer, Mr. Biggs said, operates as efficiently as a conventional transformer that has a larger and heavier core.
The new design concept allows transformers to be produced in any size rang. ing, at present, up to $18 \times 18 \times 36 \mathrm{in}$. With Flexi-core, it is claimed, the shape and size of the transformer core can be designed to fit a specific need within broad limits. In addition, this transformer design permits "one hundred per cent application of computer results to design and production," said Mr. Biggs.
For more information on these transformers, tum to the Reader-Service Card and circle number 250.

Guidance Disk: Partially plated disk of Irtran material has been polished with methods normally used for glass. It is designed to serve as one of a pair of missile "eyes.

Optical materials find applications in

Dual Infrared-Radar Systems

"WINDOWS" in dual infraredraddar systems can now be made from optical materials that have already proved valuable in "heat-seeking" systems. The materials are among the few accepted for both infrared and radar use, according to the manufacturer.
Made by Eastman Kodak Co., 343 State St., Rochester 4, N.Y., the materials are called Irtran type AB-1 and type $\mathrm{ABC}-2$. Both are polycrystalline compounds and show low energy loss in transmitting microwave energy. Finished parts are available on a custom order basis.
Irtran ABC-2, according to Kodak, shows useful transmittance from 1 to 15 microns and has an index of refraction in the vicinity of 2.2 . Exposure to a temperature of 600 C in laboratory air does

Defense Dome: Irtran forms a dome for the nose of an infrared-missile. It transmits radiation efficiently up to 8 mi crons in the infrared.
show a measurable effect on transmit-tance-it increases. This is due, it is presumed, to an "anti-reflection" coating of oxidation products. Experiments at Kodak show promise that Irtran ABC-2 examples will successfully stand temperatures approaching 1000 C in inert atmosphere or in air, if a protective coating is provided.
Preliminary microwave measurements in the 8.5 to 12 kmc range show Irtran ABC- 2 to have a dielectric constant of 8 , while untuned samples show a maximum reflection coefficient of 0.89 and a maximum standing wave ratio of 17.2

Irtran AB-1 appears to be, according to Kodak, an "excellent" irdome material for the 1 to 8 micron region. Its index of refraction in this region is 1.38 to 1.31. It is also suitable for radome or dual-mode use, having a dielectric constant of 5.1 and a loss tangent of about 10^{+4} in the 8 to 12 kmc region.
The company feels that the thermal characteristics of AB-1, as far as they have been explored to date, make it eligible for Mach 3 to 6 applications and possibly much higher. Samples of AB-1 have been heated to 800 C in laboratory air for 45 min with no noticeable change in transmission. Prolonged exposure to air at temperatures above 800 C will produce a thin coating of oxide that can be easily removed by polishing.
For more information on these materials, turn to the Reader Service Card and circle number 251.

FANSTEEL HP Type Tantalum Capacitors

For High Temperature Applications

FAN $\sqrt{\text { TEEL }}$

RF POWER STANDARDS LABORATORY

Mimillata equipment is used to establish a reference standard of RF power to an accuracy of better than 1% of absolute.
THE GUIN CALORIMETRIC WATTMETER establishes RF power reference of an accuracy of 1% of value read, and is used to calibrate other wattmeters. Five power scales, $0-3,3-10,10-30$, $30-100$, and $100-300$ watts, are incorporated in the wattmeters for use in the 0-3000 mcs range.
ZIIN and 712N FEED-THROUGH WATTMETERS, after comparison with the 64IN, can be used continuously as secondary standards and over the same frequency range as covered by the primary standard. The MODEL 711N is a multirange instrument covering power levels from 0 to 300 watts in three ranges, $0-30,30-75$, and $75-300$ watts. MODEL 712 N covers power levels of 0 to 10 watts in three switch positions, $0-2.5,2.5-5$, and $5-10$ watts full scale.
636N and 603N RF LOAD RESISTORS absorb incident power during measurements. MODEL 636 N is rated at 600 watts, and MODEL 603 N is rated at 20 watts. Both models perform satisfactorily over the entire frequency range to 3000 mcs . These loads, in conjunction with the MODELS 711N and 712 N Feed-through Wattmeters, form excellent absorption type Wattmeters.
152N COAXIAL TUNER is used to decrease to 1.000 the residual VSWR in a load. The tuner is rated at 100 watts, and its frequency range is $500-4000 \mathrm{mcs}$.
M. C. JONES ELEGTRONICS CO., INC.

185 N. MIN STREET, BRISTOL, CONN.

Two-Tube Radio, Ten-Tube TV on Way with Multi-Function "Compactrons"

M
ULTI-FUNCTION tubes, combining diodes, triodes and pentodes in various combinations, were recently announced (see $E D$, July $6, \mathrm{p} 14$) to reduce size and components in entertainment and industrial devices. For example, two multi-function types are available which fulfill the identical duties of five conventional miniature tubes in a table model radio.
"Compactrons," developed by the General Electric Owensboro, Ky., staff, have 12 pins arranged around a $3 / 4 \mathrm{in}$. diam. base to provide adequate isolation between electrodes as well as a structurally sound support for internal elements. Bulbs are $1-1 / 8 \mathrm{in}$. diam. and overall height ranges from 1 in . to $2-3 / 4 \mathrm{in}$. depending on tube type. To minimize height, the new design eliminates the familiar exhaust tip, usually $5 / 16 \mathrm{in}$. high, seen on conventional miniature tubes. Instead, compactron design has the exhaust tip located at the bottom of the bulb, surrounded by the 12 tube pins.

Presently available on a sample quan. tity basis are:

- A combined oscillator, converter and if amplifier
- A second detector, audio amplifier, power amplifier and rectifier.
The two types above contain the equivalent of a $12 \mathrm{BE} 6,12 \mathrm{BA} 6,12 \mathrm{AV} 6$, 50 C 5 and 35 W 4 , the most popular tube lineup in table radios.
- Horizontal oscillator and afc (equivalent to a double triode, (6CG7) and double diode (6AL5)
- Horizontal damper diode (equivalent 6AX4GTB)
- Vertical deflection oscillator and amplifier (equivalent 6DN7)
- Horizontal deflection amplifier (equiv. alent 6DQ6B)
For TV applications, where heat and high voltage isolation problems are common, single rather than multi-element compactrons are available. By locating a high potential plate at one base pin and allowing two unused pins on either side,

Two compactrons (right) replace five conventional miniature tubes (left) in a table-model radio. A TV set would require 10 compactrons.

The $1-1 / 8 \mathrm{in}$. bulb diameter is sufficient to permit horizontal mounting of internal electrodes where low height is needed. A proposed design for a combination converter-if amplifier is shown.
voltage isolation up to 10 kv is obtained. As an indication of the device capabilities, GE engineers foresee a two compactron radio replacing the standard five tube complement (7 transistors needed for the same performance), a 10 compactron TV set replacing 15 tubes and three diodes or 24 transistors and 11 diodes, and a seven compactron stereo hi-fi unit replacing 10 tubes or as many as 26 transistors.

In applications where one integral heater supplies three cathodes, only two heater welds are required as compared with six welds if three separate tubes were made. Lower production costs and higher inherent reliability are thus expected. In addition, several metallurgical advances have been included into anode and cathode design enabling up to 40 per cent reduction in heater power; this represents another step towards improved reliability.
A multi-function compactron will eventually sell for 20 per cent less than an equivalent number of tubes needed to , erform the same service, GE marketing ufficials promised.
For further information on this new levice turn to the Reader-Service Card and circle 252.

AMP INTTODUCES A COMPLETELY NEW KIND OF SHIFT REGISTER USING MAGNETIC ELEMENTS ONLY...

Here is the first commercially available line of allmagnetic shift registers. Now you can have both nondestructive dynamic and static output in the same register. Now you can have the minimum number of components, the minimum number bit to bit interconnections and any serial/parallel input and output combination. Made with AMP multiaperture ferrite cores and copper wire only (see schematic below),
the AMP Shift Register line has a number of other useful features:
$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature operating range

- minor aperture output level up to 100 mw at sev. eral volts
- immune to nuclear radiation
small size-ideal for miniaturization requirements
- ultimate in reliability and simplification

For complete information, including operating data, send for our AMP-MAD* Shift Register brochure.

AMP INCORPORATED

GENERALOFFICES: HARRISEURG, PENNSYLVANIA AMP products and angineering assistance are available through subsidiary companies in: Australia - Canada • England - France - Holland • Italy • Japan - West Germany CIRCLE OI ON READER-SERVICE CARD

NEW PRODUCTS

DC Meter Measures $10 \mu \mathrm{v} 380$

 to $1000 \mathrm{v}, 1$ u l to 1 ampModel 95A dc meter has 17 voltage ranges and 25 current ranges. The full scale voltage ranges are $10 \mu \mathrm{v}$ to 1000 v ; full scale current ranges are $1 \mu \mu$ to 1 amp . Input resistance on the voltage ranges is 10 meg on all ranges. Accuracy is 3% of full scale on all but the most sensitive voltage and current ranges; there it is 4%. The unit has a dial that displays the full scale digits of the range selected in a window while a second dial displays the unit of measure in an adjoining window. Dc output is available at the front panel, and there are separate controls for output level and zero reference.
Boonton Electronics Corp., Dept. ED, 738 Speedwell Ave., Morris Plains, N.J.
Price \& Availability: $\$ 495$ per unit; available from stock this September.

Displacement Gyro Has Four Moving Parts

Designated the Genie, this gas-driven displacement gyro has fewer than 40 parts, and only four of them move. It can be used as a reference instrument for short-range missiles, drones and target vehicles. It takes 100 msec to get the unit into operation. The unit has an average angular momentum of $1.25 \times 10^{8} \mathrm{~g}-\mathrm{cm}^{2}$ per sec, and is designed for a drift rate of 2 to 4 deg per min under extreme missile environments.
Lear, Inc., Dept. ED, P.O. Box 688, Grand Rapids, Mich.

Includes items generally specified by engineers designing electronic original equipment. Use the Reader's Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description

Frequency Meter Gives

Digital Reading

Models 838, 839, and 840 frequency meters, designed for the X, KU, and K bands, indicate frequency directly on a digital counter. They are adaptable to remote indication and may be panelmounted for system applications. The high Q cavities are precision bored and coupled to the narrow wall of a section of waveguide. The units are electrically equivalent to a straight section of waveguide when detuned; vswr is 1.05 except at resonance. At resonance, a small amount of power is reflected, resulting in a dip in transmitted power.

Narda Microwave Corp., Dept. ED, 118-160 Herricks Road, Mineola, N.Y.
Price: Models 838, 839, and 840 are priced at \$195, \$250, and \$275.

Flip-Flop's Speed

Ranges from 0 to 500 kc

Type 4213 flip-flop has a speed range of 0 to 500 kc . The quadruple, static unit has built-in gates for use in shift registers or buffer applications. Gating is accomplished with capacitor-diode gates. The unit has a built-in pulse amplifier for driving the four flip-flops. Up to 100 flip-flops can be contained in 5.25 in. of panel space in a standard 19in. rack.
Digital Equipment Corp., Dept. ED, Maynard, Mass.
Price \& Availability: Off the shelf delivery; $\$ 96$ per unit.

Iransistor Curve Generator 383 Designed for Power Units
Model 81 transistor curve generator provides a collector curve for low and medium power transistors. It generates a single curve in the grounded-emitter configuration for display on an external oscilloscope. Collector voltages are continuously variable to 40 v . The range of collector currents is 200 to 500 ma ; base currents range from 20μ a to 10 ra a. The unit operates on 117 v ac; j requires no batteries.
T1 ins-Western Electronics, Dept. ED, P.O. Box 1473, Ventura, Calif. Pric \& Availability: Available in 30 d ys; price is $\$ 118.50$ per unit.

Creative Microwave Technology MCOMOM

Published by MICROWAVE AND POWER YUBE DIVISION, RAYTHEON COMPANY. WALTHAM 54, MASS., Vol. 2, No. 3

RAYTHEON 1,000,000-WATT MAGNETRON LOGS OVER 13,000 HOURS IN MOBILE RADAR

This is the first reported history of a Raytheon QK-358 magnetron substantiated with an exhibit. Still, there are numerous other cases in which these exceptional Raytheon tubes have been clocked in excess of 10,000 hours, radiating at peak power.

The case in point concerns the application of a QK-358 magnetron in an AN/FPS-8 radar, for which the General Electric Company is the prime contractor. When the tube was replaced after 13,000 hours of service for "preventative maintenance" reasons, it was returned to Raytheon where the tube was found to be operating within specifications. Findings showed it to be highly stable and still capable of radiating more than one megawatt of power.

A large measure of the reliable operation and outstanding life of the QK-358 was achieved through special attention given to its unique characteristics in the overall design of the radar transmitter.

For your information, the QK-358 is a mechanically tunable pulsed-type oscillator with an integral magnet and is designed for coupling to a standard 3" x 6" waveguide. Typical operating characteristics include:
Frequency Range . "L" ${ }^{10}$ Band Peak Power Output . 1.3 Mচ Average Power Output 1,630 .

AN/FPS-8 high-power search system by General Electric, used primarily in aircrart control and early-warning operation. The complete mobile or carried on nine trucks and two trailers.

Life testing of Raytheon tubes, such as the QK-358 magnetron, for six weeks or more serves as a quality check of their performance characteristics as recorded and plotted against time.

Excellence in Electronics
RAYTHEOM

You can obtain detailed application information and special development services by contacting: Microwave and Power Tube Division, Raytheon Co., Waltham 54, Mass. In Canada: E. Waterloo, Ontario. In Europe: Zurich, Switzerland.

NEW PRODUCTS

Pressure Transducer 448

Measures 0.1 to 5000 psi
Type 701 quartz crystal pressure transducers measures from 0.1 to 5000 psi. Sensitivity is 200 mv per psi when used with a l-ft cable. The unit has a natural frequency of 100 ,000 cps and a rise time of 5 msec . It operates accurately over the temperature range of -400 to +500 F . Special units can be furnished to cover up to 10,000 psi.
Kistler Instrument Corp., Dept. ED, 15 Webster St., North Tonawanda, N.Y.
Price \& Availability: $\$ 320$; from stock.

Welding Gun

Orbiting type
This orbiting welding gun provides a solution for the following: circumferential welds, welding of difficult-to-join materials, and welding where the part cannot be rotated as it is welded. The gun is adaptable to dry-box welders, to special vacuum chambers for loop welding, and for butt welding long sections of reactive and heat-sensitive metal tubing. Long lengths of tubing can be welded without moving the work.
High Vacuum Equipment Corp., Dept. ED, 2 Churchill Rd., Hingham, Mass.
Availability: Delivery time is two weeks.

Power Oscillator 385

Distortion is less than 8%
Model 828 power oscillator is for driving motors operating at about $100,000 \mathrm{rpm}$ and for furnishing demodulation signals to amplifier circuits. Harmonic distortion is less than 8\%. The hermetically sealed package measures $2 \times 3 \times 4 \mathrm{in}$. and meets MIL-E-5272B. The circuit is fully transistorized. Input is 5 kc at 5% at $\pm 15 \mathrm{v}$.

Metrolog Corp., Dept. ED, 169 N. Halstead St., Pasadena, Calif. Price \& Availability: Price is $\$ 325$ ea; delivery time is 20 to 30 days.

For complete details see your Electronic Parts Distributor, or write

TEINE FULLY MEETS YOUR NEEDS

The name TRIPLETT has been on instruments of our manufacture for more than 55 years, and is regarded as a symbol of customer satisfaction to industrials and distributors in all parts of the world. Our instruments can be built to customer
specifications or provided from our large stocks of standard ranges in hundreds of sizes and types. We also carry in stock many semi-finished movements which can be converted readily to special customer needs.

model 334 Rolay

Tiring Cese Portable
Model: 325 (DC), 335 (AC)

Model 420-4 Unimetor 4K" with mitror seale

writ

 TRIPLETT ELECTRICAL INSTRUMENT COMPANY BLUFFTON, OHIO

Terminal Setter

Processes 100 pieces per min

Able to handle a wide range of terminals including split lugs and feed-throughs, model FST-1 terminal setter processes up to 100 terminals per min. The machine consists of an electropunch and vibratory feeder, orienting devices, trackage controls, electrical controls, and power feed. Power requirement is 115 v ac, 60 cps , single-phase. The unit, including bench, weighs about 200 lb and has an over-all height of about 18 in . above the bench.
Black \& Webster, Inc., Dept. ED, 570 Pleasant St., Watertown 72, Mass.
Availability: Made to customer requirements, the unit can be delivered in 90 days.

Digital Recorder

Plots computer results
Model 575 magnetic tape system is for plotting digital computer results in continuous curve form on an X-Y recorder. Included in the system are a digital tape transport, a magnetic tape translator, a tape control unit, record-playback amplifiers, and an X-Y recorder.
F. L. Moseley Co., Dept. ED, 409
N. Fair Oaks Ave., Pasadena, Calif.

Thermometers

406

Are accurate to ± 0.5

Accurate to $- \pm 0.5 \mathrm{C}$, these ex panded-scale thermometers are for temperatures from 0 to 200 C and have standard expansions of ± 25 $\mathrm{C} \max$ or $\pm 10 \mathrm{C}$ min. Models range from battery-powered, portable styles to rugged, sealed, panelmounting instruments. Probes are furnished for measuring the temperature of gases, liquids, or solids. The devices are suited for use in ground support systems where fuel and component temperatures must be read remotely. Input for panel-mounting units is 6 v ac or dc.
Beckman Instruments, Inc., Helipot Div., Dept. ED, 2500 Fullerton Rd., Fullerton, Calif.
Availability: Custom built.
< CIRCLE 62 ON READER-SERVICE CARD

range: $\mathbf{4 0 ~ H}$ at 12 Amp. rms
NWL's latest unit is especially designed and engineered for air-blast operation at a temperature rise not exceeding $10^{\circ} \mathrm{C}$. Radial ducts permit free flow of air along both sides of the pie-wound coils. Rigid mechanical support assures permanent alignment of coils.

The reactor illustrated, is only one of many special units manufactured by NWL, such as: Iron core reactors, large power, electronic and pulse transformers, chokes, etc.

Each NWL unit is thoroughly tested and must meet all customer requirements before shipment. We shall be pleased to quote you up to 300 KV and up to 500 KVA, depending on your individual requirements.

NOTHELFER WINDING LABORATORIES, INC., P. O. Box 455, Depf. EDT, Irenton, N. J. (Speetalists In custom-building)
CIRCLE 64 ON READER-SERVICE CARD

NEW PRODUCTS

Tube Testers

Grid leakage as high as 100 meg
The Mighty Mite, a compact tube tester, measures $8 \times 9 \times 2-1 / 2 \mathrm{in}$. and weighs less than 8 lb . It checks over 1,300 tubes for cathode emission, shorts between all elements, gas, grid emission, and grid leakage as high as 100 meg . The tester has a $3-1 / 2 \mathrm{in}$. D'Arsonval meter, a stainless steel mirror, and a separate inner chassis. Installation can be permanent or temporary.

Sencore, Dept. ED, Addison, Ill.
Price \& Availability: Price is $\$ 59.50$.
Filament Transformer
Is rated at 30 kv

Model FT-300 low-capacitance, high-voltageinsulated filament transformer is rated at 30 kv ac or dc pulse in air, 300 kv pulse in oil. A variety of output voltages and currents can be furnished including the common heater voltages for highpower klystrons, TWT's 3 hydrogen thyratrons, high-voltage diodes, and magnetrons.
Pearson Electronics, Inc., Dept. ED, 707 Urban Lane, Palo Alto, Calif.
Price \& Availability: $\$ 350$ ea; from stock.

Resistance Meter

For measurements to $50,000,000 \mathrm{meg}$
Type L high-resistance meter is for measuring up to $50,000,000 \mathrm{meg}$. It is for laboratory and production testing of motor and transformer winding insulation, cable insulation, high-value resistors, capacitor insulation, and for measuring surface and volume resistivity of insulating materials.
Industrial Instruments Inc., Dept. ED, 89 Commerce Road, Cedar Grove, Essex County, N.J.
Price \& Availability: $\$ 175$ to $\$ 383$ ea; ordinarily in stock.

640

> There's really not much to custom-designing rotary switches...

It's a matter of routine.. . when you have talented engineers with lots of experience...first quality materials... and advanced manufacturing techniques.

Fortunately, The Gamewell Com. pany has all three. When customers' specifications come in, our engineers get busy. The precious metal ring, heart of a Gamewell Rotary Switch, is designed with as many segments as required. Brushes are provided which assure smooth, trouble-free action with either make-before-break or break-bepore-make contacts. Then a highly versatile arrangement of terminals connecting to ring segments is devised for the periphery of the switch housing. And so on, depending on requirements.

The end result is a highly versatile, reliable switching component. Cased in special plastic, it's inherently fungus resistant and stable at high temperatures. It can be used with confidence over a wide range of environmental conditions.

Gamewell is well qualified to design rotary switches for circuit sampling, programming, digital generators and various electronic data processing syatems. Your specs will receive prompt attention.
Write to The Gamewell Company, 1392 Chestnut Street, Newton Upper Falls 64, Massachusetts. A Subsidiar of E.W. Bliss Company.
$----------\quad$ Switch is ovailable with diameters of $51 / 1$ ", $11 / 2^{\prime \prime}, 11 /^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}$ and $5^{\prime \prime}$ in various mounting styles.

PRECISION POTENTIOMETERS "integrals of HIGH PERFORMANCE: CIRCLE 65 ON READER-SERVICE CARO
for immediate delivery of
GENERAL
INSTRUMENT
semiconductors
cit fratomp pirines
call your authorized
stocking distributor

california

Electronie Supply Cors.
Neworete Electronica Co., Inc.
Ingitwood
Positite Wholeole Co.
Son
Froncirea
Son Dencronc
Son onicioge
Solloy Electron
Valley Enectronic Supply co.
colorado
Intustate Rodio and Supply co.
Donver
COMNEETICUY
Sung Redio E Electronlas Co., Inc.
T The cond Redio Supply, Inc.
Woterbury
Mlorion
Electronic Supply
Milomit Oilondo, 37 . Petorburg iluniois
Marruip Company
Nourcosithetronica Corp.
Chicage
indiana
Broum Electronics, Inc.
Grihnem Girefroices Supply, Inc.
Indienepoil
10Wa
Cocorar Repids
MARYLAND
Rodio Eleetrie Service Co.
MASSACHUSETTS
MASSACHUSETTS
NEW YORK
Delburn Elioctronics, Inc.
Sun Rodit Cithoctronics Co., Inc.
Sun Rodio al Electronica
Stondord Eliectronice, Inc.
Stranedoren Eilectionice, Ime.

- H10

OHIO
Buckyyo Eliectronics Dhatributorn
T Th Mytronic \mathbf{C}
Pioncon' Fionetronic Supply Co.
OKLAHOMA
Oil Cupita Electronica
PENMSYL
DENNSYLVANIA

texas
Seoptors Redio \& Supply Co.
Fort Worth
WASMINGTON
Seottio Rodio Supply Co.
WISCONSIN

Milmouke
CANADA
Soule's Mapnetics
Willowdele, Ont.
Lid.

Dlstributor Drvision HERAL INETRUMENT
CORPORATION 240 Wythe Avenue 240 Wythe Avenue
Erooklyn 11, N.Y.

CIRCLE 79 ON READER-SERVICE CARD ELEC TRONIC DESIGN • July 20, 1960

GENERAL INSTRUMENT SEMICONDUCTOR DIVISION

custom made to your needs

GENERAL INSTRUMENT

Silicon and Germanium

Silicon Rectifiers

in any shape ... in any circuit configuration
Want semiconductors in a special package? General Instrument will make up rectifiers and diodes in any packaged assembly needed to fit your specific requirements. Units can also include resistors, capacitors, etc. to produce complete circuit packages if you desire.
Let us accept the shrinkage and other technical problems - it's our business and we have the experience and facilities to do a superior job. Result will be a compact package virtually unlimited in PIV, with all the reliability General Instrument semiconductors are noted for. Total cost? Even less than if you developed your own package. Write or call today for further information.

Semiconductor Division

GENERAL INSTRUMENT CORPORATION
65 Gouverneur Street, Newark 4, N. J. Midwest office: 5249 West Diversey Ave., Chicago 39 Western office: 11982 Wilshire Bivd., Los Angeles 25
genehal instaument corporation includes for sickles division, automatic MANUFACTURING DIVISION, SEMICONDUCTOR DIVISION, RADIO RECEPTOR COMPANY, INC THE HARRIS TRANSDUCER CORPORATION MICAMOLD ELECTRONICS MANUPACTUAINO
CORPORATION ANO GENERAL INSTRUMENT. W W SICKLES OF CANADA LTD ISUBSIDIARIES,

NEW PRODUCTS

Polystyrene Film Capacitors

Range is 0.0047 to $1 \mu \mathrm{f}$

Designed for critical applications requiring high-insulation resistance, good stability, and good retrace characteristics, these polystyrene-film capacitors have voltage rating of 100 to 600 v and a capacitance range of 0.0047 to 1μ. Standard tolerances are 1% and 5%. Temperature range is -55 to +70 C . Dissipation factor is 0.02% at 25 C at 1 kc . Temperature coefficient is -70 ppm per deg C.
Scientific Electronics Corp., Dept. ED, 3810 Cohasset St., Burbank, Calif.

Rotary Switch

644
Has stepping rate of 6 to 8 pps

This rotary circuit selector or stepping switch is powered by a size 5 Digimotor. Self-stepping is provided by a transistorized pulser; stepping rate is 6 to 8 pps . The free-turning shaft allows manual setting of the switch to any position clockwise or counterclockwise. The switch can be ordered with 1 to 10 switch decks and in $8,10,12$, 18,20 , and 24 positions. Uses are stepping, counting, adding, subtracting, programing, and sequencing.

Ledex, Inc., Dept. ED, 123 Webster St., Dayton 2, Ohio.
Price \& Availability: $\$ 12.75$ to $\$ 26$ ea; from stock.

AC Breakdown Testers

Various models offered

This complete line of ac breakdown testers is designed for testing in accordance with ASTM D-149 and LP-406, method 4031. They determine breakdown voltage and dielectric strength in both laboratory and production applications. All units are self-contained. Dual-range models are offered; some units have up to six voltmeter ranges. Industrial Instruments Inc., Dept. ED, 89 Commerce Road, Cedar Grove, Essex County, N.J. Price d Availability: Most units are in stock Price is $\$ 1150$ to $\$ 4300$.

SILICONE NEWS from Dow Corning

Better Environmental Design

EILASTLE

Cushions Electronic
Packages at -90 to 250C

Where environmental conditions are extreme, or fluctuate from one extreme to another, specify resilient Silastic ${ }^{\text {® }}$ to protect sensitive components. Silastic, the Dow Corning silicone rubber, is not affected by temperatures from -90 to 250 C (-130 to 500 F), nor by rapid thermal cycling. It retains its excellent dielectric and physical properties resists the effects of ozone, storage, moisture, corona.

For these reasons, Silastic was selected by engineers of the Emerson Electric Manufacturing Company, St. Louis, for several parts of the electronics package shown. Part of the fire control system on Convair B-58 Mach 2 bombers, this unit must function at -65 F . . . continue to function dependably despite vibration and operating temperatures up to 350 F around the miniature tubes. A molding of heat resistant Silastic holds the tubes gently but firmly to protect them from vibration and shock. Silastic grommets, feed-throughs, and connector insulation are also part of the package. In any climate and under any environments, Silastic gives required protection to Emerson's assemblies.

Wire That STRETCHES
Like a stretch-to-fit sock, this snappy new product extends itself to meet your needs Available with insulation of Silastic, il is called Stretch Wire. and is manufacture by the Stretch Wire Corporation.
Stretch Wire elongates to 165% of iss original length . . . then springs back. In has already proven itself in missile and ordnance electronics, withstanding launch ings at speeds of 1000 fps and inerlia loads of 800 G 's. Because of the proper ties of Silastic, the insulating sheath mains elastic under the temperature tremes encountered.

CIRCLE 800 ON READER-SERVICE CARD

 Your nearest Dow Corning office is the number one source for information and technical service on silicones.
...silicones provide lasting protection

Laminate Parries Lightning Thrust
Long range HF communication systems employing probelype antennas are now safe from lightning strikes with the new Aircraft Lightning Arrester made by Joslyn Manufacturing and Supply Company, Chicago.
Key component: a 0.0625 inch thick slotted silicone-glass laminate part that serves as retainer and insulator for 15 phosphor bronze spring elements. Made of Dow Corning silicone resins and glass cloth, this part enables the arrester to safely discharge lightning strokes with a peak current of 100.000 amperes and 200 coulombs charge. The silicone laminate is strong, resists moisture, vibration and fungus growth, and is inexpensive to fabricate. Electric strength is . . . obviously . . . excellent.

CIRCLE 801 ON READER-SERVICE CARD

997 Varnish Ups Power, Cuts Weight

When designing transformers to operate at high temperawres in standby control power supplies for submarine nuclear reactors, Milro Controls Co. faced three major musts: maximum power output for minimum weight; great resistance to moisture; ample overload protection.
Impregnating with Dow Corning 997 Varnish, and using silicone insulating components, proved to be the right answer on all three counts. This silicone varnish withlands operating temperatures up to $250 \mathrm{C} \ldots$ provides uperior protection against all the well-known enemies of lectronic and electrical equipment. Each of the new Milro oower supplies contains three compact, light-weight transormers, impregnated with 997.

CIRCLE 802 ON READER-SERVICE CARD

New Gel Gives "View-Through" Protection
Poured as a liquid, transparent Dow Corning Dielectric Gel fills all voids, then sets up to form a heat stable gel. Dielectric strength is excellent; stress on components almost nil. Potted components and circuitry remain clearly visible . . . can be checked by eye. Probes can be inserted for instrument checks . . . the gel re-seals itself when probes are removed. Individual components can be removed and replaced.
Dielectric Gel enabled CBS Laboratories to meet stringent reliability requirements on its Photoscan power supplies. Despite high temperatures, high voltages, and high vibration levels in this remarkably small unit, Dielectric Gel prevents arcing. Components are spaced less than $1 / 4^{\prime \prime}$ apart, yet output voltages run from 1,000 to 25,000 volts!

CIRCLE 803 ON READER-SERVICE CARD

IIng CORPORATION
MIDLAND. MICHIGAN
branches:
CIRCLE 800, 801, 802.803 ON READER-SERVICE CARD

CIRCLE 78 ON READER-SERVICE CARD

NEW PRODUCTS

Indicator Lamp

Meets Mil specs

Model 855S-D panel indicator lamp, designe 1 for front lamp servicing, meets all applicable Mil specs. The lamp is white when unlit and colored when lighted. Types 327 and 328 bulbs can lee mounted in the $3 / 8-\mathrm{in}$. diam mounting hole.
The Sloan Co., Dept. ED, 7704 San Fernanio Road, Sun Valley, Calif.

Reed Relays

Life is about $200,000,000$ operations

These reed relays can be used in computers, data processing equipment, transistor drive, and other applications. A hermetically-sealed, glassencapsulated magnetic reed switch is surrounded by an operating coil to provide spst, normallyopen relay action. It is suited for low-level switching or for low power switching of loads up to 15 w and 250 v . Maximum operating current is 1 amp. Load life at $1 / 4$ of maximum rating is about 200,000,000 operations. Minimum operating power is about 100 mw .
Struthers-Dunn, Inc., Dept. ED, Pitman, N.J Availability: 30-day delivery.

Indium Spheres

99.9995\% pure

Used in forming alloy junctions in germanium transistors and diodes, these indium spheres are 99.9995\% pure. The spheres are available in a range of diameters from 0.001 to 0.25 in ., $\pm 0.0001 \mathrm{in} . ;$ sphericity is held to $\pm 0.0001 \mathrm{in}$. Indium alloys available in spheres using the 99.9995\% indium are: indium-gallium, indiumzinc, indium-gallium-gold, indium-gallium-zinc. indium-gallium-aluminum, indium-germanium, and indium-germanium-gallium.
Accurate Specialties Co., Inc., Dept. ED, 37-11 57th St., Woodside 77, N.Y.
Price \& Availability: Lots of 1 million spheres delivered within 10 days from receipt of orde?. Prices vary with specifications.

Pushbutton Switches

Have nylon molded actuator

These pushbutton switches have a nylon insert molded actuator. Depth behind the panel is 2-5/8 in. for standard types and 4-1/4 in. for lighted units. A wide choice of contact arrangements is offered. Uses are in data systems, signal controls, test sets, and computers.
General Control Co., Dept. ED, 1200 Soldiers Field Road, Boston 34, Mass.
Price \& Availability: Price begins at $\$ 5.70$ ea. Delivery time is 14 to 21 days.

Encapsulated Diodes

From 2 to 12 in one assembly

From 2 to 12 diodes can be assembled in this package by varying one dimension. Type PC is a plug-in unit for printed circuit use; type TB has a miniature 7 -pin tube base, and type CC is a cylindrical clamp-on unit made to stand severe vibration. The smallest package measures 0.172 $\times 0.422 \times 0.281 \mathrm{in}$. and the largest measures 0.5 x $0.5 \times 0.481 \mathrm{in}$.
Wells Electronics Co., Dept. ED, 1701 S. Main St., South Bend 23, Ind.
Acailability: Some units from stock.

Silicon Rectifier

Delivers 3 amp half wave
Type MR series of double-diffused junction silicon rectifiers deliver up to 3 amp , half wave, with proper heat sink, in ambients up to 150 C . In full wave circuits, currents as high as 9 amp can be realized. The units are hermetically sealed cells suited for power supply and magnetic amplifier applications. Designed for conduction cooling by mounting directly on to the chassis, the stud - nounted rectifiers may also be installed with the clectrical insulating mica washers supplied with each.
Ti ins-Sil Corp., Dept. ED, 55 Honeck St., Engi ewood, N.J.
Pric \& Availability: Delivery from stock takes 5 days Price is between $\$ 1.70$ and $\$ 12$ when ordere ! in quantities of 1000 .

How can you use SPRING-LOCK?

THE FASTENER WITH USES UNLIMITED

As a standard removable fastener or a blind rivet
A quarter-turn locks, unlocks. Load-carrying steel arms lock securely, don't loosen under vibration. One-piece (no receptacle) simplifies blind fastening.

As a cabinet door strike Millions in use on kitchen cabinets, automatic dishwashers, etc. Standard strikes available from stock, or custom designed for special contour requirements.

As a roller axle
Now used on range drawers, kitchen cabinets, file cabinets, desks. Cuts installation costs, saves time. Designed to suit. Available with or without roller.

As a plastic shelf support
with the heart of steel for extra strength. Millions now used by all major refrigerator manufacturers. Complete flexibility of head design.

As cup hooks

High-strength polystyrene or chrome-plated die cast zinc. Inexpensive, sturdy and good-looking. Simply and quickly installed with a twist of the wrist.

What is your application for SPRING-LOCN?

Send us your application inquiries. Our engineers will answer you specifically and promptly. Or, write today for the Simmons Catalog. SPRING-LOCK samples are available upon request.

SIMMONS FASTENER CORPORATION

1763 North Broadway, Albany 1, New York
QUICK-LOCK . SPRING-LOCK • ROTO-LOCK LINK-LOCK • DUAL-LOCK
SEE OUR 8 Page catalog in sweet's product design file
CIRCLE 59 ON READER-SERVICE CARD

Small, compact, lightweight, the new Voltrec recorder monitors voltage or frequency with an accuracy of $\pm 0.5 \%$! It consists of two sections, a miniature inkless chart recorder that is a d'Arsonval meter with a free moving pointer against sensitized paper, record. ing once every two seconds, and an expansion network that

NEW PRODUCTS

Amplifier and Power Supply

For the 225 to 400 mc band

Model 42A 1-kw amplifier and power supply operates in the 225 - to $400-\mathrm{mc}$ band, providing a means for increasing the reliability of aircraft communications circuits. All high voltages are housed in a hermetically sealed container filled with silicone oil. The amplifier weighs 38 lb and measures $6-1 / 2 \times 10-1 / 2 \times 16 \mathrm{in}$. The power supply weighs 32 lb and measures $6-1 / 2 \times 4-7 / 8 \times$ 16 in.

Electronic Communications, Inc., Dept. ED, 1501-72nd St., N., St. Petersburg, Fla.

Telemetry Decommutator

Solid state, digital

Model 185A solid-state, digital decommutator accepts most pulse-type telemetry signal inputs, PAM, PDM, or PCM, from 10 to $4,600 \mathrm{pps}$. It can provide digital or analog outputs. For digital outputs, accuracy is 10 bits at sampling rates of 1,150 pps and 8 bits at higher rates. Between 10 and 128 channels or words per frame can be accommodated. The 48 -channel unit occupies 52.5 in. of rack height.
Electro-Mechanical Research, Inc., Dept. ED, Sarasota, Fla.
Availability: The unit is made on order.

Thermal Impedance Meter

Uses pulse techniques

This thermal impedance measuring equipment uses pulse techniques to measure junction thermal impedance. The junction is heated with a stable dc which is pulsed off for $500 \mu \mathrm{sec}$ at the rate of 10 pps. During the off interval, the forward voltage drop is measured and compared to the initial drop. The quotient of the temperature rise and the applied heating power is thermal impedance. Heating currents are up to 50 amp .
Wallson Associates, Inc., Dept. ED, 912-914 Westfield Ave., Elizabeth, N.J.

THE ALLISON 532 OCTAVE BAND ANALYZER

The Allison 532 is a small, light weight instrument that is exceedingly easy to operate. II separates sound into frequency components for analysis. The 532 is suitable for use with sound level meters, tape recorders. microphone preamplifiers and similar equipment. For complete information, write for Technical Bulletin \#532.

532 SPECIFICATIONS

- Five 10 db step attenuator
- Dynamic range of 66 db
- Eight bands with passive network
- Transistorized and battery operated
- Approximate shelf life for battery
- 33 db per octave attenuation rate with flat pass band
- Input level adjustable nominally 1 volt
- Cutoff frequencies conform to ASA S-1.6-1960 Preferred Frequencies
- Meter circuit meets ASA

Standard for S.L.M.S.

- Weight $6.5 \mathrm{lbs} ; 63 / 4$ " $\times 63 / 4^{\prime \prime} \times 51 / 2$
- Price $\$ 425.00$
F.O.B. factory

Write for new catalog of Allison Analyzing Instruments

Allison
Laboratories, Inc.
1izol ocean avenue
a habra, california
CIRCLE 69 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 20, 1960

This ConheX cable-plug eliminates the usual ad.aptor necessary in running subminiature coaxial cables into BNC and TNC panel connectors. The plug provides a vise-like grip on the cable. It is gold-plated to resist corrosion and to provide lower contact resistance.
Sealectro Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, N.Y.

Relay Analyzer
Tests seven characteristics in 4 sec

Able to test seven characteristics in 4 sec , model 708 relay analyzer handles all dc and ac, 60 and 400 cps , relays with up to six poles. Information is presented on a meter and on go/no-go lights. Automatic presentation of pull-in and drop-out voltages or current, pull-in and release times, and coil times are provided.
Molectronics Corp., Dept. ED, 1717 N. Potrero Ave., S. El Monte, Calif.

Data Logger System

Balances, samples 1000 bridges

This data logger system automatically balances from one to 1000 bridges and logs their millivolt output signals in a programed mode. It samples 210 channels of analog data per minute sequentially: commutates and converts them, and punches tabulated data in a paper tape at the rate of 60) five-digit characters per second. Sensitivity control is in increments of 0.01%, for a total of 10,010 increments. Accuracy of $\pm 0.15 \%$ full scale and resolution of $5 \mu \mathrm{v}$ are built into the system. The system is applicable to one-, two-, or four-arm bridses in a voltage offset range to 50 mv across 1000 ohms. Weighing 1200 lb , it measures 32×60 $\times 67 \mathrm{in}$.
Cunsolidated Electrodynamics Corp., Dept. ED, 360 Sierra Madre Villa, Pasadena, Calif.
Pric \& Availability: $\$ 60,000$ to $\$ 75,000$, depending , n options required; made on order only; 150day lelivery.

with the New ESC Direct Readout Variable Decade Delay Line

Distributed constant delay lines - Iumped constant delay lines - Variable delay networks - Continuously variable delay lines - Step variable delay lines-Shift registers - Video transformets - filters of all types. Pulseforming networks - Miniature plug-in encapsulated circuit assemblies CIRCLE 70 ON READER-SERVICE CARD

Now you can make your own rapid selection of desired delay with the new Direct Readout Variable Decade Delay Line - the newest product developed and manufactured by ESC. America's leading manufacturer of custom-built and stock delay lines! Increments of $1 / 1,000$ of the total delay may be selected by the turn of a dial. And there are three models:

Model 101 - a total delay of 9.99 usec.
Model 102 - a total delay of 99.9 usec.
Model 103 - a total delay of 999 usec.
There is a constant impedance of 1,000 ohms between input and output terminals for any delay increment.

WRITE TODAY FOR COMPLETE TECHNICAL DATA.
exceptional employment opportunities for engineers experienced in computer components... excellent profit-sharing plan.
ELECTRONICS CORP: 534 Buggn Boulvard, Palizades Park, Now Jursy

Delay/rise time ratio at maximum delay is 33:1. The ESC Direct Readout Variable Decade Delay Line is a passive delay network and will not introduce noise or jitter. Mechanical and electrical modifications available on special order.

THIS IS YOUR
 FIRST LOOK AT CEC'S TWO NEWEST CONNECTORS

HIGH-ENVIRONMENT CIRCULAR TYPI designed to meet MIL-C-26500. This is CEC Series $600,700,800$ for critical altituco, temperature, and reliability requifements of high-performance aircraft, missiles, and space vehicles. Resilient silicon-rubber seals provide liquid immersion resistant assembly. Available with 24, 31, and 55 removable, crimp-type contacte and choice of square flange or jam-nut receptacle mounting. Write for Bulletin CEC 4005-X1.

RACK AND PANEL RECTANGULAR TYPE with die-cast aluminum shell. CEC 500L Series with crimp-type contacts designed to meet MIL-C-26636. Available in 48- and 63 -contact configurations with sizes 16 and 20 contacts. Two standard RGE8/U coaxial contacts are included in the 48 -contact connector. Insulator blocks of both new connectors are high-strength, glass-filled Diallyl Phthalate. Write for Bulletin CEC 4006-X1.

CEC also manufactures a full line of rectangular connectors (Series 500C) which feature snap-in, crimp-type contacts. This series is available in a wide variety of mounting configurations with 26 to 104 contacts. Write for Bulletin CEC 4004-X25.

I complete line of accesssory tools for easyy crimping. insertion, and removal of contacts is available.

Electro Mechanical Instrument Division

CONSOLIDATED ELECTRODYNAMICS / pasadena; california a subsidiary of Belle-Howell . finer products through magnation

NEW PRODUCTS

Potentiometer

Sine-cosine function type

Type AP11C sine-cosine function potentiometer measures 1-1/16 in. and comes in both single and multigang configurations. The standard units have a conformity of 0.5% of amplitude, peak to peak, for the resistance range of 25 to 60 K . Lower conformities can be furnished on special units. Other resistance ranges are 1 to 25 K and 60 to 80 K . Power rating is 2 w at 60 C ; ambient temperature limit is 125 C . Resolution is 0.05%. The unit meets all environmental Mil specs and has a rotational life of $1,000,000$ cycles.
Ace Electronics Associates, Inc., Dept. ED, 99 Dover St., Somerville 44, Mass.
Price \& Availability: Price varies with unit. Standard units are in stock; special units can be delivered two weeks after receipt of order.

Digital Modules

530
Drive up to 20 gates

Model 346 digital systems modules provide all possible gating functions with a high fan-out capability and sufficient amplification to drive 20 additional gates. Model 346A provides the Nor function; it contains a diode OR gate followed by an inverting amplifier and an emitter follower. Model 346B provides the OR function; it contains a diode OR gate followed by two emitter followers. Model 346C provides the NAND function and contains a diode AND gate followed by an emitter follower and an inverting amplifier. Model 346D provides the AND function and contains a diode \& CIRCle 58 on reader-service caro

AND gate followed by two inverting amplifiers.

Navigation Computer Corp., Dept. ED, 1621 Snyder Ave., Philadelphia 45, Pa.
Price \& Availability: $\$ 99$ ea; four weeks after receipt of order.

Synchronous
 Demodulator

525

For ac-to-dc conversion
Developed for converting ac to dc, model DM 60-C synchronous demodulator has built-in phasecompensating networks which keep linearity of to within 1% of full output. The unit is for use with lin-ear-variable-differential transformers or with transducers containing LVDT's. Capable of operating from -65 to +185 F , the unit has a ripple characteristic of $200 \mu \mathrm{f}$ or 0.01% of input and requires an excitation frequency of 50 to 5000 cps. Weight is 1 lb and dimensions are $2 \times 4 \times 4$ in.
Schaevitz Engineering, Dept. ED, Rt. 30 at Schaevitz Blvd., Pennsauken, N.J.
Price \& Availability: Price is $\$ 125$; delivery time is 10 days.

Glass Dielectric Material

For use in electroluminescent devices
These two glasses, designated codes 1970 and 1971, are for use as the dielectric material in electroluminescent devices. Code 1971 has linear expansion of 104 to 114 x 10^{-7} per deg C. Code 1970 can be sealed to substrate materials with expansion from 84 to 94×10^{-7} per deg C. The dielectric constant at 20 C and 1 kc is 5.46 for code 1970 and 8.29 for code 1971. Powder or frits can be supplied.

Corning Glass Works, Dept. ED, Corning, N.Y.
Price \& Availability: $\$ 30$ per $l b$ in quantities. The product is in stock and can be delivered in 7 to 14 days.
 D:1w:3y EMENCO capacitors in quantities up to 500 Per Item CONTACT THESE AUTHORIZED ELMENCO INDUSTRIAL DISTRIBUTORS

 Elent: seppiy corp., 2085 E. Foothill ivv. Pasai Hollywood givd., Hollywood 28; ;apitic whielesale

 Wearneriors Co.... 6921 San fernando Rd. Giendale
1: Zack Electronics, 654 High St., Palo Alto colorado: Denver Electronics Supply Co., 1254 arapahoe St., Denver 4.
 FLORIOA: Elect. Supply, 909 Morningside Dr., Me
Dourne: Elect. Supply, 61 M .
gis Itumols: Mewark Electronics Corp., 223 W Madison St., Chicage 6
Martiana: Kann-Ellert Eleetranics inc., Howard c. Redwood Sts. Balt. 1i, Wholesale Ramio rarts
co. Inc., 308 W. Reowood St., Baltimore i. massachusetis: Cramer Electronics Inc., 811
 730 Commonwealth Ave., Bosion 17 NEW JERSEY: Federated Purchaser Inc. 1021
U.S. Rte. 22. Mountainside: General Ratio Sup. pily ce.., 600 penn st., Camden 2; Radio Elec. service' Co., Inc.: 513 Cooper st., Camden 2.
 Co., Inc., 209 Penn Ave., Alamagordo
 st. in r. 11: Marvey Radie Co.. Inc... 103 W . 43 rid
 morth carolima: dalton-hege radio Supply Co., Inc., 938 日urke st., Winston-Salem.

 TEMNEssEE: Electra Distributing Co., 1914
West End Ave. Nashville rit West tha ave., Nastivie 4
 Houston 19: Ensineering supply co.., 6000 Denton
 Paisano ort. Ei Paso. The Perry Shankle Co., 1801
s . Flores st., San Anionio. UTAM: Carter
masumecton: ce
Third Ave, Seattle. camaon: Electro Sonic Supply Co., Lte., 543
ronse Street, Toronto 5, Ont.

ARCO ELECTRONICS, INC. MEw Yoank dit dallas los anceles

CIRCLE 66 ON READER-SERVICE CARD ELE GTRONIC DESIGN • July 20, 1960

Another New Achievement from El-Mlenco

A New Smaller Size

Dipped Silvered

Mica Capacitor

DM-1O Mica Capacitor...

Sets New Standard in Miniature Rellabilityl

This sub-miniature DM-10 Mica Capacitor retains the same superior electrical characteristics of silvered mica capacitors as ound in much larger sizes. It assures a high order of periormance in extreme miniaturization applications - missiles, printed circuits and all compact electronic equipment. Parallel leads provide greater versatility. Tough phenolic casings protect against physical damage and penetration of moisture.

Capacity and Voltage Ranges

Working Voltage	Capacity Range
100 WVDC	1 MMF thru 360 MMF
300 WVDC	1 MMF thru 300 MMF
500 WVDC	1 MMF thru 250 MMF

Operating Temperature: up to $150^{\circ} \mathrm{C}$
Characteristics: C, D, E and F, depending on capacitance value
EL-MENCO'S DM-10 MEETS
ALL THE ELECTRICAL REQUIRE.
MENTS OF MILITARY SPEC.
\#MIL-C.5B AND EIA SPECIFICA.
TION RS-153
Other sizes also ideal for minia-
turization applications -
DM-15 ... up to 820 mmf at 300
VDCW, up to 400 mmf at 500
VDCW.
DM-19 ... up to 5400 mmf at 300
VDCW, up to 4000 mmf at 500
VDCW.
WRITE FOR SAMPLES OF
EL-MENCO DM-10 CAPACI.
TORS and brochures describing
El-Menco's complete line of
capacitors.
ceade: \#26 AWG (.0159") Copperweld wire
EL.MENCO'S SUB.MIDGET DM-10
the New Smaller miniature mica capacitor

$$
\begin{aligned}
& \text { Wanufacturors of EIoMenco Capacifors } \\
& \text { CONNECTICUT }
\end{aligned}
$$

NEW PRODUCTS

Wire Striping Machine 609 Color codes with 1, 2, or 3 stripes
Capable of color coding nylon and PVC jacketed wire with 1, 2, or 3 stripes at one time, model 1-S striping machine operates at speeds up to 150 ft per minute. It can be used with wire from 0.05 to $5 / 16 \mathrm{in}$. The machine will handle wire reels up to 30 in . in diameter and is equipped with a variable transverse-level winding mechanism that is adjustable for different spool widths. The machine area measures $90 \times 28 \times 134$ in.; motor requirement is $220 \mathrm{v}, 3$ phase.
Electronic Production \& Development, Inc., Electronic Div., Dept. ED, 138 Nevada St., El Segundo, Calif.
Price d Availability: Can be delivered within 6 weeks. Price is $\$ 5200$ per unit, fob El Segundo, Calif.

Motor Starting Switch 494

Is thermally actuated

For simplified starting control of single-phase motors, series $47-000.0-\mathrm{P}$ switches can be used attached to the motor or for remote operation. Able to be installed in any position, the switch has no sliding parts and resists contact freezing or flutter. Units are rated at 200 ma to 10 amp at 250 v ac with a life span up to $1,000,000$ cycles. They can be modified for thermal relay use.
E-T-A Products Co. of America, Dept. ED, 6284 N. Cicero Ave., Chicago 46, Ill.
Price \& Availability: Units are priced at $\$ 0.73$ ea in quantities of 100. Delivery is within three weeks.

TRANSISTOR KILLER: THE VOLTACE SPIKE...

TAMED BY NEW PERKIN MTR DC: POWER SUPPLIES

Digital Recorder

Scans 100 channels

Designed for all combinations of strain gages and strain gage transducers, model ASB-100VS recorder scans automatically 100 channels of information. By adding modular

The voltage spike in the top photo could destroy the transistors in your circuit in microseconds. This one happens to be a "turn-on" transient-one of several treacherous, instantaneous overshoots encountered in the everyday use of dc supplies. For complete protection against line and load transients, use new Perkin MTR power
supplies. Combining the best two solid-state regulation principles. Hect use magnetic amplifiers for high efficiency and transistors for instantaneous regulation and low ripple. Nade without tubes or moving parts, they give you long, trouble-free service. They're ideal for continuous-duty and unattended operation. Perkin MTR units sustain shorts and overloads indefinitely without suffering internal damage or shooting spikes into the load. After shorts, they resume normal operation automatically. And their protection is constant. even if an internal transistor fails, your Perkin MTR power sup ply continues to regulate smoothly and safely!

NEW SOLID STATE REGULATION PRINCIPLE: magnetic amplifiers for efficiency and reliability, transistors for fast response

 Rugged magnetic amplifiers provide steady-state regulation of line and load. Fast-acting transistors suppress ripple and transients. Because the transistors function only during instantaneous line and load changes, their actual use is held to a minimum. MTR units thus have far better dynamic regulation than magnetic amplifier-regulated power supplies and much higher reliability than fully transistorized supplies.| PERKIN / MTR REGULATED LOW-VOLTAGE DC POWER SUPPLIES | | | | | | | | | prompt delivery |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | D.C. Output | | Static Regulation | | Dynamic Regulation | | A.C. Input 60 CPS | | Ripple |
| No. | Volts | Amps | Line | Load | Linet | Loadtt | Volts | Phase | RMS |
| MTR060-1 A | 0.60 | 1 | $\pm 10 \mathrm{MV}$ | $\pm 25 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm .2 \mathrm{~V}$ | 95-135 | 1 | 2MV |
| MTR060-5 A | 0.60 | 5 | $\pm 10 \mathrm{MV}$ | $\pm 25 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm .3 \mathrm{~V}$ | 95-135 | 1 | 2MV |
| MTR036-5 | 0-38 | 5 | $\pm 10 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm .2 \mathrm{~V}$ | 105-125 | 1 | IMV |
| MTR036-15 | 0-38 | 15 | $\pm 10 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm .2 \mathrm{~V}$ | 105-125 | 1 | 1MV |
| MTR636-15 | 6-36 | 15 | $\pm 25 \mathrm{MV}$ | $\pm 50 \mathrm{MV}$ | $\pm 25 \mathrm{MV}$ | $\pm .75 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR636-30 | 6-36 | 30 | $\pm 25 \mathrm{MV}$ | $\pm 75 \mathrm{MV}$ | $\pm 25 \mathrm{MV}$ | $\pm .85 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR615-5 | 6-15 | 5 | $\pm 10 \mathrm{MV}$ | $\pm 50 \mathrm{MV}$ | $\pm 0.1 \%$ | $\pm .2 \mathrm{~V}$ | 105-125 | 1 | 3MV |
| MTR28-2 | 24-32 | 2 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm .2 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR28-3 | 24-32 | 3 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm .3 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR28-5 | 24-32 | 5 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm .3 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR28-10 | 24-32 | 10 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm .4 \mathrm{~V}$ | 105-125 | 1 | 2MV |
| MTR28-30 | 24-32 | 30 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm .5 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR28-100 | 24-32 | 100 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.5 \%$ | $\pm 2.0 \mathrm{~V}$ | $\begin{aligned} & 208 / 230 / \\ & 460 \pm 10 \% \end{aligned}$ | 3 | 20MV |

For 10V step change on 115V nominal input units; 10\% step change on Model MTR 28-100
HFor changes no load to full load or full load to no load. On fractional load changes, specifcations are improved.
All models have Automatic Current Limiting protective loads and shorts can be sustained indefinitely without damage circuitry which eliminates fusing. Voltage and current are to the power supply. All units available standard $19^{\prime \prime}$ rack or automatically reduced to a safe level on overloads of 125% rated output and above, including dead short circuits. Overcabinet mount. Dynamic impedance down to 25 milliohms.

WRITE FOR COMPLETE PERKIN CATALOG on tubeless power supplies and new technical article on dc power sources for transistorized circuits.

PERKIN

ENGINEERING CORPORATION

345 Kansas Street, El Segundo, California • ORegon 8-7215
N.w England Area Office: 46 Amesbury St. • Lawrence, Mass. • MUrdock 3-3252
S.LES REPRESENTATIVES

A suquerque, N.M. - AMherst 8-172 A zole Ind. - 217 \& $8101-\mathrm{R}$ Al anta, Ga.- BLackbum 5-6660 C icago, Ill.- JUniper 8-0905 D IIas. Tex.-FLeetwood 7-7080

Dayton, O.-CHapel 4-5551 Denver, Colo.- SUnset 1-8375 Detroit, Mich.- HOward 8-2481 Indianapolis, Ind. - STate 7-0009 Los Anzeles. Calif.-HOllywood 9-729

Minneapolis, Mind.- MIdway 6-2821 New York City, N.Y.-DIgby 4-2997 Orlando, Fla.-CHerry 1-2128 Phoeniz, Ariz. - WHitney 6-2111 St. Louis, Mo. - PArkview 1-6403

San Diego, Calif. - ATwater 3-2081 San Francisco, Calif.-EMerson 9-335 eattle, Wash.- PArkway 3-9000 Washington, D.C. - JUniper 8-75 Agincourt, Canada.-AXminster 3-7011
units, the capacity can be extended to 200 channels. Bridges with 1,2 , and 4 arms and with gage resist ances 60 to 1000 ohms may be used interchangeably in all channels. Strain is read directly in microinches per in. over the range of $+10,000$ to $-10,000$ at the rate of 1 channel per sec. Accuracy of indication is $\pm 1 \%$.

Bytrex Corp., Dept. ED, 50 Hunt St., Newton 58, Mass
Price \& Availability: Prices range from $\$ 15,000$ to $\$ 24,000$. Delivery time is 90 days.

Digital Distribution Unit

577

For missile tracking systems
Designed for missile tracking systems, model DH-10 digital distribution unit accepts range timing signals up to 27 bits, and provides for interrogation of any tracking device of which the output can be dig. itized. It extracts and stores tracking data up to three 24 -bit words in any combination, plus up to 20 bits of auxiliary data. All data is arranged for transmission on data link and is recorded on magnetic tape. Sampling rates are 10,20 , and 40 pps.

Cubic Corp., Dept. ED, 5575 Kearny Villa Road, San Diego 11, Calif.
Price \& Availability: \$35,000; 90 to 120 days.

Thyratron Tubes

Has a piv of 2500 v
Type 710A $2.5-\mathrm{amp}$ inert-gas and mercury-vapor thyratron is rated at 2500 v for peak inverse and forward voltages. It can be used as an ignitor firing tube in spike welding applications. Filament voltage is -2.5 v , filament current is -9 amp , and average anode current is -2.5 amp . Temperature range is -40 to +80 C.

National Electronics, Inc., Dept. ED, Geneva, Ill.
Price \& Availability: $\$ 10.61$ ea, from stock.

FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LISTED BELOW.
baltimore, Maryland
2319 Maryland Ave...........CHesapeake 3-3220
boston, Massachusetts
168-182 Albion St.
Wakefield, Mass.
Camden, New Jersey
227 S. Sixth St . WOOdlawn 6-2877
chicago, Illinois
6641 W. North Ave.
Oak Park, III.
..............VIllage 8-5556
cleveland, Ohio
14625 Detroit Ave.
Lakewood, OhioACademy 1-9191
dallas, Texas
511 Braniff Airways Bldg.
Dallas 35, TexasFLeetwood 7-9448
DAYton, Ohio
379 W. First St.................... BAldwin 4-9651
DENVER, Colorado
first National Bank Bldg.
621 Seventeenth St. AComa 2-1686
DETROIT, Michigan
2842 West Grand Blvd. TRinity 5-2440
KANSAS CITY, Missouri
Wirtham Bldg.
31st and Troost Sts. VAlentine 1-1819
LOS ANGELES, California
6362 Hollywood Blvd.
Hollywood 28, Calif.Hollywood 2-2381
newark, New Jersey
1060 Broad St.

orLANDO, Florida

\#10 Jacklind Bldg.
205 E. Jackson St.
......CHerry 1-4526
phoenix, Arizona
2727 North Central Ave. CRestwood 7-3366
St. PAUL, Minnesota
Griggs-Midway Bldg.
1821 University Ave.MIdway 6-1891
SAN FRANCIsCo, California
535 Middlefield Rd.
Palo Alto, Calif................ DAvenport 1-2064
seattle, Washington
3466 East Marginal Way MAin 4-0783
syracuse, New York
2360 James St. HOward 3-4502
winston-salem, North Carolina
Nissen Building
310 W. Fourth St
.PArk 3-0363

Trangitron
 alectronle corporation wakefiold, masonehusette
 CIRCLE 74 ON READER-SERVICE CARD

a major advance from Transitron...

DIFFUSED MESA TRANSISTORS for every power rance!

WITH ADVANCED PACKAGES, HIGH VOLTAGES,

- Now in stud-mounted package

For regulated power supplies and amplifier output stages replaces 2N1047-50 and 2N1483-86-offering low Res, good Beta linearity and voltage ratings to $\mathbf{1 2 0 V}$.

Type			Maximum Vohtege (Volts)	$\begin{aligned} & \text { Typleal } \\ & \text { Sexturation } \\ & \text { Resistance } \\ & \text { (ohnis) } \end{aligned}$	Typical Voltage (Volta)
2N1647	20	25	80.	1.7 (e) 1A.	2814.
2N1648	20	25	120V.	1.7 1A.	2 (1) 1 .
2N1699	20	4	80.	1.7 1A.	2 (4) 14.
2N1650	20	4	120V.	1.7 © 1A.	$2{ }^{\text {c } 10}$.

HIGH POWER
TRANSISTORS

- Avallable in two package styles - $11 / 16^{\boldsymbol{\prime}}$ hex stud mount and square flange

For regulated power supplies and amplifier output stages replaces 2N1015-16, 2N424, 2N389, 2N1487.90 - with low Ra (typical .8 ohms), good Beta linearity, high cut-off frequencies, and high voltage.

Typo	$\begin{gathered} \text { Maximum } \\ \text { Power } \\ \text { Dissipation } \\ \text { (Watts) } \\ \text { (Wats) } \end{gathered}$	Maximum Collinctor Curreme (amps)	MaximumColloctorVoltot(Volts)	Maximum Santuration Resistance (ohmes)	Maximum DC Input Volaze (Volts)	$\begin{aligned} & \text { DC EAte } \\ & 2 \mathrm{Amps} \end{aligned}$	
						Min.	Mor.
$\begin{aligned} & 2 N 1616 \\ & 21216 \end{aligned}$	30	5	60	102 A .	3 © $2 A$.	15	75
$\begin{aligned} & 2 N 1617 \\ & 2 N 1211 \end{aligned}$	30	5	80	$1{ }^{\text {c }} 2 \mathrm{Aa}$	$3{ }^{\text {c }} 2 \mathrm{~A}$.	15	75
$\begin{aligned} & 2 N 1618 \\ & 2 N 1620 \end{aligned}$	30	5	100	1-3 2A.	$3{ }^{\text {c }}$ 2A.	15	75

WRITE FOR BULLETIN TTE-1353

With these new transistors, Transitron offers improved performance and outstanding features in all power ratings from 100 microamps to 5 amps . Each functions in a wide operating range - permitting use of fewer types, simplifying equipment manufacture. All provide the ruggedness and reliability of mesa silicon construction. All are available now, at prices competitive with lower-performance devices.

COMPUTER DESIGMERS ATTENTION
Watch for announcement of Transitron's revolutionary new switching device coming next month and at WESCON show!

HIGH CUT-OFF FREQUENCIES,LOW R R ${ }_{\text {cs }}{ }^{\text {No }}$ BETA LINEARITY

Leadership in

9817 ingliowo

CALIFORNIA. Los A

PLOBLSII 2.7191
CAll MORNIA, Monlo PaI

DALIFOORORNIA, Palo
califonN1A, Palo atto
24A3 AnD St St i-1965

321 mission St.
UdNembill $1-2434$

CAMADA, Downsview ontatio 35 H. .35 Dalisis. Inc.

o.c. Washingto

FLORIDA, Cocos,

NE $G 6331$.
FLORIOA, Miemil Inc.

FLORIDA, Orlando
Thurow Eloctronics,
625 w. Contal Avo.
625 W. Coninn Av
CHorty 1.3695

For low level high voltage switching and amplification. Re places 2N332-2N343 with higher cut-off frequencies (30mc), lower $R_{\text {es, }}$ smaller sized TO-18 package, and higher voltages.

Small SIGNAL TO-10						
Type	Maximum Voltage	Minimum OC Bota				$\begin{gathered} \text { Tyopical } \\ \text { Saturation } \\ \text { Resiatance } \\ \text { (Ohms) } \end{gathered}$
		$5 \mathrm{I}_{\mathrm{mp}}$	$\begin{gathered} \mathrm{I}_{\mathrm{c}} \\ 5 \mathrm{~m} \end{gathered}$	$\begin{gathered} I_{\mathrm{e}} \\ 50 \mathrm{ma} \end{gathered}$		
STISO4	60	15	20	20	300	40
ST1505	100	15	20	20	300	50

Type		$\begin{gathered} \text { Minimum } \\ \hline \text { Beta } \\ \hline \end{gathered}$			Maximum PowaI Diagipation (Wats) $-25^{\circ} \mathrm{C}$ Cese	Maximum Saturation (ohms)
		$\begin{aligned} & \mathrm{I}_{\mathrm{c}} \\ & \lim _{\mathrm{AC}} \end{aligned}$	$\begin{aligned} & \mathrm{ICf}_{\mathrm{c}}^{5 \mathrm{~cm}} \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{c}} \\ & 50 \mathrm{~m} \\ & \mathrm{DC} \end{aligned}$		
-2N339A1	60	15	25	20	1	50
-2N340A	85	15	25	20	1	70
-2N3H1at	125	15	25	20	1	70
-2N1054	125	20(DC) © 200 mm			5	20
-002NEs\%	60	20(0C) © 150 ms			2	10
-0002 $2 \mathrm{N697}$	60	40(DC) $0_{0} 150 \mathrm{me}$			2	10

- WRITE FOR BULLETIN ITE-1833J1 ∞ WRITE FOR BULLETIN TE-LB5E-2

GEORGIA, Allante OhiO, Daytion 2 Then Co.

63 junipor St.

 dualiin) Electronics, ine. Glbson 7.9124. al. S05.095 St., P.O. Bon 135 Llinois cine
LLINOIS, Chicago

INDIAMA, South Bond 24 RHODE ISLAND, Proyboonce

212 nien 51.
Tíantic $8-6684$

${ }^{1 / 4 \text { mpirono }} \mathbf{4 - 6 1 5 \%}$
KANSAS, Wichit,
KAdio Supoly Co.
115 Lourd s.i.
Amheist 7.5218
MARYLAMD, Bantimoro 11
 2050 Moctrises Avo
TUROdo 9.4262 MASSACHLUEETSS.

1095 Commonwasth Ave. Inc. WASMINGTO

Orcester Suply WASHINGTON, Tacome 222 Summit sit
Lesunt 7.5626
Transitron
olectronic corporation T wakofiold, maseachusettis
sales offices im timitu cities tmouenout the us ANO EUROPE CAME AODMESS: TRIECO

NOW! DIRECT FROM DALLAS TI SEMICONDUCTORS OFF-THE-SHELF

FACTORY FRESH AT FACTORY PRICESI

 GUARANTEED BY TEXAS INSTRUMENTSINow direct from Dallas you can always rely on fast delivery of ALL TI semiconductors and components from Engineering Supply Company, a corporate division of Texas Instruments Incorporated.
ESCO gives you fast, one-stop service through carefully controlled inventories of TI's complete line, stocked in depth, to assure prompt availability at all times.

Order now for use-proved, guaranteed TI semiconductors and components and know you are getting finest quality . . . and delivery off-the-shelf from ESCO!
WRITE OR CALL ESCO TODAY FOR COMPLETE DATA ON TI SILICON AND GERMANIUM TRANSISTORS, DIODES AND RECTIFIERS, CARBON FILM RESISTORS, sensistor ${ }^{\text {® }}$ SILICON RESISTORS, AND tan-TI-cap ${ }^{\text {® }}$ TANTALUM CAPACITORS

CIRCLE 71 on reader-service caro

NEW PRODUCTS

Printed Circuits

Laminated

Called Encapsulayer, these printed circuits are manufactured in many layers and laminated together under heat and pressure. They can be used to perform complex interconnections as the miniaturized replacement for cumbersome backpanel wiring in computers. They can be used in other switches and coding applications. A typical six-layered sandwich measures 0.026 in. thick.
Photocircuits Corp., Dept. ED, 31 Sea Cliff Ave., Glen Cove, N.Y.

Cyclic Timer

Is preset for $1 / 4$ to $2-1 / 4 \mathrm{hr}$

Designed for use in triggering or cycle testing of external equipment, this cycle timer can be preset for any period from $1 / 4$ to $2-1 / 4 \mathrm{hr}$ in $1 / 4$ hr increments. At the end of each interval, a set of spdt contacts operate and remain actuated for 15 min . At the same time the dpdt contacts change position and remain changed until the next interval is completed.

Industrial Electronics, Inc., Dept. ED, 4730 Earlham Dr., Indianapolis 27, Inc.
Availability: Delivery time is currently 30 days.

Varactor Diodes

Complete series offered
Models MA-4280 through MA-4292 diffusedjunction varactor diodes range in junction capacitance from 0.4 to 35 pf , measured at -6 v . Junction capacitance at 0 v is about twice the value at -6 v ; at -30 v , it is about one-half its value at -6 v . The piv rating is -30 v . Typical cut-off frequency is 30 kmc ; the large-capacitance units have about 2 ohms series resistance. Housed in hermetically sealed, reversible cartridges with ceramic-to-metal seals, the diodes can be used as modulators for microwave links, in multiplier circuits in rf receivers, and in transmitter equipment with a range of 1 to $10,000 \mathrm{mc}$.
Microwave Associates, Inc., Dept. ED, Burlington, Mass.

678

2 MEGACYCIE DRY CIRCUIT LATCHING RELAY!

YES! The 101 relay series has operated continuously for over two million cycles without failure.

Only U. S. Relay-Electronics 101 series has unsurpassed sensitivity of 3 milliseconds latching time.
The 101 is a micro-miniature latching relay series that offers BIG RELAY performance in crystal can size. Designed for continuous use at $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. This relay series has been designed to meet applicable portions of Military Specifications, MIL-R. 25018 and MIL-R-5757. Completely adaptable for missile, military, computer and industrial usage where size, weight and environmental extremes are critical. In addition, the 101 series will withstand 100 G shock for a limited duration.

During the WESCON show at Los Angeles, we will have on operating unit on display. Stop by our booth and guess at what cycle this unit will fail. The closest guess will win a valuable citizen band fransceiver!
For further information on the 101 Series, and certified test reports, write:

U. S. RELAY-ELECTRONICS

717 No. Coney Ave., Azusa, Calif. a division of $A \cdot S \cdot R$ Products Co. Circle 72 on reader-service card ELECTRONIC DESIGN • July 20, 1960

Ranges are from ± 300
to ± 5000 psia
Type H-137 differential pressure transducers can be offered in 16 ranses between ± 300 and ± 5000 psia. For use from -65 to +125 C , the units have a standard resistance value of 7500 ohms $\pm 5 \%$. Linearity error is 1% max; error due to hysteresis efforts is 0.5% max. Proof pressure is 150% of rated pressure and burst pressure is 200%.
Servonic Instruments, Inc., Dept. ED, 640 Terminal Way, Costa Mesa, Calif. Acailability: Eight-week delivery time.

Synchronous Motors

Hove positive clutch and instantaneous brake
The PC-SM series unidirectional motors and the PC-RSM series reversible motors have a positive clutch and an instantaneous brake. The input shaft of these 40 and 80 0z-in. motors can be started in 10 msec or less and stopped at 1 rpm within 0.1 deg . The motors measure $2-1 / 2 \mathrm{in}$. in diameter and 2-1/16 in. deep and are supplied for 95 to 130 v operation at 60 cps , drawing iw.
Hurst Manufacturing Corp., Dept. ED, P. O. Box 326, Princeton, Ind.

Inertia Switch 445
Delay time is from 0.55 to 1.65 sec
This electrical contact-closure delay device is designed to function when acceleration forces of appropriate magnitude, direction, and duration are sensed. It can be modified for a wide range of acceleration and timing values. Delay times are 0.55 to 1.65 sec , accuracy is ± 200 msec variation at rated acceleration. One spst provides NC or NO operation at the end of the time delay. The unit weighs 3.5 lb and measures 1.6 in . long and 1.5 in . in diametir.
Ely in Micronics, Dept. ED, 21001 Nord loff St., Los Angeles, Calif.

CIRCLE 73 ON READER-SERVICE CARD -

... with TI 2N1141 series germanium mesa transistors

Exceptionally high ac beta TI 2N1141 germanium mesa transistors provide 30 db gain - with 16 mc bandwidth - in a 200 mc RF amplifier. Ideal for your high frequency amplifiers and power oscillators, 2N1141 series diffused base transistors give you ... maximum dissipation to 750 mw . . . voltage ratings to 35 v at $100 \mu \mathrm{a} \mathrm{I}_{\mathrm{c}} \ldots 750 \mathrm{mc}$ alpha cutoff.
These devices are backed by more than $9,500,000$ unit hours of life test reliability data . . . see curves below.

	2N1141	2N1142	2N1143	unit
fab	750	600	480	mc
$\mathrm{C}_{\text {Tc }}$	1.2	1.4	1.5	$\mu \mu$ i
${ }^{\circ}{ }^{\text {b }}$	65	80	110	ohms

UNIT TYPE 2N1142: IcEo AND hPE VS HOURS OF STORAGE AT +1000C
TEST LEGEND: Sample Size: 1000 units $=$ Test Condition: Storage $\mathrm{at}+100^{\circ} \mathrm{C}=\mathrm{I}_{\mathrm{co}}$ Measured at: $\mathrm{V}_{\mathrm{CB}}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0=\mathrm{h}_{\mathrm{FE}}$ Measured at: $\mathrm{V}_{\mathbf{C E}}=-6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{ma}$

Standards Lab Accuracy

from the Cubic Model MC-1B CALORIMETRIC WATTMETER

Easy to use • direct READING TO 600 WATTS WIDE FREQUENCY RANGE primary standard accuract

The MC-1B, consisting of a Liquid Circulator and a Calorimetric RF Termination, is a precision instrument suitable for simple operation by non-technical personnel in production or field areas, yet providing primary standard accuracy for check-out of magnetron and radar systems.

The Liquid Circulator contains a float-type flow meter, with a visual monitor of the fluid flow rate, control valves, pump assembly, reservoir and heat exchang er, all parts of nonferrous materials to prevent contam ination of the fluid, distilled water

The RF Termination is suited for the measuremen of power in the microwave region, with adapters avail able for achieving an RF match greater than 1.15 in VSWR from 2600 to $26,500 \mathrm{mcs}$. . . without problems associated with the excitation and propagation of higher waveguide modes.

Features include a good RF match with the Termination, metered fluid flow, precision temperature readings and well designed control of heat transfer

CUBIC CORPORATION for the ultimate in precision electronic equipment:

Microwave Instrumentation
Test Equipment
And a complete line of digital instrumentation

INDUSTRIAL DIVISION
UBIC corporaton
5575 Kearny Villa Road, San Diego 11, California
Electronic Engineering With a Dimension for the Future

CIRCLE 81 ON READER-SERVICE CARD

mailion
 advancement in instrument design

 LOW COST ELAPSED TIME INDICATOR

Unseoled, bakelite case design provides low cost. Self-starting synchronous motor drives 5 -digit counter; records hours to 9999 or hours ond tenths to 9999.9 Square Model 53 SET $31 / 2^{\prime \prime}$ also available. For 110 or 220 volt, 60 cycle AC. Standard ASA/MIL $31 / 2^{\prime \prime}$ mounting. Data on request Marion Instrument Division, MinneapolisHoneywell Regulator Co., Manchester, New Compshire, U.S.A. In Conado, Honeywell Controls limited, Joronto 17, Ontario.

Honeywell

H. Fiwt in Contarel

At WESCON, Booth 2722
CIRCLE 82 ON READER-SERVICE CARD

NOW-Complete Line

Electronic Counting Tubes (up to 20,000 counts/sec.)

Typical Drive Circuit
Now available-only complete "Hand Book of Counting Tubes" in print. Tube specifications, applications, sample circuits, design criteria are included. Available at $\$ 1.00$ a copy through Dekatron Tube Section, Baird-Atomic, Inc.
No C. O. D. or purchase orders, please! Cash, check or money order accepted.

Benirel-Atomic, Inc.
33 UNIVERSITY RD. CAMBRIDGE 38. MASS

frevtkenmentariore fas Refter fivealyote CIRCLE 83 ON READER-SERVICE CARD

NEW PRODUCTS

DC Amplifier

Power gain is ov 1,000,000

Having a power gain of over $1,000,000, \mathrm{~m} \cdot \mathrm{del}$ 9018 H solid-state, dc amplifier has input impedances up to 100 K . An input signal of 0 to 10 mv provides an output voltage of 0 to $\pm 5 \mathrm{v}$ dc with an output impedance of 5 K . Linearity is $\pm 1 \%$ over a wide temperature range. The unit consists of an input chopper, a high gain ac amplifier, and a demodulator. Power requirement is $28 \pm 3 \mathrm{v}$ dc at 30 ma ; reference signal is 400 cps at 5 v ms and 0.2 ma .
Natel Engineering Co., Dept. ED, 1592ㅡㄹ Strathern St., Van Nuys, Calif.
Price \& Availability: Having a temperature range of -55 to +71 C , the unit is priced at $\$ 275$ to $\$ 300$; having $a-10$ to $+55 C$ range, the unit is priced at $\$ 175$ to $\$ 260$. Small quantities can be delivered in two to three weeks.

Rotary DC Solenoids
Stroke length is $\mathbf{0}$ to 60 deg

These rotary, dc solenoids are available in sizes of $8,10,13,15$, and 18 and in stroke lengths from 0 to 60 deg , clockwise or counter-clockwise. Out put voltage range is 6 to 300 v dc . The solenoids can be operated in high temperatures, in pres surized mechanisms, and in aircraft systems. The! can also be used in installations where axial travel of the output shaft must be eliminated or where the rotary stroke may be externally stopped before the electro-magnetic stroke is completed.
PSP Engineering Co., Dept. ED, 6058 Walker Ave., Maywood, Calif.
Price \& Availability: Some units will be in stock by September; units are ordinarily made to customer specs. Price ranges from $\$ 20$ to $\$ 35$ ca.

ELECTRONIC DESIGN • July 20, 1960

Brazing Fixture

Uses induction heating

is over

This line of production fixtures is for brazing metal assemblies under a cuntrolled atmosphere by induction heating. The reducing atmosphere prevents oxidation on the work during heating, eliminating the need for flux. The joints produced with these units are uniformly sound, free of residual or entrapped flux, and corrosion-resistant.
L.epel High Frequency Laboratories, Inc., Dept. ED, 55th St. and 37th Ave., Woodstock, N.Y.

Microwave Antenna 510

 Pattern RangeMeasures from 2500 to $26,500 \mathrm{mc}$
This indoor, microwave-antennapattern testing range gives performance data for one-way and two-way microwave antenna pattern measurements from 2500 to 26,500 . An 11-ft octogon in cross section about 40 ft long, the range measures antennas with a gain of up to 30 db in azimuth and elevation planes.
Budd-Stanley Co., Dept. ED, Long Island City, N.Y.

IF Amplifier
 Has 90 db gain

This transistorized, logarithmic, if amplifier has a nominal center frequency of 10.7 mc , a bandwidth of 0.75 mc , and a small signal gain of 90 db . The input dynamic range is 45 db and the output dynamic

BLACK IS BLACK and WHITE IS WHITE

 range is 12.8 db . The dc output is logarithmic to within $\pm 1 \mathrm{db}$ for inputs from 40 to 6000 mv . The ac output is constant to within $\pm 1 \mathrm{db}$ for constant percentage modulation of input signals of 40 to 6000 mv . Input impedance is 50 ohms; out put impedance is 500 ohms. The operating temperature range is 0 to 55 C. Silicon semiconductors are used ihroughout.Ele ctronics Systems, Inc., Dept. ED, 105 Chauncy St., Boston 11, Mass
Avail ability: Delivery time is 90 to 120 diys.

C RCLE 84 ON READER-SERVICE CARD \geqslant

FIVE YEARS OF PROVEN TRIMMER PERFORMANCE

THE ONLY SQUARE SUBMINIATURE POT WITH 1,750,000 FIELD.PROVEN APPLICATIONS FOR BETTER STACKING...up to 20 SQUARETRIMS in one cubic inch.
FOR MORE ACCURATE TRIMMING... 30% more resistance turns plus $45: 1$ adjustment ratio gives more precise trimming than conventional designs.
FOR MECHANICAL AND THERMAL STABILITY...worm gear adjusting device helps assure rugged mechanical stability, and unique circular mandrel eliminates expansion-contraction effects for thermal stability.

9320 Lincoin Boulevard, Los Angeles 45, Calif.

FRANCHISED DISTRIBUTORS for... DAYSTROM SQUARETRIM trimming potentiometers

MID-WEST

Radio and Electronic Parts Corporation 3235 Prospect Avenu
Cleveland 15, Ohio (UTah 1-6060)
Newark Electronics Corp. 223 W. Madison Stree Chicago 6. Illinoi

NORTHERN CALIFORNIA
Schad Electronic Supply, Inc. 499 South Market Street (CYpress 7-5858)
SOUTHERN CALIFORNIA Kierulff Electronics, Inc. 820 West Olympic Boulevard Los Angeles 15, California (Richmond 8-2444)
Newark Electronics Co., Inc. 4747 West Century Boulevard nglewood, California
(ORegon 8.044
Radio Parts Company
2060 India Street
San Diego 1, Californi
BEImont 9-9361)
Valley Electronic Supply Company 1302 West Magnolia Boulevar (VIctoria 9-3944)
MOUNTAIN STATES
Ward Terry \& Company
90 Rio Grande Blvd.
P. O. Box 869

Denver 1, Colorado
TEXAS
Kemp Enginearing Supply, Inc 8 Manana Drive
P. O. Box 13251

Dallas 20, Texas
(FLeotwood 7-6663)

DAYSTROM

PACIFIC DIVISION 320 LINCOLN BOULEVARD OS ANGELES 4E. CALH CIRCLE 85 ON READER-SERVICE CARD \& CIRCLE 86 ON READER-SERVICE CARD

NEN PRODUCTS

Thermal Timer

Is completely housed

Model 261 completely housed thermal timer has two terminals for the contact circuit and two terminals for the heater circuit. Timer settings are up to 2 min . Contacts can be normally open, closing after being energized, or normally closed, opening after being energized. Contact rating is $100 \mathrm{w}, 115 \mathrm{v}$ ac non-inductive load. The stock heater winding is rated at 24 v .
George Ulanet Co., Dept. ED. 413 Market St., Newark 5, N.J.

Transistor Tester
520
For industrial and lab use

Model 160 transistor tester is for servicing, laboratory, and industrial use. It uses a true small ac signal measurement for current gain, reads directly in beta, and has an accuracy of $\pm 3 \%$ for beta measurements. All transistors are automatically biased to a 1-ma collector current. The instrument operates on 105 to 125 v at 50 or 60 cps, measures $9 \times 7 \times 2.75 \mathrm{in}$., and weighs 4.5 lb . B \& K Manufacturing Co., Dept. ED, 1801 W. Belle Plaine, Chicago 13, Ill.
Price: \$69.50

Glass-Reinforced Epoxy Laminate 431

For flush printed circuits
Textolite 11585, a glass-reinforced epoxy lamiate, is for use where circuits must be forced into he laminate to produce a flush surface. It is guited for high-reliability applications such as misiles, computers, and military electronic equipment. This grade has high insulation resistance, ${ }^{0} \mathrm{w}$ w iter absorption, high stability in humidity, ind superior bonding strength. It is available in tandird sheet sizes of $36 \times 36 \mathrm{in}$. and $36 \times 72 \mathrm{in}$., ${ }^{5}$ wel as sheets measuring $36 \times 48 \mathrm{in}$.
General Electric Co., Dept. ED, Schenectady 5,

CERAMIC-TO-METAL SEALS

Standard Bushings ar Special Desigus

 FROM ONE COMPLETELY INTEGRATED SOURCEALITE - with its completely equipped facilities for producing high quality, vacuum-tight ceramic-to-metal seals - is geared to meet all your requirements for high alumina ceramicmetal components. From design to finished assembly, every manufacturing step - including formulating, firing, metalizing and testing-is carefully supervised in our own plant. Result: effective quality control and utmost reliability.
Hermetic seals and bushings made of high alumina Alite are recommended for electromechanical applications where service conditions are extremely severe or critical. Alite has high mechanical strength and thermal shock resistance. It maintains low-loss characteristics through a wide frequency and temperature range. It resists corrosion, abrasion and nuclear radiation. Its extra-smooth, hard, high-fired glaze assures high surface resistivity.

ALITE DIVISION

To simplify design problems and speed delivery, Alite high voltage terminals, feed-throughs and cable end seals are available in over 100 standard sizes. However, when specifications call for special units for unusual applications, you can rely on expert assistance from Alite engineers to help you take full advantage of Alite's superior properties.
Write us about your specific requirements today:
WRITE FOR HELPFUL FREE BULLETINS

METOX METOX METOX insulated METOX METOX
 power resistors

- HANDLE MORE WATTS PER SIZE. This is particularly so in the higher resistance values.
- OfFER higher resistance ranges per size. For example, up to 47 K in the 4 W F32 size
- ARE VIRTUALLY NON-INDUCTIVE
- INSURE RELIABILITY. Comprehensive tests have proved that operating these resistors under the most arduous conditions will not cause failure.
- HAVE SUPERIOR OVERLOAD PERFORMANCE. The application of ten times the rated load for 5 seconds results in a typical resistance change of less than 0.5%.
- ARE LOWER IN COST TO THE USER. In terms of both purchase value and reliability F30's offer a saving to the customer.

unIQUELY DIFFERENT AND RADICALLY NEW

The Welwyn F Series power resistors are composed of a metal oxide element, bonded to a porcelain rod at red heat. This process results in a resistor which is extremely pugged, both electrically and mechanically. The durable coating is intended to provide an insulating cover rather than to protect the element which in itself is highly resistant to mechanical damage and effects of moisture.

WELWYM TYPE DESIGNATION	MAXImUM LENGTM	POWER RATING	RANGE OF VALUES
F32	$29 / 32$ inches	4 Watts	$20=1047 \mathrm{~K}$
F33	$1-5 / 16$ inches	6 Watts	$30=1056 \mathrm{~K}$
F34	$1-23 / 32$ inches	8 Watts	$40 \approx 1068 \mathrm{~K}$
F35	$2.3 / 32$ inches	10 Watts	$50=1075 \mathrm{~K}$

*Rated Wattage may be dissipated up to that resistance value set by a potential limitation of $500 \mathrm{~V} /$ inch. Where less than full Wattage is involved, potentials up to 1000 V/inch may be applied.
For further information write for data sheet W-1014

WELWYN INTERNATIONAL INC.

3355 edgecliffe terrace, cleveland 11, ohio
Factories in Canada and England
CIRCLE BS ON READER-SERVICE CARD

NEW PRODUCTS

Sample-Hold Module
500
For rapidly-moving waveforms

Model SA1 sample-and-hold module samples rapidly moving waveforms and holds the sampled value long enough for it to be converted to digital form in the firm's Voldicon. As a separate device, the module functions as an input operational amplifier connected through a switch to an RC filter followed by a low-impedance output-amplifier. With the switch closed, the output follows the input in a manner similar to a $2-\mu \mathrm{sec}$ RC delay network. When the switch opens, the voltage is held within 0.05% for 1 msec . The unit is assembled on a $5 \times 8 \mathrm{in}$. plug-in, printed-circuit card and can be incorporated in a Voldicon.

Adage, Inc., Dept. ED, 292 Main St., Cambridge 42, Mass.
Price \& Availability: $\$ 1000$ ea; from stock after July 1, 1960.

Accelerometer

369
Available with ± 1 to $\pm 30 \mathrm{~g}$

Model GMB potentiometer-type, gas-damped accelerometer is offered in ranges from $\pm 1 \mathrm{~g}$ to $\pm 30 \mathrm{~g}$. The output is provided by a low-noise, wirewound potentiometer. Accuracy is $\pm 1 \%$, including linearity, hysteresis, and resolution errors. Frequency response is flat within $\pm 5 \%$ to 0.4 of the natural frequency. Suited for airborne applications, the unit weighs 5 oz , measures 1.25 x $1.25 \times 2.5 \mathrm{in}$., and stands environmental extremes.
Genisco, Inc., Dept. ED, 2233 Federal Ave., Los Angeles 64, Calif.
Availability: Units are made on order.

PLANNING FUNNEL TYPIE EYELETS FOR PRINTED CIRCUIT BOARDS?

this Edward Segal automatic machine feeds, inserts and flares with utmost reliability!

Part of the secret's in Segulf
unique anvil tool holder unique anvir tod work taby
spring loaded
(hown at left) which allo (he eyelet to pass throuy the assembly before stokit or flaring. Avoids loose sell
tings. comperisates for inall
rial variations, rial variations. too. There's for segal m loting applicatio
Tell us , bout yourt
and wor'll giadiy loat and we'll giadly ley
into it without
tion. And write tied tion. And write todity
for new bulletin ED

aydil Manufacturers of eyeleting machinery, Sof ${ }_{\text {j }} 132$ LAFAYETTE STREET, NEW YORK 13 , N

CIRCLE 89 ON READER-SERVICE CARD

You'll get a preview of the show in the next Issue of ElECTRONIC DESIGN.

Special editorial coverage and the larger
WESCON New Product preview of om electronic publication will make this issum
a program for you who are going to the show, and a guided four in print for you who are not.

Warch for the WESCON Issue-Augus 3rd

Time Delay Timer
Time cycles are 1 sec to 60 hr

Series D hermetically sealed, automatic-reset time delay timer is specifically designed for applications requiring extreme accuracy and dependable service operating under extreme ambient conditions. The series meets military environmental specs. The switch is rated at 5 amp , at 115 v and 60 cps . Switch contacts are spdt. Voltages are 6 to 230 v at $25,50,60$, or 400 cycles and 6 , $12,24,28$ or 115 v dc.
Industrial Timer Corp., Dept. ED, 1407 McCarter Highway, Newark, N. J.
Price \& Availability: Price is $\$ 53.50$ for one 115v, 60-cps model. Price is subject to standard quantity discount. Delivery is 8 to 10 weeks.

Capacitance Bridge

Provides for 60 or 400 cps modulation

Model 910-1 rf capacitance bridge, a general purpose unit for non-contact or capacitive gaging, provides for 60 or 400 cps modulation of the carrier. The unit is transistorized and is portable. A battery-powered unit, also offered, has a frequency response of 13 kc . Two 10 -ft cables provide a sensitivity of 3.5 v per pf or one $30-\mathrm{ft}$ cable provides a s:nsitivity of 0.9 v per pf. Cables up to 50 ft lon; can be used.
The Decker Corp., 45 Monument Road, Dept. EL, Bala-Cynwyd, Pa.
Pri e \& Availability: \$750; 30-day delivery.

OAK Switches for Tough Jobs!

(File these tough MILITARY and INDUSTRIAL solutions for future reference)

OVER 2,000,000 OPERATIONS PER BUTTON IAND NO MAINTENANCE) IS REQUIRED FOR THIS TICKET RESERVATION APPLICATION.

MORE THAN 5,000,000 OPERATIONS WITHOUT fallure in life test by organ builder.

NO FAILURES ... NO MAINTENANCE IN MORE THAN 50,000 CYCLES AT THIS CONSTANT AMBIENT OF $150^{\circ} \mathrm{C}$

MANUFACTURING CO.
1260 Clybourn Ave., Depl. Chicago 10, III. - Phones MOhawk 4-2222 West Coast Div.ı Oak Electronics Corp. 11252 Playa Court, Culver Ciry, Calif. Phones EXmont 1-6367

WITHSTANDS MORE THAN 200 G's OF SHOCK FROM GUN RECOIL, ETC. NO MAINTENANCE OR REPLACEMENT.

after years of radio frequency selection in MILITARY AND COMMERCIAL AIRCRAFT, THE FAILURE RATE IS STILI NOT CALCULABLE.

Your tough switch job may be easier to handle than you think

Almost any environmental condition can be met within the rated capabilities of Oak Switch designs. The exotic applications, such as shown above, require merely changes in materials, finishes, and details which have been developed exclusively by Oak. Whether you require such extreme operational characteristics or not, you still receive the same basic trouble-free design. Many switch users have found that an Oak type switch does an equal or better job than other types-and at considerable savings in cost. You may, too. Send in your application, today.
write for
now atock catalog 888

A manufacturer of electrical or electronic components becomes a customer for Fusite Glass-to-Metal Hermetic Terminals when the customer for Fusite Glass-to-Metal Hermetic Terminals when the
very guts of his fabricated product depend on the ability of the terminal to remain hermetic when roughly handled or when subjected to extreme thermal shock.
Only Fusite Terminals with their exclusive V-24M glass can assure an inter-fusion between the glass and metal parts that is the basis for their great ruggedness.
While Fusite Terminals are usually competitive in price, the important cost cutting opportunities they offer are in the extremely low rate of production rejections and field failures. When installed in your product, Fusite Terminals promote a high yield at the end of your production line where profits are made or lost.
The way to find out if Fusite Terminals can do your job better is to test them yourself.

Samples are yours for the asking. Write Fusite C-4.

NEW PRODUCTS

Encapsulated Chokes

Contain ferrite shielding beads

Offered in two types, these encapsulated chokes contain ferrite shielding beads and provide large values of rf reactance and resistance in hf and vhf regions for broadband isolation and decoupling. The tubular type uses coaxial leads and the transistor modular type has both leads projecting from one side. They are suitable for radar and microwave if strips, parasitic suppression in parallel tube amplifiers, tube life test racks, radio interference suppression, relay contacts, and other applications.
Magnetic Products Div. of Stanwyck Winding Co., Inc., Dept. ED, P.O. Box 70, Newburgh, N.Y.
Price: An engineering kit containing 20 chokes can be furnished for $\$ 10$.

Germanium Transistors

Types 2N1561 and 2N1562 germanium, power, mesa transistors produce 0.5 w at 160 mc . They are designed for use as amplifiers in vhf applications and can be used in telemetering devices for missiles and aircraft radio communications equipment. Collector current capability is 500 ma . With a heat sink, the units dissipate up to 3 w at 25 C case temperature. Designed to meet MIL-S-19500, the units are pnp, diffused-junction type and have a cold-welded copper package.

Motorola Inc., Semiconductor Products Div., 5005 E. McDowell Road, Phoenix, Ariz.

Trimmer Potentiometers
Height is 0.195 in.

Series 312 Squaretrim potentiometers have a height-of-board dimension of 0.195 in . and are for applications that require stacking printed circuit boards together into modular assemblies. The units are particularly suitable for airborne, missile, and ground instruments and systems where extreme stability is required. Long windings are used, providing good resistance and fine resolution. The units are housed in machined aluminum cases.
Daystrom, Inc., Pacific Div., Dept. ED, 9320 Lincoln Blvd., Los Angeles 45, Calif.
Price \& Availability: Price is $\$ 6$ ea for one to nine units, $\$ 4.10$ ea for 500 to 999. Standard units are furnished from stock.

Digital Pattern Generator

352
For use in the computer field

For use in the computer field, this digital pattern generator provides a simulated and flexible time division pattern output. It supplies a repeating bit pattern for testing computers. The pattern length is adjustable from 1 to 100 bits with each bit independently controlled. The output impedance is 500 ohms and remains constant. Positive and negative levels of 0 to $\pm 15 \mathrm{v}$ are independently adjustable. Two clock generators are offered; one variable from 10 to 100,000 bits per sec the other from 20 to 200,000 bits per sec.
Magnavox Co., Government \& Industrial Div., Dent. ED, Fort Wayne, Ind. Price \& Availability: $\$ 3700$ ea; made on order; 45.lay delivery.

New circuit possibilities for low impedance, high current applications are opened up by Clevite's switching diodes. Type CSD-2542, for example, switches from 30 ma to -35 v . in 0.5 microseconds in a modified IBM Y circuit and has a forward conductance of 100 ma min@ 1 volt.

Combining high reverse voltage, high forward conductance, fast switching and high temperature operation, these diodes approach the ideal multipurpose device sought by designers.

GENERAL PURPOSE TYPES

Optimum rectification efficiency rather than rate of switching has been built into these silicon diodes. They feature very high forward conductance and low reverse current. These diodes find their principal use in various instrumentation applications where the accuracy or reproduceability of performance of the circuit requires a diode of negligible reverse current. In this line of general purpose types Clevite has available, in addition to the JAN types listed below, commercial diodes of the 1 N 482 series.

All these diodes are arailable for immediate delivery. Write now for Bulletins B217A-1, B217A-2 and B217-4.

Reliability In Volume . . .

A Division of

CLEVITE

LEVITE TRANSISTOR

254 Crescent Street Waltham 54, Mass. Tel: TWinbrook 4.9330 CIRCLE 93 ON READER-SERVICE CARD

High selectivity, attenuation and precision matching of . . .

 NEW HILL FILTERS ASSURE

 NEW HILL FILTERS ASSURE FAST, PRECISE MEASUREMENT FAST, PRECISE MEASUREMENT OF INTER-MODULATION OF INTER-MODULATION DISTORTION

 DISTORTION}
 34900 and 34800 filters developed to fulfill customers' specific requirements.

These two highly stable, precision-matched Hill Electronic filters permit fast, exceptionally accurate measurement of inter-modulation distortion in communications systems. A band elimination filter places a narrow, deep notch in the white noise being passed through the equipment under test. Distortion generated in the notch is then isolated for measurement by the narrow band filter.
The high degree of selectivity and attenuation of these filters, and the excellent alignment of one within the other are demonstrated in the actual operational curves shown above. Used together, these filters provide 80 db attenuation from 6 to 252 kc .
This is a typical example of Hill's creative engineering that develops outstanding solutions to customers' specific problems involving LC and crystal control filters as well as precision frequency sources and other crystal devices.

WRITE FOR BULLETINS 34800/900

HILL ELECTRONICS, INC. MECHANICSBURG, PENNSYIVANIA

NEW PRODUCTS

General Purpose Relays

Pull-in time is 9 to $\mathbf{1 2 ~ m s e c}$

These general purpose relays have a pull-in time of 9 to 12 msec . The plug-in series measures $1-3 / 8 \mathrm{x}$ $1-3 / 8 \times 2-1 / 8 \mathrm{in}$. and the CE open type measures $1-11 / 16 \times 1-3 / 16 x$ $3 / 4 \mathrm{in}$. Contact rating is 5 or 10 amp , non-inductive. The contact arrangement can be spdt, dpdt, or 3pdt. Plug-in basing is octal for spdt and dpdt types, 11-pin for 3pdt types. Temperature range is specified by the user. Applications include signal devices, amplifier circuits, photorelay circuits, power supplies, switching systems, and any load circuit requiring positive switching of ac or de power.

Crown Electric Products Co., Dept. ED, P.O. Box 171, Orange, N.J.

Price: Depends on model, starts at $\$ 2.85$ for spdt, 5-amp unit.

Power Transistors

Silicon, npn type

These diffused-junction, silicon, npn power transistors are for industrial and military applications requiring a temperature range of -65 to +175 C . Included in this line are medium-power types 2N1479, 2N1480, 2N1481, and 2N1482 in the JEDEC TO-5 package, intermedi-ate-power types 2 N 1483 , 2N1484, 2N1485, and 2N1486 in the JEDEC TO-8 package, and high-power types 2 N1487, 2N1488, 2N1489, and 2N1490 in the JEDEC TO-3 package. The units are suited for switching circuits in dc-dc converters, choppers, solenoid and relay controls; in oscillator, regulator, and pulse amplifier circuits; and as class A and B push-pull audio and servo amplifiers.
Radio Corp of America, Dept. ED, 30 Rockefeller Plaza, New York 20, N.Y.

VERSATILE VOLTAGECURRENT CALIBRATOR

CAPABILITY... measures a-c, d-c or pulse signals from 1 mv to 10 v . STABILITY . . . from temperature compensated cascaded zener diodes. ACCURACY ... $0.1 \% \mathrm{fs}$. Chopper mounts at oscilloscope input.
CONVENIENCE...calibrator slips into instrument slot of scope dolly.
Model 1082 Precision VoltageCurrent Calibrator . . . immediately available. Write for Bulletin 60-C.
rese

Deengineering, inc. T31ARCHST., PHIIADELPHIA 6

[^0]CIRCLE 94 ON READER-SERVICE CARD

CIRCLE 95 ON READER-SERVICE CARD

CIRCLE 96 ON READER-SERVICE CARD *

Time Delay Relays
Delay Range is 10 to 250 sec

Model 300 transistor time delay relays consist of a transistor time delay circuit operating two dpdt relays. The time delay can be adjusted over a range of 10% above and below nominal. Delay range is 10 to 250 sec . Suitable for military as well as commercial uses, the units can be used in instrumentation switching of computers, programers, and high-speed cameras. They can also be used in control of semi-automated machines. Having an over-all accuracy of 2%, the units stand shock of $100 \pm 5 \mathrm{~g}$, one-half sine wave, of 2 to 10 msec duration, and vibration of 10 g from 5 to 2000 cps .
Sloan Co., Dept. ED, 7704 San Fernando Road, Sun Valley, Calif.

Servo and Instrument
Mechanisms
Complete line offered

This complete line of precision servo and instrunent mechanisms includes gears, shafts, ballhearing gear boxes, and component mounting plates. A typical mechanism is assembled from stocked components and is housed in an O-ring enclosure. Bearings are ABEC 7 and construction is of stainless steel and anodized aluminum. Requir ments of MIL-E-5400 are met.
Pi ecision Mechanisms Corp., Dept. ED, 577 Nell bridge Ave., East Meadow, N.Y.
Pric \& Availability: Price ranges from $\$ 0.90$ to Si2 a; production quantities are furnished from stoc.

- CIr sle 96 on reader-service caro

Electronic Design - July 20, 1960

DIRECT READING FREQUENCY METERS

Most Complete Line...

For Every Purpose, Every Budget
High Precision, Direct Reading Meters (0.015\%)
Series 555 to 579 consists of 30 different types covering from 0.925 to $39.0 \mathrm{kmc} / \mathrm{s}$. Representing highest state of the art, these frequency meters fully qualify as transfer or secondthese frequency meters fully qualify as transfer or second-
ary standards for exacting laboratory or production service. ary standards for exacting laboratory or production service.
Features include: hermetically sealed invar cavity, temperFeatures include: hermetically sealed invar cavity, temper-
ature-compensation, high Q, optimum cavity geometry, high ature-compensation, high \mathbf{Q}, optimum cavity geo
conductivity plating. Price range : $\$ 1200 . \$ 1500$.
Precision Heterodyne Frequency Meter (0.002%)
PRD 504, for 100 to $10,000 \mathrm{mc} / \mathrm{s}$ with accuracy of 0.002% at crystal check points every $5 \mathrm{mc} / \mathrm{s}$ and 0.03% or better between check points. Automatic interpolation by unique patented spiral-scale dial. Beat indication by both external earphones and built-in CRT. Meter is self-contained and portable. Price: $\$ 695$.
Inexpensive, Direct Reading Meters (0.08%)
Series 585-A to 590-A affords excellent accuracy at lowest cost from 5.1 to $10.0 \mathrm{kmc} / \mathrm{s}$. Ideally suited for panel mounting and systems use. Price range : $\$ 150 .-\$ 350$.
Direct Reading UHF Meter ($\pm 0.2 \%$)
PRD 587-A, covers range 250 to $1000 \mathrm{mc} / \mathrm{s}$. Spiral drum scale 60 inches long enables precision direct reading. May scale 60 inches long enables precision direct reading. May
also be used as a tunable narrow band filter. Price: $\$ 275$.
PRD ELECTRONICS, INC.
Formerly Polytechnic Research \& Development Co inc
202 Tillary Street, Brooklyn 1, Now York, ULater 2.6800 2639 So. La Cienega Blud., Los Angelos 34, Calif., UPton 0-1940

Now commercially available for TV and FM tuner designs 2 to 4 db better NOISE FACTOR than tubes currently in use in TV receivers.

Superlative Performance-and not just tiny size-is the reason this latest RCA nuvistor triode should soon be the preferred rf-amplifier tube in entertainment equipment. Nuvistorized TV tuner circuits can make possible excellent reception in fringe areas where reception is now unsatisfactory.
Noise Factor is 2 to 4 db better than that of other tuner tubes in commercial use. In addition, this mighty midget provides this unmatched combination of advantages: Excellent Signal Power Gain
High Transconductance PLUS high gm to I_{b} ratio (12500μ mhos at 8 milliamperes and 70 volts)
Very Small Power Requirements: Plate and heater input-each less than 1 watt. PLUs all the inherent advantages of nuvistor design: exceptional reliability, excellent stability, extreme ruggedness, small size, light weight, high unit-to-unit uniformity, extreme sensitivity, very high input impedance, and high perveance. The last word in entertainment rf-amplifier triodes is nuvistor 6CW4!
For further information, see your RCA Field Representative-or write to RCA Electron Tube Division, Commercial Engineering, Section G-18-DE-2, Harrison. N. J.

Heator, for Unipotential Cathode:	
Voltage (AC or DC) $\quad 6.3 \pm 10 \%$ volts	
Current at 6.3 volts	13 cmp .
TYPICAL OPERATION	
Plate Voltage	70 volis
Grid Supply Voltage	0 volts
Grid Resistor	47000 ohms
Amplification factor	68
Plate Resistance (Approx.)	5440 ohms
Transconductance	12500 mmhos
Plate Current	8 ma

[^1]
NEW PRODUCTS

Vacuum Furnace

Measures $2 \times 3 \mathbf{f t}$
Measuring $2 \times 3 \mathrm{ft}$, model VF- 12 vacuum furnace performs maly operations for which a larger $n \ldots$ chine is usually required. Some applications are heat treating, all kirids of brazing, and single crystal grow. ing in high-vacuum or inert atmospheres. The vacuum chamber measures 11 in . in diameter and 20 in . in length and is protected by double walls and water cooling.

MRC Manufacturing Corp., Dept. ED, 47 Buena Vista Ave., Yonkers, N.Y.

Microwave Test Equipment

Frequency range is $\mathbf{1 5}$ to 22 kmc
This precision microwave test equipment is designed to operate over a frequency range of 15 to 22 kmc. Among the items included are: crossguide directional couplers, calibrated variable attenuators, variable screw tuners, multi-hole broadwall couplers, low and high power terminations, and transitions from RG-91/U to WR-51 waveguide and from RG-53/U to WR-51 waveguide.
Waveline, Inc., Dept. ED, Caldwell, N.J.

Linear Accelerometer 489

Measures from ± 0.25 to $\pm \mathbf{5 0} \mathrm{g}$
For missile and aircraft applications, model TA-400 hermetically sealed linear accelerometer measures acceleration from ± 0.25 to $\pm 50 \mathrm{~g}$. The unit has an extremely sensitive differential transformer pick-off. It has partially controlled damping over the temperature range of -55 to +100 C . The pickoff is wired with additional taps to allow dc or ac excitation.

Fairchild Camera and Instrument Corp., Dept. ED, Robbins Lane. Syosset, L.I., N.Y
Availability: Delivery time is 40 to 60 days.

TV Picture Tube

Bonded-shield, 19-in. type

This 19-in., bonded-shield TV picture tube, for use in portable and table receivers, has a deflection angle of 114 deg and a viewing area of 175 sq in . Bonded-shield design eliminates dead space between the tube and the safety panel, resulting in clearer pictures.
Sylvania Electric Products Inc., Dept. ED, 730 Third Ave., New York 17, N.Y.

IF Transformer Kit

Has 10 matched-input units
This kit contains 10 matched-input, 455 kc , if transformers. All units, having a size of $1 / 2 \times 1 / 2 \times 1 / 2 \mathrm{in}$., are of ferrite construction with maximum coupling and low insertion loss. Bandwidth is 13 kc and tuning range is 50 kc . With the kit it is possible to match a primary impedance of 10,25 , or 100 K to a secondary impedance of 600 or 1000 ohms in five different combinations. The units are ruggedly built, with phenolic bases, top and bottom tuning, and lugs with standard spacing for wired and printed circuit board applications. The kit is valuable for building prototype transistor circuits. Wells Electronic Co., Dept. ED, 1701 S. Main St., South Bend 23, Ind.
Price \& Availability: $\$ 19.95$; immediate delivery from factory.

Germanium Transistors

Switch 3 to 4 amp in $10 \mu \mathrm{sec}$
Suitable for core drivers, TV deflection circuits, and other high frequency applications, the 2N1046 series of alloy-diffused, germanium power transistors switch 3 to 4 amp in $10 \mu \mathrm{sec}$. At 100 C , dissipation is 30 w . Collector current is 10 amp and cutoff frequency is 15 mc . Collect or voltage can be 100 or 130 v . Texas Instruments, Inc., Dept. ED P.O. Box 312, Dallas, Tex. Accilability: Through distributors or sles offices.

CIRCLE 99 ON READER-SERVICE CARD

50\% lighter... 40\% Smaller... Daven's new miniature Egg Crate LC Filters

Now, for airborne and missile applications, Daven offers a miniature version of the popular Egg Crate LC Filter; 50% lighter and 40% smaller than any previous filter!
Frequency range is 0.4 MC to 60.0 megacycles . . . temperature range is $-55^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$. . . different physical configurations are available depending on allowable space.
The new Filter is suitable for pulse-type circuits and those where the phase shift characteristics must be uniform. It can be pre-tuned in the actual circuit, thus eliminating additional adjustment during assembly. With new production facilities,
these Filters are available in quantity, and each unit is identical in performance to the prototype.
Utilizing no critical materials, the LC Filter is also excellent for medium and wide band-width filters. It can be used for bandwidths down to 0.5%, if under-coupled response is permitted.
Daven's extensive engineering staff, also producing other types of filters extending into the low audio range, is ready to assist you in your filter problems. Just send details of your specific requirement.

LIVINGSTON, NEW JERSEV

Cost-cutting Carbon controis!

Here are strip mounted carbon controls that are masterpieces of cost-saving design. Mallory product engineers have worked out every detail of Type "EC" Carbon Controls to bring the cost DOWN . . without sacrificing performance.

Developed primarily for back-of-chassis adjustments in TV, radio, hi-fi, and stereo designs, Mallory "EC" Controls are made with a molecularly bonded carbon composition of great density and high surface hardness. This carbon element is the same low-noise, high-stability type used in all Mallory volume controls. "EC" controls have high resistance to contamination by grease, grit, dust, or moisture in the air. Controls are available in multiple units that save on mounting costs. Units are furnished with solder or printed circuit terminals.

Mallory ingenuity in engineering controls with various types of hardware, switches and configurations can go a long way in holding control costs DOWN. We welcome the challenge of saving you money.

Mallory Controls Company

Frankfort, Indiana
a division of
MALLORY

See Mallory Controle Company for

NEW PRODUCTS

Molded Harnesses

Stand 320 to 500 F

This line of custom-designed, molded harness :s is for ground support equipment, missiles, alid aircraft. Furnished in neoprene, vinyl, and silico rubber, they meet MIL-R-3065, stand temperatures of 320 to 500 F , and have a high dielectric strength. Virtually any type and number of wires may be incorporated.
Revere Corp. of America, Dept. ED, 1001 N. Colony Road, Wallingford, Conn.

Thermocouples

Stand up to 40,000 psi pressure

The $A+$ thermocouples have compacted, swaged MgO insulated design. Electrical insulation characteristics are good to 2500 F . The units stand up to 40,000 psi pressure and are made to ISA standards. They can be used in electric motors, generators, bearings, transformers and other devices.

Atkins Technical Co., Dept. ED, 1276 W. Third St., Cleveland 13, Ohio.
Availability: Delivery is from slock.

Fibre-Glass-Reinforced
 Polyester

For structural insulation
This fibre-glass-reinforced polyester stock may be cut into angles or channels and is available in widths of a $2-3 / 16$ to $9-21 / 32 \mathrm{in}$. and in lengths of 28-7 8 to $75-7 / 8 \mathrm{in}$. It meets class B temperature requirements and NEMA GPO-1 specs. It is flame retardant as per UL specs.

The Clastic Corp., Dept. ED, 4321 Glenridge Road, Cleveland 21, Ohio.
Price d Availability: Prices range from $\$ 0.80$ and $\$ 15.40$ per length. Delivery is from stock.

LOWER ${ }_{\text {en }}$

MOTOROLA ALLOY TRANSISTORS

Motorola industrial alloy transistors offer many desirable features including:

> - Lower Icho at high temperatures - reducing thermal runaway problems
> - $100^{\circ} \mathrm{C}$ operating junction temperature
> v High current gain

Rugged, dependable and versatile, the Motorola 2N650 series and the companion "Meg-A-Life" devices provide maximum reliability for industrial audio and switching applications.
Units are immediately available from stock through your local Motorola Semiconductor distributor. For complete technical information, contact your Motorola district office.

Type Na .			$\begin{array}{l\|l\|} \hline \mathrm{BV}_{\text {cro }} \text { (volts) } \\ \left(\mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A}\right. \end{array}$	$\begin{aligned} & \mathrm{BV}_{\mathrm{CER}} \text { (volts) } \\ & \mathbf{1 0}_{\mathrm{C}}=0.6 \mathrm{~mA}, \\ & \left.\mathbf{R}_{\mathrm{RE}}=10 \mathrm{~K}\right) \end{aligned}$			
					Max.		
2N652 \&	55	100		45	30	100	225
${ }_{2}^{2 N 6518}$	55	100	45	30	50	120	
2N651A*	55	100					
2N650A*	55	100	45	30	30	70	

$$
T_{1}=100^{\circ} \mathrm{C} \text { Operating \& Storage } \quad P \mathrm{Pc}=200 \mathrm{mw}
$$

μMOTOROLA
Somiconductor Producte Inc.
\qquad

CIRCLE 101 ON READER-SERVICE CARD
-2N652A, 2N651A and 2N650A are Motorola "Meg-A-Life" devices. These units are certified to Military-ype specifications and are subjected to complete mechanical, environmental and iifi cation and life-test data is available to users.

POTTER SETS THE PACE

WITH...THE ONLY PERFORATED STRIP READER IN ITS CLASS

A single speed, unidirectional, photo-electric, perforated strip reader, the Potter 909 is

OBEDIENT...stops on the stop character at speeds up to 600 characters per second and it can be stepped one character at a time where synchronous readout is needed.
VERSATILE...output is a timed, shaped pulse for input to a computer, high speed printer, or control system.
...parallel NPN, PNP amplifier output circuit supplies up to 40 ma to loads returned to any bias voltage.
FAST...operates at speeds up to 1000 characters per second with complete dependability.
SENSITIVE... a broad image light source eliminates the effects of filament variations in the lamp.
COMPACT...fits into a $10 \frac{1}{2} \mathrm{in}$. case - with its own power supply and amplifiers.
The Potter 909 perforated tape reader includes a tape transport system, tape reading system, power system, and control system. It is designed for panel, rack, or cabinet mounting. Accessories available include tape spoolers and tape bin, cooling fan, mounting adapters and extension frames.
WRITE FOR DETAILED SPECS AND LATEST PRICE AND DELIVERY INPORMATION

MODLI PCS PERFORATED STRIP READER WITH MODEL 3299 SPOOLER

WITH.... JHE MOST TAPE HANDLER FOR YOUR MONEY

The Potter 906 III is the high speed digital magnetic tape handler that gives you higher performance, greater reliability, and lower cost than any other tape handler on the market-bar none.

Only with the 906 II do you get such advantages as: ...full forward reverse cycling at 120 ips with 1 inch tape.
...low skew tape guide that permits conventional recording at 400 bpi density.
... 1500 bpi recording densities which are made possible by using the 906 II with the Potter Contiguous Double Transition System. 450,000 8 -bit characters per second can be recorded on 1 inch tape.
...transistorized control of all functions that simplifies computer design.
...simplified packaging for easy maintenance.
... a price - far below other makes \rightarrow that proves the economy of superior design.
Compare them any way you like-spec for spec, dollar for dollar, space for space-and you'll agree that the high performance, low cost Potter 906 II is the most tape transport at any price.
WRITE FOR DETAILED BPECS AND LATEST PRICE AND DELIVERY INFORMATION

NEW PRODUCTS

Gaussmeter

For use with electrodynamic vibration systems
Model G/M gaussmeter is for use with electrodynamic vibration systems for measuring stray magnetic field at critical specimen locations. Range is 50 gauss, full scale, and accuracy is better than $\pm 10 \%$. The instrument weighs about 6 oz .
Wrisley Engineering, Inc., Dept ED, P. O. Box 56, Winchester, Mass. Price: $\$ 31.75$ fob Winchester.

Filament Tester Kit

Portable, battery-operated
Model T-5 filament tester kit, a portable, battery-operated unit, rapidly locates tubes with open filaments in series string TV and radio receivers. It also makes continuity tests of any low-resistance electrical circuit. It checks filaments of all tube types, including 7 -pin miniature, 9 -pin miniature, 7 -pin battery type, octal, located, and CRT tubes. Indication is by panel lamps.
PACO Electronics Co., Inc., Dept. ED, Glendale, L.I., N.Y.
Price \& Availability: Sold through distributors, the unit is net priced at $\$ 4.50$. Factory-wired units are priced at $\$ 6.50$.

Current Transformer 366

Measures to $\mathbf{4 0 0} \mathbf{a m p}$ ac
This current transformer measures up to 400 amp ac with an accuracy of 0.1%. The unit can be used for measurement, control, or protection of high-power current and is espe cially suited for missile and aircratt use. Model 876 measures bus currents of 0 to 50 amp and has three meter currents. Model 875 measures bus currents from 0 to 100, 0 to 200, and 0 to 400 amp and has six meter currents.

Arnold Magnetics Corp., Depl. ED, 6050 W. Jefferson Blvd., Los Angeles 16, Calif.
Price d Availability: $\$ 25$ to $\$ 60$ ea: four to six weeks.
\& CIRCLE 102 ON READER-SERVICE CARD

Silver-Solder Alloys 529

Come in sheets, strips, and foil
These composites of silver or noble-metal solder alloys clad to base or precious metals come in sheets, strips, and foil. Silver-solder alloys contain various percentages of one or more of the following: copper, zinc, tin, cadmium, nickel, manganese phosphorus, and lead. Clad metals comprising noble-met-al-solder alloys for all kinds of gold, platinum, or palladium brazing are also produced.
Texas Instruments, Inc., Metals \& Controls Div., 34 Forest St., At tleboro, Mass.

Life-Test Oven

360
Handles 660 bi-polar components
This high-temperature, thermostatically controlled life-test oven handles 660 bi-polar components or 330 tri-polar devices. Standard units are rated at 125 C . The components are carried in low-resistance electrical clips on mounting racks of expanded metal. Test circuitry is rated at 750 v and at 5 amp with less than 0.5 ohms resistance. Power requirement is 1600 w at 115 or 230 v at 50 or 60 cps . The unit weighs 250 lb .
ITT, Components Division, Dept. ED. 815 San Antonio Road, Palo Alto, Calif.
Price: Starts at about $\$ 4000$.
measures accuracy used for protection is espe d aircratt bus curhas three measures , 0 to 200 . six meter

DC-AC Inverter

Output is 115 v
Operating from a $12.6-\mathrm{v} \mathrm{dc}$ input, model IA-1260-25 transistorized inverter provides an output of 115 v ac at $60 \pm 3 \mathrm{cps}$. Continuous power rating is 250 w ; maximum power is 350 w. Efficiency at full load is 80%. The transformer has a low-loss, grain-oriented ribbon core to conserve battery power. The ambient temperature range is -55 to +60 C. Dimensions are $4.5 \times 5.75 \times 8 \mathrm{in}$. and weight is 10 lb .
K_{l} pfrian Manufacturing Corp., Dep. ED, 167 Prospect Ave., Bingham on, N.Y.
Pric: Under $\$ 90$.
c| CLE 103 ON READER-SERVICE CARD $>$

NEW PRODUCTS

Thermocouple Components

For connecting thermocouples to extension wire
The QuiK-Konnect thermocouple components are for fast and easy connecting of thermocouples to extension wire. Claimed to provide foolproof connection, the components are suitable for use wherever periodic connection or disconnection of thermocouples is required such as in laboratories or test cells.
Minneapolis-Honeywell Regulator Co., Dept. ED, Penn and Bay Sts., Fall River, Mass.
Price \& Availability: Plugs, jacks, and standard accessories are in stock. Multiple-point panels are made on order for 30-day delivery. Plugs are priced at $\$ 1.70$ ca; jacks, $\$ 3.30$ ea. Quantity discomts are offered.

Varistor Kit

Covers 6 to 100 v
For design and experiment use, type KV1001 varistor disk kit contains 9 general-purpose varistor disks. A range of 6 to 100 v is covered.
Victory Engineering Corp., Dept. ED, 519 Springfield Road, Union, N.J.

Price \& Availability: $\$ 7.50$ ea; from obbers or directly from the company.

Magnetic Amplifier

Load is $\mathbf{1 2 , 0 0 0}$ ohms

This low-power level magnetic amplifier has a load rating of 12,000 ohms. Input is 115 v at 400 cps and output is 0 to 3 v and 0 to 2.5 v with a reversible phase. The dc-signal input is 0 to $\pm 100 \mu$ a with a maximum output distortion of 20%.
Freed Transformer Co., Inc., Dept. ED, 1718 Weirfield St., Brooklyn 27, N.Y.
Price \& Availability: Price is $\$ 150$ ea; delivery time is three to four weeks.

General Electric's C. G. Lloyd brings you up-to-date on the revolutionary Silicon Controlled Rectifier

The Controlled Rectifier picture changes so rapidly, information you may have obtained six months ago is now out-of-date. For this reason, C. G. Lloyd, General Manager of General Electric's Semiconductor Rectifier organization, answers here some of the questions most frequently asked - questions about a device many authorities consider the most revolutionary development since the transistor itself.
Q. Last year I looked into the SCR and found it too expensive. Has this situation changed?
Lloyd. Indeed it has. The C35B ($16 \mathrm{amps}, 200$ volts) was originally introduced at $\$ 160$ in 1958, was priced at $\$ 65$ a year ago and has just now been reduced to $\$ 20$.
Q. How does the SCR compare with similar devices in prices?
Lloyd. SCR's are in the same price bracket as many germanium power transistors and actually cost less than silicon power transistors, magnetic amplifiers, many relays, thyratrons and other devices the SCR has replaced.
Q. What about associated circuitry? Doesn't that bring up the cost?
Lloyd. The drive circuits for SCR's are generally simpler than for the other devices, and in particular, protection against overvoltage and current is easier to accomplish than for power transistors - making the SCR-equippea device more reliable and much less expensive over-all.
Q. But your C35 is still too high-priced for my application, and the current rating is more than I need. What would you suggest that I do?
Lloyd. Perhaps you could use the C10B. It's rated at 4.7 amperes single phase and 6 amperes d-c and costs as low as $\$ 11.10$. Lower rated units go down to $\$ 5.00$.
Q. What else should I know about the C10?

Lloyd. Well, it has a more sensitive gate trigger and lower
leakage current. And surprisingly, even though it's smaller, it can operate at a higher temperature
Q. The $\mathbf{C 1 0}$ sounds like it might be in the right range. How is it on power?
Lloyd. Two C10B's will control over 1 kw on 117 volts for about $\$ 25$. Compare this with any other method power transistors, saturable reactor or thyratron.
Q. Do you have any other types?

Lloyd. We sure have! The C50 Series is a high-current unit that performs up to 50 amperes. It also has a 1000amp. surge current rating. Then there's the C40 Series, with high-speed turn-off for inverter applications. That's an important field for the SCR.
And also there's the C36 Series. It goes to 10 amperes.
Q. General Electric has talked a lot about the SCR in the past couple of years. Have your customers brought SCRequipped devices to market?
Lloyd. They've been doing so for a year or more and the pace of conversion to SCR devices keeps stepping up all the time. Our customers are now selling many types of SCR-equipped products. The applications are numerous. Some of the prominent ones are regulated power supplies, light dimmers, static switches, inverters, power-control circuits, radar modulators and ultra-sonic generators. And I'm sure there are many that haven't been reported back to us as yet.
Even at last year's prices many of these people found the SCR the best solution to their problems. We believe our new prices will bring in hundreds of new users.
Q. What about General Electric? Do you use the SCR? Lloyd. Some 40 departments of General Electric are now using the SCR. Why we even use SCR's to make SCR's. Our ovens, furnaces and test fixtures are equipped with controlled rectifiers to provide very precise, reliable and low-maintenance temperature control for our processes.

To bring you completely up-to-date on the SCR, contact your General Electric SPD Sales Representative, or write Section ${ }^{\mathbf{5 1 3 7 0}}$ Semiconductor Products Dept., General Electric Company, Electronics Park, Syracuse, N. Y. In Canada, 189 Dufferin St., Toronto, Ontario. Export: International General Electric, 240 East 42 St., N. Y. 17, N. Y.

GENERAL (6) ELECTRIC

For fast delivery at factory-low prices, see your General Electric Semiconductor Distributor.

Temperature Indicator 595

Has a range from -65 to +160 F
This temperature indicating system consists of 4 sensing devices, a computer package, and an indicator package. It has an operating range of -65 to 160 F , and an accuracy of $\pm 5 \mathrm{~F}$. The sensing devices can be cemented, taped, or clip-mounted to small components such as tubes, transformers, and transistors. The system displays the highest of 4 temperature sensor signals on an aircraft or missile. Maximum weight of the system is 3.85 lb .

John Oster Manufacturing Co., Avionic Div., Dept. ED, 1 Main St., Racine, Wis.
Price \& Availability: Mavle on order only. Delivered 150 days after receipt of order. Price is approximately $\$ 4000$ per system.

Yagi Antenna

402
Handles up to 750 w
Designed for use in the range of 76 to 82 mc , the Y-45-5 yagi antenna handles up to 750 W . Elements are made of aluminum tubing $3 / 4 \mathrm{in}$. in OD with $7 / 8$-in sleeves. The crossarms are $2 \times 2 \mathrm{in}$. The antenna consists of two active dipoles, two parasitic directors and one parasitic reflector. Input impedance is 50 ohms.

Technical Appliance Corp., Dept. ED, Sherburne, N.Y.
Price \& Availability: $\$ 1.30$ ca; from stock.

Mesa Transistor

496
Is rated at 30 mc
Type 2N741 30-mc, mesa transistor is for hf applications, including TV video amplifiers, and critical dc direct-coupling amplifiers. A germanium, pnp, diffused-junction type, the unit is housed in a TO-18 package.

Motorola Inc., Semiconductor Products Div., 5005 E. McDowell Road, Phoenix, Ariz.
Price \& Availability: Price is \$11 ea for 1 to 99 units. Delivery is from stock.

NEW PRODUCTS

Voltage Monitoring System

For use with power supplies

Model VSIB-1 automatic voltage monitoring system detects and signals over-voltage and under-voltage in any of eight separate external power supplies. It contains a switch-type magnetic amplifier for each of the eight sensing channels and a dc reference unit. The system stands extremes in temperature, moisture, shock, and vibration. It operates from 120 v ac.
Magnetic Controls Co., Dept. ED, 6405 Cambridge St., Minneapolis 26, Minn.

Microminiature Components
486

Transformers, filters, and inductors

This line of microminiature components includes transformers, filters, and inductors identified as Pico Tran, Pico Filters, Pico Ductors, and Pico Coils. The Pico Ductor, for delay lines, shown, has an inductance of $13 \mu \mathrm{~h} \pm 1 \%$ and a Q-factor of 125 at 2.5 mc . Temperature stability with a constant inductance is $\pm 0.5 \%$ over the range of -20 to +75 C . Shielding is provided by a well closed magnetic circuit. Dimensions are $3 / 8 \times 1 / 4 \times 1 / 4 \mathrm{in}$.

Polyphase Instrument Co., Dept. ED, E. 4th St., Bridgeport, Montgomery County, Pa.

Digital Modules

For high speed operation
These solid-state modules of printed circuitry are for use in building digital systems for the acquisition and processing of test data at high speeds. A system can be assembled to multiplex and digitize data at rates to 15,000 samples per sec with an accuracy of 0.05%. Each block performs a specific function. Twenty modules can be accommodated across a 19 -in. rack.

Minneapolis-Honeywell Regulator Co., Dept. ED, Wayne \& Windrim Ave., Philadelphia 44, Pa.
Price: $\$ 200$ per printed circuit card.

Series "TB"

All basic switches shown All basic switches shown
approximately actual size.

The actuators which form the background on this page are only a few of the hundreds availabla for these micro switch Basic Switches. micro switch engineers can help you choose not only the right switch, but also the right actuation method for your particular application.

MICRO SWITCHPrecision switches

Start with the Best

in Basic Switches!

When design dimensions get you thinking small, don't let that carry over into the consideration of switch quality. micro switch Basic Switches consistently save you space, but never at a sacrifice in precision and reliability. Start with the best and be sure of the exclusive miCRO switch spring and anchor designs; get the protection of materials testing "by the inch" and operational tests that exactly duplicate the conditions under which your switch must operate. You also get more years of experience for design consultation because MICRO SWITCH pioneered the subminiature switch industry. Variations on these basic switches number in the thousands, including those designed to meet military standards. You'll find it easy to select exactly the right answer with the prompt help of the nearby micro switch branch office listed in the Yellow Pages.

This 72 -foot control panel is part of equipment for monitoring tests where your operating methods and environmental conditions can be duplicated exactly for millions of switch operations.

TYPE " Z " AND " A " BASIC SWITCHES

These are the original basic switches that were the pioneers in small snap-action precision switches. Today hundreds of variations serve with precision and reliability in thousands of jobs throughout industry.

TYPE "V3" BASIC SWITCHES

Miniature size with very high electrical capacity. The "V3" Series includes many different types of terminals, contact arrangements, and materials for a wide range of operating temperatures.

TYPE "TB" BASIC SWITCHES

These are small, two-circuit double-break switches for controlling two isolated circuits. They save space and weight, allow flexibility and simplicity of circuit design.

TYPE "SM" BASIC SWITCHES
"SM" Subminiature Switches bring MICRO switch precision to applications where space and weight limitations are critical. Many different "SM" types are available to meet varying requirements for hightemperature applications and long operating life. Special gold or bifurcated contacts are also available:

TYPE "1SX" BASIC SWITCH

This sub-subminiature is the smallest singlepole double-throw snap-action switch available. Despite its tiny size it combines long operating life with ample electrical capacity. This is a perfect example of MICro SWITCH precision in space-saving sub-subminiature size.

Write for New Catalogs 62 and 63 on Small Basic Switches.

MICRO SWITCH . . . FREEPORT, ILLINOIS A division of Heneywell
In Canada: Honeywell Controls Limited, Toronto 17, Ontario

Honeywell
MICRO SWITCH Precision Switches

Flux Analyzer
Measures absolute flux density with a 10^{5} accuracy
Developed specifically to measure magnetic fields in traveling-wave tube solenoids, this flux analyzer can be used for determining flux density in magnets, Klystron coils, and other devices having a linear field. It measures absolute flux density to an accuracy of 10^{3} with a differential capability of 10^{6}. The field density is 100 to 10,000 gauss.

Automation Industries, Inc., Dept. ED, 3613 Aviation Blvd., Manhat\tan Beach, Calif.
Price \& Availability: Delivery time is 90 days. Price is $\$ 2000$.

Shaft-Angle Encoder 540

Has sine and cosine data in cyclic binary form
This shaft-angle encoder, model DV-SC11A, has a precision code disc containing sine and cosine information in cyclic binary form. Accuracy of the instrument is $2^{11} \pm 1$ bit of the sine or cosine value. When used with a servo shaft positioner, linear to sine-cosine conversion can be accomplished without complicated storage or computational facilities. The unit has a size 23 or 35 synchro mount with an outer diameter of $3-3 / 4 \mathrm{in}$. and an overall length of 6-1/2 in.

Dychro Corp., Dept. ED, 49 Walnut St., Wellesley 81, Mass.

Mylar Capacitors

Capacities are 0.001 to $1 \mu f$

Offered in capacities from 0.001 to $1 \mu \mathrm{f}$ and in $100,200,400$, and 600 v dc ratings, type 623 mylar capacitors may be used at full rated voltages to 85 and 125 C without derating. Typical applications are in TV, radio, hi-fi, and industrial instrumentation. The tolerance is $\pm 5 \%$. The units are encapsulated in epoxy.

Good-All Electric Manufacturing Co., Dept. ED, 112 W. lst St., Ogallala, Nebr.
Availability: Units can be delivered three days after receipt of order.

11 ONIGNVdXヨ

FRONTIERS OF SPACE TECHNOLOGY IN

COMMUNICATIONS

Lockheed's interest in developing the science of communications extends from the depths of the oceans to deep space. Its Missiles and Space Division research programs deal with the development and application of statistical communication and decision theory in such areas as countermeasures; telemetry multiplexing and modulation; scatter communications; multiple vehicle tracking; millimeter wave generation and utilization; sonic signal detection and processing; avoidance of multipath degradation; and interference avoidance.
Associated research and development efforts are directed toward propagation studies and advanced antenna design; low noise amplifiers; vehicle borne signal transmission and reception, data storage and processing; solid state materials and devices.
Activities range from advanced studies of naval communication problems on and under the oceans; the many applications to satellite vehicles; on to the specialized communication problems of deep space explorations. Latter needs are exemplified by high frequencies, low weight and power, high stability, low effective bandwidth, extreme reliability and basic simplicity requirements.

Engineers and Scientists : Investigating the entire spectrum of communications is typical of Lockheed Missiles and Space Division's broad diversification. The Division possesses complete capability in more than 40 areas of science and technology-from concept to operation. Its programs provide a fascinating challenge to creative engineers and scientists. They include: celestial mechanics; communications; computer research and development; electromagnetic wave propagation and radiation; electronics; the flight sciences; human engineering; magnetohydrodynamics; man in space; materials and processes; applied mathematics; oceanography; operations research and analysis; ionic, nuclear and plasma propulsion and exotic fuels; sonics; space medicine; space navigation; and space physics.

If you are experienced in work related to any of the above areas, you are invited to inquire into the interesting programs being conducted and planned at Lockheed. Write: Research and Development Staff, Dept. G-21, 962 W. El Camino Real, Sunnyvale, California. U.S. citizenship or existing Department of Defense industrial security clearance required.

LOGLHEGd/MISSILES AND SPACE DIVISION

Systems Manager for the Navy POLARIS FBM; the Air Force AGENA Satellite in the DISCOVERER.
MIDAS and SAMOS Programs; Air Force X-7; and Army KINGFISHER
sunny vale, palo alto, van nuys, santa cruz, santa maria, california - cape canaveral. florioa - alamogordo, new mexico - hawall

NEW!

> RAYTHEON CONTROL KNOBS
> virtually eliminate parallax

For instruments that deserve the precision engineered look.

TWO SLOPING-POINTER KNOBS have just been added to Raytheon's have just been added to Raytheon s widely used industrial and military knob line. Fully comply with military splecifications. Black or grey. Mirror
or matte finish. 70 -series for $1 / 4$ " shaft.

SEND TODAY FOR FACT-PACKED FOLDER on Raytheon control knobs, electrical components and panel hardware. Address Raytheon Company, 55 Chapel St., Newton, Mass

RAYTHEON COMPANY Industrial Components Division 55 Chapol Btroet, Nowton, Mess.
CIKLLE 106 ON READER-SERVICE CARD

NEW PRODUCTS

Trimmer Capacitor
Has 0.4 pf change per turn

This miniature trimmer capacitor provides linear turning at the rate of 0.4 pf per turn. Metal parts are made of invar and brass to provide a temperature coefficient of capacitance of $\pm 50 \mathrm{ppm}$ per deg C. Silver plating provides minimum corrosion resistance as well as a minimum Q-factor of 500 at 50 mc . Dielectric strength is 1500 v or higher. Four models offer capacitance ranges of 1 to $4.5 \mathrm{pf}, 1$ to $8.5 \mathrm{pf}, 1$ to 12 pf , and 1 to 18 pf . Behind-panel lengths are $27 / 64,5 / 8,13 / 16$, and $1-1 / 32 \mathrm{in}$. Uses are in airborne transmitters, computers, and communications receivers.

Corning Glass Works, Dept. ED, Bradford, Pa. Availability: From stock.

Null Detector

621
Operates on $50,60,400$, or $1,000 \mathrm{cps}$

Model 9844 ac null detector, for use with ac bridges, electrolytic conductivity bridges, and current and potential transformer test sets, comes with interchangeable filter units that permit the detector to operate at $50,60,400$, or 1,000 cps. The instrument provides five choices of sensitivity from 10,000 to 1 with a maximum sensitivity of $0.3 \mu \mathrm{v}$ per scale division for source resistances to 20,000 ohms.
Leeds \& Northrup Co., Dept. ED, 4934 Stenton Ave., Philadelphia 44, Pa. Availability: From stock.

AVAILABLE AGAIN

REPRINTS OF

"Designing with Tunnel Diodes"
If you missed our previous offer, here's your chance to order your copy of the exclusive report, "Designing with Tunnel Diodes."

This 12 page report covers such important topics as tunnel diode characteristics, limitations they impose, their effect on circuitry stability, and methods of measurement.

A must for all who may use tunnel diodes, the report is ideal for your reference library.

How to Order: The price is $\$.35$ each through the reader service number below; $\$.25$ for one, and 5 for $\$ 1.00$ if you use the handy coupon.

Mail to Dept. ED720,
ELECTRONIC DESIGN
830 Third Ave.,
New York 22, N.Y.

1 copy $\$.25$ Please send me copies of "Designing with Tunnel Diodes"

5 copies $\$ 1.00$ Payment enclosed.

NAME
COMPANY
ADDRESS
CITY ZONE ... STATE

CIRCLE 109 ON READER-SERVICE CARD ELE TRONIC DESIGN • July 20, 1960

Frequency Monitor

Range is 400 cps to 10 kc

These solid-state frequency monitors operate over the range of 400 cps to 10 kc at an accuracy of $\pm 1 \%$. The input supply voltage is 28 v dc with a minimum input signal of 900 mv . Output is spdt. The units operate over the temperature range of -55 to +125 C and are able to stand shock, vibration, and altitude as specified in MIL-T-5422C. Functions such as time delays for opening or closing contacts and activating warning or control devices may be incorporated in the basic monitor.

Voi-Shan Electronics, Dept. ED, 13259 Sherman Way, North Hollywood, Calif.

Modular Amplifiers

Three types are offered

The 1000 series subminiature modular amplifiers are basic building blocks for $400-\mathrm{cps}$ analog computers and instruments. Three types are offered. The servo amplifiers with outputs to $6-\mathrm{w}$, have good gain control field tuning capacitors, and need no external heat sink. The booster summing amplifiers have an accuracy of 0.05% and can sum up to six inputs; they can drive a size 11 resolver or one or more computing potentiometers. The automatic-gain-control amplifiers have an AGC range of better than 200:1; these units have low-noise output and negligible distortion and phase shift.

Modular Electronics Corp., Dept. ED, 149 N. Franklin St., Hempstead, L.I., N.Y.
Price: $\$ 279$ to $\$ 299$ ea.

EXTRACTING FUSE POSTI Fuse is held in end of removable knob for quick, safe and easy replacement of blown fuse. Safe "dead front" fuse mountings assured. U/L Approved.
A-3AG Fuse Post (finger operated knob) No. 342001
A-8AG Fuse Post (finger operated knob) No. 372001
B-3AG Fuse Post (Screwdriver Slot)No. 341001
B-8AG Fuse Post (Screwdriver Slot)No. 371001
C-4AG Fuse Post (Finger Operated Knob) No. 442001
D-3AG Miniature Fuse Post (Finger Operated) -No. 342012
E-NEW INDICATING 3AG FUSE POSTS! (344,000 series) It Glows When The Fuse Blows. Long life incandescent bulb for low voltage ranges $-21 / 2-7 \mathrm{~V} ; 7-16 \mathrm{~V} ; 16-32 \mathrm{~V}$. New high degree vacuum neon lamp for high voltage ranges for greater brilliance and visibility- $90-125 \mathrm{~V} ; 200-250 \mathrm{~V}$.
WATERTIGHT FUSE POSTS Specially designed for use where exceesive moisture is a problem.
F-5AG Watertight Fuse Post. Has flange mounting. - No. 571004.
G-3AG Watertight Fuse Post-No. 342006
G-4AG Watertight Fuse Post-No. 442006
For complete details on these itoms and quotations on spocial application requirements, write to: Dept. D-7.
-Procinion Enginoering
Dasign Know-how
Quality Craftemanahip
LITTELFUSE
DES PLAINES, ILLINOIS CIRCLE 110 ON READER-SERVICE CARD

This is the huge Saturn Super-Booster under development for the National Aeronautics and Space Administration at Redstone Arsenal, Alabama. Consisting of eight H-1 liquid propellent engines with a combined thrust rating of 1.5 million pounds, it will be four times as powerful as the largest group of engines available to the free world today. When assembled with second, third, fourth and possible fifth stages, Saturn Super-Booster will be able to put several tons of instruments on the moon.
Each mammoth Saturn vehicle may have three sub-miniature FAIRCHILD RG-101 RATE GYROS at the heart of the main control system. Now under evaluation by NASA at Huntsville, each of these thimble-sized gyros (weighs only two ounces) measures rates about one of three mutually perpendicular axes-generates anticipatory corrective signals to keep Saturn in course.
Built to the most demanding specifications, these RG-101 floated gyros represent the most advanced state of the art-another reason why fairchild is the foremost manufacturer of highperformance precision sensing devices.

Fairchild RG-101 floated rate gyros are the smallest made by anyone! And the most rug-ged!-Only 1 Ko" diam. $\times 15 \%^{\prime \prime}$ long. Withstand 150 g 's of shock and 30 g 's vibration to over the entire design range 5 degs./sec. to 1000 degs. sec. max. rate. Threshold rate is less than . 025 degs./sec. Self-test capabilities for easy remote checkout. Gimbal system's freedom of movement can be checked over entire
range of travel, from limit stop to limit stop in most designs. Friction of threshold level, sensitivity, and even damping ratio can be checked from the blockhouse. Run-up time is
less than five seconds over-*oltage techniques.

Fairchild components . . . built and tested beyond the specs for Reliability in Performance.

NEW PRODUCTS

Rejection Filter
For 60, 120, and 400 cps

Model 201 selective rejection filter is for use as a notch marker in swept audio frequency measurements, in isolating sources of hum, ripple, and other frequency components, and in eliminating frequencies not wanted. The unit can be supplied with three to 10 rejection frequencies. The standard model is supplied for 60,120 , and 400 cps.
C. E. S. Electronic Products, Dept. ED. P. O. 7504, San Diego 7, Calif
Price \& Availability: $\$ 85$ ea for the standard model; 14-day delivery.

Silicon Diodes

These silicon JEDEC diodes are for use in applications requiring forward currents up to $3 / 4$ amp and low leakage current at temperatures to 165 C. Designated types 1N440 through 1N444, 1N440B through 1I444B, 1N1487 through 1N1492, and 1N1692 through 1N1695, the units are her-metically-sealed and do not need heat sinks. The 1N440 and 440B series provide dc output currents of 300 to 750 ma at 40 C over a piv range of 100 to 500 v . The B series is for use where low leak-

North Atlantic Series RB500 Ratio Boxes

Robiot?
 Model RB-504 Bench mount

Measure A.C. Ratios From -0.11111 To +1.11111...with acerracy to 1 ppm

With any of North Atlantic's RB500 Ratio Boxes you can now measure voltage ratios about zero and unity-without disrupting tes set-ups.

And-a complete range of models from low cost high-precision types o ultra-accurate ratio standards in portable, bench, rack mount, binary and automatic stepping designs-lets you match the model to the job.

For example, characteristics cov ered by the RB500 Series include
> requency: 25 cps to 10 kc . Accuracy: 10 ppm to 1.0 ppm Input voltage: $\mathbf{0 . 3 5 f}$ to $2.5 f$
> Input impedance: 60 k to 1 megohm
> Effective series impedance:
> 7.5 ohms to 0.5 ohms

> Long life, heavy duty switches

Name your ratio measurement and its probable there's a North Atlantic Ratio Box to meet them - precisely. Write for complete data in Bulletin 11 N

Also from North Atlantic complex voltage ratio complex voltage ratio phase angle voltmeters

age current and high forward current are required.

International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.
Price \& Availability: The 1N440 and 440B series are priced at $\$ 1.90$ to $\$ 4.45$ ea. Other units are priced as low as $\$ 0.70$. Delivery is from stock.

Magnetron Modulators
455
Replace thyratrons

Made to replace thyratrons for pulsing magnetrons, type SCR modulator operates from 115 v ac at 60 or 400 cps , or 28 v dc. These solid-state, plug-in, modular units meet the shock and vibration requirements of MIL-T-5422C, operate over the temperature range of -65 to +125 C , and have a transfer efficiency of 8.5%.
Voi-Shan Electronics, Dept. ED, 13259 Sherman Way, North Hollywood, Calif.

Environmental Chamber
484

Temperature range is -20 to -85 C

Providing temperatures from -20 to -85 C , model 6L-A2-20 environmental chamber has point control of $\pm 0.1 \mathrm{C}$ in repeatability and temperature variation of less than 1 C . Having a capacity of 6 cuft , the chamber is protected against high pressure build-up or loss of refrigerant. Air circulation is positively controlled by two blowers operating in a plenum chamber.
Harris Refrigeration Co., Dept. ED, 308 River St., Cambridge 39, Mass.
CIIRCI 913 ON CAREER INQUIRY FORM, PAGE 169
ElECTRONIC DESIGN • July 20, 1960

Choose from many sizes and designs to prevent breakdowns from self-generated heat in sensitive electronic equipment. All units can be modified. Or units can be built to fit your requirements. For individual specification sheets, write, detailing your needs, or send for Bulletin 5412. American-Standard* Industrial Division, Detroit 32, Michigan.

Miniaturized vaneoxial fan-o typical unit for cooling elec. fronic equipment in oircraft.

* Amsacin-Standand and .Standarde are trademarks of Americon Radiator \& Standard Sanilary Corporation

American-Standard INDUSTRIAL DIVISION

AMERICAN AIOWER PRODUCTS - ROSS PRODUCTS - KEWANEE PRODUCTS CIRCLE 114 ON READER-SERVICE CARD

NEW PRODUCTS
Multi-Turn Potentiometer

Linearity tolerance is 0.5%

Type 150 multi-turn potentiometer has a resistance tolerance of $\pm 10 \%$, a linearity tolerance of 0.5% and a power figure of 5 w at 4 C derated to zero at 100 C . Closer tolerances can be furnished. Resolution is claimed to be infinite. A slide wire resistance element is used. The $2.6-\mathrm{oz}$ unit operates in the temperature range of -55 to +100 C and is available with resistances of 2 to 35 ohms.

International Resistance Co., Dept. ED, 401 N. Broad St., Philadelphia 8, Pa.
Price \& Availability: About \$12; four to six weeks for delivery.

Pneumatic Check Bench

518
For pressure or vacuum testing

This portable pneumatic check bench is for testing pressure switches, vacuum switches, and other pressure or vacuum operated equipment. The unit is controlled by a selector valve which turns on pressure or vacuum supplied by a compressor that operates on 28 v dc. This compressor is controlled for 400 psi. Low and high pressure ports are furnished and can be used individually or simultaneously. The bench weighs 56 lb and measures $21 \times 16-1 / 2 \times 11-1 / 2 \mathrm{in}$.
Custom Components, Dept. ED, 2928 Empire, Burbank, Calif.
Price \& Availability: $\$ 2300$ ea; 30-day delivery time.

MILITARY TYPE Silicon Mesa Transistors

IIS 2N696 UNA 2N697
 Per: MLL-S-19500/99A

T last you can use these advanced types in military A equipment without having to obtain "non-standard part approval". And Rheem can deliver both types in production quantities immediately at no increase in price.
These and all Rheem transistors are subjected to reliability testing which includes: $100 \%-300^{\circ} \mathrm{C}$ storage; 100%-two hermetic seal tests; 100%-temperature cycling. A sample of every lot must pass 15 environmental tests which exceed the most stringent combination of military specifications. And complete individual lot control is maintained. These tests are only part of the Rheem "Mark XII: Master Test Specification for Silicon Mesa Transistors". Applied to all Rheem transistors, "Mark XII" is the industry's tightest synthesis of reliability test specifications.
Why not get in touch with us today?
rheem reliability also available
IN THESE SILICON MESA TRANSISTORS . . .

VERY HIGH CURREN sWITCHING	$\begin{aligned} & \text { HIGH } \\ & \text { CURENT } \\ & \text { SWITCHINTMG } \end{aligned}$	MEDIUM POWER GENERAL PURPOSE	$\begin{aligned} & \text { MEDUMM } \\ & \text { POWER } \\ & \text { STORAGE } \end{aligned}$
RT5001	2N698	-2N497	2N1252
RT5002	2N699	-2N498	2N1253
RT5003	2N1409	-2N656	
RT5004	2N1410	-2N657	
	2N1420		
	2N1507		
	2N1613		

*Certified to meet MIL-T.19500/74 (USN)

Differential transformer type

Series 103A linear-displacement, differentialtransformer transducers offer resolution to $0.5 \mu \mathrm{in}$. and linear ranges to $\pm 0.1 \mathrm{in}$. Linearity is 0.25%. Output is 3 mv per 0.001 in . per v of excitation.
Daytronic Corp., Dept. ED, 225 S. Jefferson St., Dayton 2, Ohio.
Price: $\$ 120$.
Quartz Pick-Up
Measures to 200,000 psi

Model 601/633 miniature quartz pick-up measures ballistic pressures to $200,000 \mathrm{psi}$. It has a natural frequency of $100,000 \mathrm{cps}$, a rise time of $5 \mu \mathrm{sec}$, and can be mounted in a $3 / 8-\mathrm{in}$. threaded hole. The unit is virtually unaffected by temperature, time, or mechanical stress.

Kistler Instrument Corp., Dept. ED, 15 Webster St., North Tonawanda, N.Y.

Price \& Availability: $\$ 520$ ea; from stock.

Coaxial Terminations

For 50 -ohm lines

The TC series of coaxial terminations, for 50 ohm lines, is useful over a frequency range from de to over 2 kmc . The maximum vswr varies from 1.15 to 1.25 , depending on the type of connector required. Types N and C are rated at 2 w and types TNC and BNC are rated at 0.5 w . Other types are available on special order.

Coax Devices, Dept. ED, Chelsea 50, Mass.
Price \& Availability: Price is from $\$ 14$ to $\$ 25$ ea.
A Subsidiary of Rheem Manufacturing Company
Dept. C1, P.O. Box 1327, Mountain View, California. YOrkshire 8.9211

| SALES OFFICES | Westarn 5150 Wilshire Boulevard, Los. Angeles. WEbster 7.1844 |
| :--- | :--- | :--- |
| 327 | | 327 Moffett Boulevard, Mountain View, Calif. Yorkshire 8.9211

 1919 N . Harliem Avenue, Chicago 3 E. BErkhire $7-4200$ Eastern: 610 E . Palisade Avenue, E. Elewood, N. J. 10 well $7-4336$ 401 Lowell Street, Lexington, Mass, VOlunteer $2.8850 \cdot 6132$
Baltimore Boulevard, Riverdia, Md., UNNon 4.4642
N Export: Daig Corporation, 219 . E. 44th Street. New York 17.
distaibutors
Western: Avnet Corporation, 5877 Rodeo Road, Los Angeles,
UPton 0:6141. Avnet Electronics Corp. of Northern California UPton O.6141. Avnet Electronics Corp. of Northern California,
1262 N . Lawrence Station Road, Sunnyvale, Calif., REgent 6.0300 1262 N . Lawrence Station Road, Sunnyvale, Calif., REgent 6.0300
Westates Electronics Corp., 11334 Playa Street, Culver City, Calif., EXmont 1.6201 Eastern: Almo Radio Co., 412-16 N. 6th Street, Philadelphia, WA 2.5918 Arrow Electronics Inc., 525 Jericho Turnpike,
 CIRCLE 115 ON READER-SERVICE CARD

New LAMBDA

Regulated Power Supplies 5 and 10 AMP 0-34 VDC

CONVECTION COOLED

New LAMBDA LA Series Condensed Data

DC OUTPUT:

(Regulated for line and load)
MODEL VOLTAGE RANGEI CURRENT RANGE ${ }^{2}$ PRICE

LAl00.03AM 0.34 VDC 0.10A
I The output voltage for each model is completely covered in four steps by selector switches plus vernier control and is obtained by summation of voltage steps and continuously variable DC vernier as follows:
\qquad VOLTAGE STEPS
I.A $50-03 \mathrm{~A}$, I.A $50-0.3 \mathrm{AM}-2,4,8,16$ and $0-4$ volt vernier LA $100-03 \mathrm{~A}, \mathrm{~L}$ A100-03AM-2, $4,8,16$ and $0-4$ volt vernier
${ }^{2}$ Current rating applies over entire oulput voltage range
Regulations Line: Better than 0.15 per cent or 20 millivolts (whichever is greater). Load: Better than 0.15 per cent or 20 millivolts (whichever is greater).
Transiont
Response:

Ripple
and Noise: Less than 1 millivolt rms with either terminal grounded.

AC INPUT:

$100-130 \mathrm{VAC}, 60 \pm 0.3$ cycle. This frequency band amply covers standard commercial power lines in the United States and Canada.

OVERLOAD PROTECTION:

Electrical: Magnetic circuit breaker front panel mounted. Special transistor circuitry provides independent protection against transistor complement overload. Fuses provide internal failure protection. Unit cannot be injured by short circuit or overload.

REMOTE SENSING:

Provision is made for remote sensing to minimize effect of power output leads on DC regulation, output impedance and transient response.

PHYSICAL DATA:

Size: LA 50-03A...31, ${ }^{\prime \prime} \mathrm{H} \times 19^{\prime \prime}$ W $\times 14^{3} /^{\prime \prime} \mathrm{D}$
Panel Finish: Black ripple enamel (standard). Special finishes available to customers specifications at moderate surcharge. Quotation upon request.

Send today for complete data

Terminal

Breakdown factor is 9000 v
Type ST-1150 triple-turret, pressfit terminal, made for multi-layer or very complex circuitry requiring terminations of three or more conductors at one point, has a voltage breakdown factor of 9000 v , flashover. It is for use in a chassis 0.11 in . thick and mounts in a hole measuring $0.158 \pm 0.002 \mathrm{in}$. Height above the chassis is 0.218 in . and Teflon body diameter above the chassis is 0.187 in . The terminal resists high torque pulling under both assembly and operational conditions.

Sealectro Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, N.Y. Availability: Delivery time is 30 days.

Stress-Testing Oven
 514

Temperature range is 35 to 150 C
To permit continual heating of test materials during stress-measurement trials, this oven provides temperatures of 35 to 150 C regulated to within $\pm 0.5 \mathrm{C}$. Controls include wattage selector switch and automatic thermostat plus an over-temperature controller. A remotely mounted temperature recorder responds to instant temperature changes. Forced air circulation provides uniform heat distribution.

The Electric Hotpack Co., Inc., Dept. ED, 5065 Cottman St., Philadelphia 35, Pa.
Availability: Units are made on order.

DC Amplifier

Operates from -5 to +212 F
Designated the DA-10, this transistorized dc amplifier operates from -5 to +212 F , and handles signals as low as 0 to 10 mv , and as high as 250 mv . Under conditions of maximum gain, an input signal of ± 10 mv will give an output of $\pm 5 \mathrm{v}$. The unit withstands vibration of 20 g from 15 to 2000 cps , shock of 200 g , and acceleration of 200 g , each axis. It meets the humidity re-
qui ements of MIL-E-5272B Proceduc III. The unit measures 3×1.87 $\times 2.32 \mathrm{in}$. and weighs 11 oz . Applications include thermocouple and resitive transducer output signal amplification.
United ElectroDynamics Inc., Dept. ED, 200 Allendale Road, Pasadena, Calif.
Price \& Availability: Delivery from stock takes from 10 to 30 days. Price is $\$ 1240$ for quantities of 1 to 9: $\$ 1190$ for 10 to 49; and $\$ 1150$ for 50 to 99.

Strain Gage Calibrator 356

Accuracy is $\pm 0.05 \%$ of reading
Having an accuracy of $\pm 0.05 \%$ of reading, model 170-P strain-gage, transducer calibrator has a base range of 0% to 20%, with add-to reading ranges of $20 \%, 40 \%, 60 \%$, and 80%. The system consists of a digital indicitor with a remote cable connected case. The remote case provides input for any of six separate transducers. Span adjustments are variable from 1.5 to 3.03 mv per v . By selector switch, the operator selects afixed 3 mv per v or the remote case variable span. An absolute zero or the remote case variable zero can also be selected.
Gilmore Industries, Inc., Dept. ED, 13015 Woodland Ave., Cleveland 20, Ohio.

Arbor Press

536
Has a working force of $2 / 5$ ton Called the Micro-Press 100, this machine has a throat opening of $3-1 / 2 \mathrm{in}$. and is rated for a working force of $2 / 5$ ton. It can be used in the assembly of miniaturized parts and electronic components. It comes with adjustable front and side gibs for alignment and application of force throughout the stroke of the ram. The press has a $2.5 \times 1.5-\mathrm{in}$. Working surface, cast iron frame, and uround base sides and mounting surfaces. For precision depth control, it can be fitted with a dial indicator.
Dickinson \& Associates, Dept. ED, 740 Alma St., Glendale 2, Calif. Price: Unit price is $\$ 32$, fob Glendale Quantity discounts available.

CIICL 811,812 ON READER-SERVICE CARD $>$

INTERNATIONAL RECTIFIER CORPORATION

High Voltage Cartridge Rectifiers Eliminate Warm-Up Time and
Filament Losses Common to Tube Rectification... Save Space!

Cigar-Size High Current Silicon Cartridge Rectifiers Handle up to 20,000 volts!

If your application calls for high voltage rectification in high temperatures or cramped quarters . . . these are the rectifiers to specify! You'll get all the basic advantages of tubeless rectification plus higher current rat ings, wider operating temperature range ($-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$) and a smaller unit than other rectifier types can offer. In some cases the reduction in space requirement can be as much
These hermetically sealed, ceramic housed units withstand the severe vibration and shock ancountered in aircraft and missile flight with full reliability. For specialized industrial equipment such as magnetrons, electrostatic precipitators, dc overpotential test units, electric welders, etc., they offer characteristics you will want to
know about for your future projects.
Sang

This rectifier configuration was developed and introduced to industry by nternational Rectifier. The recent ad-
dition of high current types makes this dition of high current types makes this
the widest selection available. The current range is from 45 to 440 ma . PIV voltages range from 1500 to 16,000 volts in standard types. With modifcation, the PIV can be increased to 20,000. On special order, 72,000 PIV units can be supplied. For complete technical data on these units

CIRCLE READER SERVICE CARD NO. Bll

typical configurations available in over soo standard trpes

Semiconductor "cartridge type" rectifiers can bring simplicity and compactness to your high voltage power supply design. Freedom from warm-up time filament circuit complications, reduced heat radiation, increased physical ruggedness and a reduction in space requirements are advantages these components offer you over vacuum rectifier tube types you might be using.
Single selenium cartridge rectifiers may be employed in conventional and special voltage doubler, tripler and quadrupler circuits, as well as in simple half-wave and full-wave circuits. Polyphase operation is also possible. In addition to half-wave units, standard cartridges are available in full-wave,

Compact High Voltage "Packaged" Rectifiers Now Provide Ratings to 100,000 volts . . . Up to 1 Amp!

enter tap. voltage doubler, and singlephase bridge types.
Over 500 standard selenium cartridge types are now in full production International Rectifier Corporation, the firm that pioneered this configuration. With a voltage range of from to 20,000 volts PIV and current ratings from 0.2 to 195 ma , there is sure to be a type to meet your most exacting tandard with specially processed cells available to extend the upper limit to $+125^{\circ} \mathrm{C}$ if needed. For complete technical data on selenium cartridges.
Circle reader service card no. 812 Volis ... Up to Ampl prised of either silicon or selenium prised of either silicon or selenium units in hermetically sealed housings
provide up to 100,000 volts at current provide up to 100,000 volts at current
ratings from 1 milliampere to 1 ampere. ratings from 1 milliampere to 1 ampere. They are operable in temperatures to
$+150^{\circ} \mathrm{C}$. Individual units are available $+150^{\circ} \mathrm{C}$. Individual units are available
in half-wave, doubler or any of the conventional rectifier circuits.
If rectifiers in this voltage range fit into your proiect plans, write to our Electronics Products Department where ratings, configurations and package designs can be tailored to your most exacting requirements.

NEW PRODUCTS

Instrument Tubes

474
Plate currents are balanced within 15\%
Types 7728, 7729, 7730, 7731, 7732, and 7733 miniature instrument tubes replace 12AT7, 12AX7, 12AU7, 6U8A, and 6CB6; the 7733 is the instrument counterpart of 12BY7A. They have coil heaters, $48-\mathrm{hr}$ stabilization of electrical characteristics, and are tested for 1000 hr life. Plate currents are balanced within 15\%. Microphonics, hiss noise, and leakage currents are minimized. CBS Electronics, Dept. ED, Danvers, Mass.

Banana-Plug Resistors

614
Power dissipation is $1 / 4$ to $2 w$

These banana-plug resistors are offered in eight sizes with from $1 / 4$ to 2 w power dissipation. Most units are non-inductively wirewound; carbon and film metal types can also be furnished. Tolerances are 1% through 0.005% absolute; stability is 0.001%, and temperature coefficient is 5 ppm per deg C. The units meet MIL-R93B and MIL-R9444. Plug spacing is $3 / 4$ or $3 / 8 \mathrm{in}$.

Consolidated Resistance Co. of America, Inc., Dept. ED, 44 Prospect St., Yonkers, N.Y.
Price \& Availability: About $\$ 2$ ea for 0.1%-tolerance units in lots of 100. Made to order, units are ordinarily delivered in four weeks. Faster delivery is possible on request.

Wirewound Resistors

Rated at 1 and 7 w

These molded wirewound resistors are rated at 1 and 7 w . The 1 -w units measure 0.417 in . long and 0.15 in . in diameter for up to 4,500 ohms or 0.542 in . long and 0.15 in . in diameter for up to 6,500 ohms. The 7 -w units measure 1.218 in . long and 0.323 in . in diameter with a range to 30,000 ohms. Both types derate linearly to 0 w at 275 C. Temperature coefficient is $\pm 20 \mathrm{ppm}$ per deg C. Tolerances can be as low as 0.1%.
Ohmite Manufacturing Co., Dept. ED, 3642 Howard St., Skokie, Ill.

hr TRIMMERS

are dependable because they are designed and manufactured by

> TECHNOLOGY Instrument Corp.

if service

 is dependable because a wide selection of types and standards areAVAILABLE FROM STOCK
where and when you need them. Quantities 1 to 250 of an item at factory prices.

Call your

Avnet
Sales
Engineer
for dependable
service and
immediate
delivery

AvNET-70 Stale St. Wesibury. N Y - ED 3.5800
 AVNE Te 45 Winn St., Burlington, Mass. - AP 2.3060
 AVNE 101262 N Lawrence Sta Ro. Sunnyvale. Cal.

CIRCLE 119 ON READER-SERVICE CARD

-

Bclanced-Phase Flex-Guide

For uhf transmission lines
The B- ϕ flex-guide, for uhf waveguide transmission lines, is essentially a convoluted flexible tube with two, lapped axially seams, one on each broad waveguide wall. The use of two seams minimizes distortion. The flexible tubing that is soldered or welded to flange fittings at the extremities is supported at the corners by specially designed brackets.
E. M. T. Corp., Dept. ED, Newton, N.J.
Availability: The product is available for immediate delivery.

Silicone Dioxide Microspheres

 607Have a density of 4 lb per cu ft Called Clobe-O-Sil, these hollow spheres of silicone dioxide have a density of 4 lb per cu ft, a 2300 F melting point, and come in 300 to 600 micron size. When used either alone or with binders, this filler is suitable as a material in insulation, adhesive, and refractory applications.
Hastings Plastics, Inc., Dept. ED, 1551 12th St., Santa Monica, Calif. Price \& Availability: Available from stock. Delivered 7 days after order received. Price is $\$ 2$ per unit when ordered in quantities of 1 to 25; $\$ 1$ per unit for quantities over 2000 .

Tantalum Capacitors

450
Range is 0.5 to $200 \mu \mathrm{f}$
These etched foil tantalum electrolytic capacitors provide a range of 0.5 to $200 \mu \mathrm{f}$ and working voltages to 150 v dc. Three case sizes, equal to C1, C2, and C3 of MILC03965B, are offered. The etched foil provides higher maximum capacit nce and has lower leakagecurrent characteristics than plain foil.
Oh nite Manufacturing Co., Dept. ED, 684 Howard St., Skokie, Ill.

C CLE 120 ON READER-SERVICE CARD >
NEW from

reotllinear galvanometric
self-balanoing pptentiometric recordtura

Exclusive convenience features are added to industry-proved recording performance

The NEW flush-mounting recti/riter and servo/riter recorders (single, dual. and wide channel) contain these operating conveniences, while retaining the reliability and performance characteristics of the proved TI portable recorders.

1. Chassis rolls out and quickly disconnects for maximum ease of installation, adjustment or servicing.
2. Illuminated scales and pointers maintain high readability regardless of room light level.
3. Fingertip releases for chassis roll-out and swing-open chart carriage.
4. Flexible wide range zero adjustment on recti/riter recorder. One-half span of calibrated zero suppression provided in each direction.
5. Four-position switch provides off-on, in./hr., standby, and in./min.
6. Chart speed change gears provide 10 standard speeds.
7. Swing-open chart carriage permits easy paper loading and adjustment. Simply lift up to remove carriage. Advanced design eliminates chart drive gear train lash . . . gives better paper position accuracy.
8. Interior design provides flexibility and adequate space to add special functions with ease.
9. Dust tight case has key lock available for limited access. Dimensions: Single recorders- $111 / 2^{\prime \prime}$ W., $121 / 8^{\prime \prime}$ H., $16^{\prime \prime}$ D.; Dual recorders$16^{3 / 4}$ " W., $^{121 / 8^{\prime \prime} H ., ~} 6^{\prime \prime}$ D.
10. Panel may be easily modified to permit paper feed through bottom of door.

Wrife for complete information . . . A Trademark of Texas Instruments

INSTRUMENTATION GROUP OF

Texas Instruments
INCORPORATED
GEOSCIENCES A INSTRUMENTATION DIVISION
3609 BUFFALO SPEEDWAY • HOUSTON 6. TEXAS

\section*{NEW! TAKE A LOOK AT THE GUTS OF HANDLEY'S WEETRIM
 POT .the Precision Trimming Potentiometer that will Standardize the Industry the Handley WeeTrim trimming potentiometer will standardize the type....and, as with other Wee Line products, WeeTrim is manufactured under strict quality control. Lightweight, wee in size, extremely stable, and WeeTrim has the other exclusive Handley Wee Line features. Write today! Literature will be provided immediately.
 HANDLEY. .uc.
 12960 PANAMA STREET, LOS ANGELES 66, CALIFORNIA HANDLEY REPRESENTATIVES
 | callormia Mandley, Ine. toi Anenamo St tor Angotien os | florioa | minwesora | Owı |
| :---: | :---: | :---: | :---: |
| | Spociolized favimonico. | G.E. Ampena 2 co. | C.A. Robinon Compony |
| | | moldridgo lone, Wo | Clevolond 21 |
| | anmois | missouri | pemmertyania |
| | Ellinger Soles Coro.
 6540 N. W. Hwy, Chisego 31 | LeaMarí Associates
 Bon No. E467, Konses City | Somuc A A seftries, Ine. |
| | | | TIXAs |
| ABIZONA
 E. J. Foley $\&$ Associotes
 3840 N. Jokote Dr., Scolisdole | Massacrussits | | Koch Enginaering \& Solen |
| | Starecronic Component 2 | John W. Richordi Co oute No. 46 | |
| | 30 muntington Ave. Cosion it | Pime mook | M \& Klicpere Co |
| colorno Howoll solen. Inc 4637 Dudley, Aroda | michioan | NEW Yom | washmetom |
| | | | |
| | CIRCLE 121 ON RE | ADER-SERVICE CARD | |

NEW PRODUCTS

Insulation Material

For drawn or formed materials
Types 507 and 509 insulation materials, for drawn or formed insulators, are cloth and Mylar and creped paper and Mylar, respectively. Type 507 has a dielectric strength of 300 v per mil and a breakdown voltage of 2750 v for a 0.01 in.-thickness. Type 509 has a dielectric strength of 200 v per mil and a breakdown voltage of 2350 v for a 0.016 -in. thickness.

Wm. H. Welsh Co., Inc., Dept. ED, 2241 S. Indiana Ave., Chicago 16, Ill.
Availability: 30-day delivery time.

Meter Calibrator

For production or lab use

Model 600 meter calibrator checks the operation of panel meters, VOM's, VTVM's and portable instruments of 1% accuracy or less. Completely solid state, the unit is suited for production or lab use. The ac and dc ranges are 0 to 2.5, 0 to 5,0 to 10,0 to 25,0 to 50,0 to 100,0 to 250 , and 0 to 500 v. DC range is 1μ a to 1 amp . For ohmmeters precision resistor ranges are 25 ohms to 2.5 meg. Accuracy on all ranges is $\pm 0.5 \%$ of full scale.

Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St., Springfield, N.J.
Price \& Availability: $\$ 995$ ea; 90 -day delivery.

Cylindrical Band Heaters

For plastic molding and extruding machines
These cylindrical band heaters are for plastic molding and extruding machines. Made of an aluminized steel sheet and a one-piece alloy clamping band, the heaters are 1.5 in . wide and have an ID of $1-5,8$ to 18 in . A wide range of wattage and voltage ratings is offered. Smooth internal contour provides a tight fit between the band and the cylinder.
Vulcan Electric Co., Dept. ED, 88 Holten St., Danvers, Mass.
Availability: The product is usually made on order.

HIGH TEMPERATURE WIRE

When you specify Tefion FLEXLEAD for lead wire and cable applications, you're buying from the Line of Excellonce assurance of reliable performance FLEXLEAD's tough coating of precisionextruded Teflon resists abrasion, moisture corrosion; and withstands temperatures h $250^{\circ} \mathrm{C}$ without affecting its fexibility on superior electricals.
Markel processing includes careful and complete festing of every fool af ser eral times rated voliage. FLEXLEAD, io MIL-W-16878C, is stocked for immediail delivery in all the standard colors and sizes. Ask for samples, dafa, and prices
-Du Pont Tradomat

MARKEL \& SONS

目SOURCE for EXCELLENCE in OURCE for EXCELLENCE

ORRISTOWN, PENNSYLVANI

CIEAN

Electronic, Electrical, Mechanical Components and Contacts with NO Film or Residue

HIGH-VELOCITY
SPRAY-CLEAN TECHNIQUE

Electronic Components \& Assemolies: DiElectronic Components \& Assemolies: Di-
odes, Transistors, Slip-Ring Commuta odes, raransistors, Slip-Ring commutators:
Crystals, Vacuum Tube Components, SubMiniature Assemblies.
Meter \& Instrument Components: Instrument Bearings. Jewel Bearings \& Pivots, Gear Trains, Lapped Surfaces.
Electrical Contacts: Relays, Vibrators, Voltage Regulators, Sensitive Switches.

FEATURES

No film, residue, or corrosive effect to damage surface, fire and explosion hazard nil, non-polar, non-ionic, an all around safe operation.

For specific information about your critical cleaning problems, send product information and production roquirements.

Cobehn mo
 226 Passaic Avenue
 Caldwell, N. \& CApital 6-6675

 C SCLE 126 ON READER-SERVICE CARD ELE ©TRONIC DESIGN • July 20, 1960
Ceramic Capacitors

For use in rf circuits

Types 90C and 91C high-voltage ceramic capacitors, for use in rf circuits, have applications in transmitters, electronic welding equipment, and induction heaters. The ceramic dielectric used has an extremely high Q-factor and very stable retrace characteristics. A typical capacitor is rated at 100 $\mu \mu \mathrm{f}$ at 5 kv and can carry 16.6 amp at 30 mc .
Sprague Electric Co., Dept. ED, North Adams, Mass.

Scan Conversion Tube

Has variable erase time
Type 1300.32 scan conversion tube is a storage device with variable erase time, capable of simultaneous reading and writing. It uses magnetic deflection and focus on both sides with provision of electrostatic focus and electrostatic dynamic. Its overall length is 23.77 in ., and maximum diameter is 4 in . The tube has a hard glass envelope and an 8-pin base.

General Electrodynamics Corp., Electronic Tube Div., Dept. ED, 4430 Forest Lane, Garland, Tex.
Availability: The tube is available in sample quantities only. Delivery can be made 30 days after order received.

Time Code Generator

Stability is 3 ppb

Model ZA-810 time code generator, for laboratory or field use in an instrument timing system, has a stability of 3 ppb . The two outputs are in dc level shift form and modulated 1000 cps carrier. The 36 -bit code indicates time of day and days of the year and is read out once per second at a rate of 100 pps . Provision is made for WWV synchronization. Plug-in circuits are used. The unit occupies $7 \times 19 \times 18 \mathrm{in}$.
Electronic Engineering Co. of California, Dept. ED, 1601 E. Chestnut Ave., Santa Ana, Calif.
Price \& Availability: Price is $\$ 11,180$. Delivery time is 90 days.

LACROSSE . . .

one of those rare accomplishments
that makes a man proud he's an engineer
When Lacrosse split a 2×4 from 19 miles away, Martin-Orlando engineers knew they had a winner . . . a one-shot killer.
Lacrosse is the Army's most accurate surface-to-surface missile. It is fired from a highly mobile launcher somewhere in a rear area. A forward guidance team electronically picks up control of the missile in flight, and lays it dead on target.
Lacrosse is the kind of accomplishment engineers dream about. It came out of Martin-Orlando. So did Pershing, Bullpup, and Missile Master.

If you want success, recognition, and the feeling of being first with

CIRCLE 922 ON CAREER INQUIRY FOM,
the most, we'd like to hear from you. Florida sunshine, sparkling lakes and palm trees aren't hard to take, either. Send resume to C. H. Lang, Director of Employment, The Martin Company, Orlando 12, Florida.
CURRENT OPENINGS for engineers in these areas: ground and airborne electronics • advance design - systems - aerodynamics - quality and test reliability - electronic manufacturing
work in the climate of achievement

Representative Specs of only a few standard Mounting Washers. Many others available . . . plus any "special" you specify!

CIRCLE 125 ON READER-SERVICE CARD

NEW PRODUCTS

Voltage Regulator
Regulation is within $\pm 1 \%$

This magnetic voltage regulator provides voltage regulation of $\pm 1 \%$ with load variation up to 100%. Designed for airborne and ground applications, the unit has a power handling capacity of 5 to 500 va and meets the shock, vibration, and altitude requirements of MIL-T-542.2C. Input voltage is 115 v ac or 28 v dc with frequencies of 60,360 , or 1000 cps.
Voi-Shan Electronics, Dept. ED, 13259 Sherman Way, North Hollywood, Calif.

Magnetic Amplifiers

Sense 1 !!!iw

Capable of sensing dc signals of $1 \mu \mu w$, the Acrostat magnetic amplifiers have gains up to $1,000,000$. They deliver 1 v dc output per microampere of dc control signal. The equivalent input drift is less than $10 \mu \mathrm{v}$ under moderate environments and $50 \mu \mathrm{u}$ under severe environments. Gains are accurate to 3%. Units can measure weak dc signals from thermocouples, strain gages, and other low-level signal sources. Model 103 shown operates on less than 2 w of $115-\mathrm{v}, 400-\mathrm{cps}$, unregulated power.
Acromag, Inc., Dept. ED. 22515 Telegraph Road, Southfield, Mich.
Price \& Availability: $\$ 195$ ea in quantities of one to five; from stock.

Environmental conditionning

for
missile guidance systems

AiResearch Gyro Conditioners for the U.S. Army Sergeant missile are the most complete and efficient systems of their type.

The 8 lb . package, consisting of heat exchanger, heater, thermal switches and three fans, maintains a hermetic atmosphere of $85^{\circ} \mathrm{F}$. to $160^{\circ} \mathrm{F}$. in an outside ambient temperature of $-20^{\circ} \mathrm{F}$. to $140^{\circ} \mathrm{F}$. Even temperature levels throughout the electronic compartment are maintained by an internal fan and low velocity air movement.

AiResearch is the leading designer of such advanced electronic conditioning equipment and sys. tems, and this production unit is but one example of many produced for missile and ground support applications.

When fast attention to your prob. lem, high reliability and small unit size and weight are important, contact AiResearch first.

Environmental conditioning equipment has been produced for the following electronic systems:
Detection - Communication

- Control • Ground Support • Guidance
Write for literature today:
THE GARRETT CORPORATION
AiResearch Manufacturing Divisio Los Angeles 45, California

CIRCLE 201 ON READER-SERVICE CARO ELECTRONIC DESIGN • July 20, 1960

Are non-sticking

These armor-clad electric soldering iron tips are made from pure copper rod and iron-plated with electrolytic iron to a high standard of non-porosity. The alloy sleeves around the shanks prevent freezing or sticking and eliminate the need for frequency removal of tips.
Engineering \& Electronic Devices, Inc., Dept. ED, 1220 Sunset Plaza Drive, Los Angeles 46, Calif. Availability: From stock.

Silicon Rectifiers

For military applications

Types 1N1614, 1N1615, and 1N1616 silicon rectifiers, for use in missiles and space probes, are designed to meet Mil specs E-1/1240, E-1/1241, and E-1 124. Able to operate from -65 to +150 C at 5 amp, they are also suitable for use in power supplies, magnetic amplifiers and regulators in guidance systems, and in aircraft. Reverse voltage ranges are from 200 to 600 v dc. At 150 C , the maximum reverse current at rated piv is 1 ma . At 25 C , the maximum forward voltage drop at 10 amp is 1.5 v dc. A copper mounting stud, glass-to-metal hermetic seal, and welded construction are used.
Bendix Aviation Corp., Dept. ED, Long Branch, N.J.

Pressure Transducer 490

Measures pressure of corrosive fuels Type TP-100 1-in. pressure transducer is designed to measure the pressure of corrosive fuels. To isolate the potentiometer mechanism. it uses an evacuated, stainless steel inner case. Output signal resolution is 0.25% for most ranges. The unit stanuls to 100% over-pressure. Pressurc ranges are from 0 to 5 up to 0 to 3.50 psi absolute, gage or differentil.
F irchild Camera And Instrument Corr, Dept. ED, Robbins Lane, Syo et, L.I., N.Y.
Aca lability: Delivery time is 40 to 60 cays.

CIRCIE 124 ON READER-SERVICE CARO $>$

PRODUCTION PRODUCTS

MICRO-MINIATURE RELAY STYLE 6A

For Printed Circuits

Less Space

Lower Mounting Height

Terminals \& Mounting Conform to $0.2^{\prime \prime}$ Grid Spacing

For reliable switching of low-level as well as power loads. Style 6A will operate at coil power levels below most larger current-sensitive relays in its general class, yet easily switches load currents of 2 amps resistive and higher at 26.5 VDC or
115 VAC. Contact arrangement to DPDT.
Unique construction permits flexible wiring and a variety of schematics. Withstands 50 G shock and 20 G vibration to 2000 cycles. Meets applicable portions of specification: MIL-R-5757C and MIL-R-25018 (USAF) Class B, Type II, Grade 3.

Call Or Write For Additional Information
PRICE ELECTRIC CORPORATION

302 E. Church Street - Frederick, Maryland
MOnument 3-5141 - TWX: Fred 565-U
clircie ine on reader-senvice card

Filling Machines

Inject compounds into components
This line of automatic, high-speed filling machines injects viscous compounds into small components. The machines fill circular apertures in such components as drawn or molded shells of diameters up to 2 in . and which lend themselves to automatic hopper feeding. All machines have variable volume-controlled filling cycles compatible with the material being dispensed.

Swanson-Erie Corp., Dept. ED, 816 E. Eighth St., Erie, Pa.

Furnace

261
For semiconductors and crystals

Model 60-SC furnace apparatus is for semiconductor preparation and for growing single crystal materials. Consisting of two or more tubular furnaces, mounted on a common axis, the apparatus permits zone refining, directional freezing, slow crystallization, seeding, and crystal growing in the quartz work tube.
Marshall Products Co., Dept. ED, 270 W. Lane Ave., Columbus 2, Ohio.
Availability: Depends on applications.

Component Processing Machine 262

Tapes components into continuous strip
This axial-lead, component processing machine automatically tapes resistors, capacitors, or diodes into a continuous strip; it then cuts or perforates the strip into packages containing any desired uniform quantity of sequence of quantities. Components are automatically counted while being packaged. Capacity of the machine is 8,000 per hr . On components with up to $3-\mathrm{in}$. body lengths, the machine will also straighten leads, trim lead wires, and automatically shut off.
Universal Instruments Corp., Dept. ED, Binghamton, N. Y.
Price \& Availability: Made on order only; delivered within 8 weeks. Price ranges between $\$ 2,500$ and $\$ 15,000$.

0. 6 POWER

Precisely Regulated for Missile Testing, Battery Charging and General Use

SILICON POWER SUPPLIES

Over 200 standardized andmilitarized models up to 1500 amps . . 6 to 135 volts.CHRISTIE'SQUALITY CONTROL is approved by the leading aircraft and missile manufacturers.
wrife for

Power Supply Bullotln Ac-co Battery Charger Bulletin BC-60

CHRISTIE

ELECTRIC CORP.

3416 W. 67th Street
Los Angeles 43, Calif.

Push-button frequency selection is one reason why the TO-258 Telemetering Test Oscillator is a standard in several major missile programs. This standout performer provides extremely accurate, convenient calibration of sub-carrier units in FM/FM telemetering systems. The unique deviation control is calibrated directly in percent doing away with "slipstick" manipulation. High frequency stability makes the instrument ideal for production testing and other applications utilizing standard FM/FM test frequencies.

Crosby-Toletronics
Tolemetering Test Oscillator
Housed in a gray steel cabinet (171/4" $\times 83 / 4^{\prime \prime} \times 9^{\prime \prime}$), the unit is a full size module in Crosby-Teletronics' Modular Instrumentation System. Rack-adapter RA. 81 available. (Bulletin 249)
Model TO-258 - \$425. Special models can be supplied at extra cost with any 20 frequencies from 20 cycles to 100 KC .
For complete information and specifica.
tions, write:
Crosby-Teletronics Corporation

Sales Office:
54 rinkel Street, Westbury 4, L.I., N.Y.
C CIE 130 ON READER-SERVICE CARD
ELE STRONIC DESIGN • July 20, 1960 production of electronic tubes, semiconductors, lamps, and related devices.

Kahle Engineering Co., Dept. ED, 3322 Hudson Ave., Union City, N.J.

Vacuum Furnace

Continuous firing

Designed for mass volume production, model 3423 continuous-firing vacuum furnace measures $5 \times 3-1 / 2 \times 18 \mathrm{ft}$. The firing chamber is below atmospheric pressure and can be maintained as low as 0.01 micron continuously. The rate of production is governed by the firing cycle. Normal power consumption is 30 kw . It is used in the

THE AMCO MODULAR INSTRUMENT ENCLOSURESYSTEM

Step and Repeat Machines

265
Speed is up to 350 repeat steps per hr
The Misomex step and repeat machine is for use in the production of dials, name plates, and printed circuits. Designed for single and multicolor, multiple image production as well as photocomposing, the equipment operates at speeds to 350 repeat steps per hour with photographic materials and 70 steps per hour with metal plates. Operation is automatic; a buzzer indicates the completion of each run.
Royal Zenith Corp., Dept. ED, 180 Varick St., New York 14, N.Y.

- Ameo Soml-Custom Line. Removable multi-width cowlings provide a semi custom, single-unit appearance for wide boz-type channel framea provide greater internal mounting area. 19° wide panels of any thickness can be recessed -from a flush-mounted position to any desired depth. Box type channel con struction of 14 gauge cold-rolled steel.
C Amee Aluminum Line. This system of aluminum box extrusions and cast corners allows easy assembly of cabinets corners allows easy assemby of cabinet,
in any size from 7^{7} to $20^{\text {in }}$ in height,
width or depth. Corners and extrusion

STABILIZE ELECTRONIC CIRCUITS WITH THIS CONSTANT VOLTAGE UNIT

The Honeywell Constant Voltage Unit supplies extremely stable voltage or current to any electronic circuit. Use it to regulate power voltage or current to any electronic circcit. to suppression, bridge or measuring circuits, to retransmitting slidewires ... or in many other fixed load applications.
with varying loads at a somewhat lower accuracy.
The unit consists of a step-down transformer to reduce a-c line voltage, a diode rectifier, and a two-stage Zener diode network to regulate voltage. It is accurately temperature-compensated from 0 to $160^{\circ} \mathrm{F}$. There are no moving parts, and no adjustment or maintenance is required. It's installed with five simple connections.
This is the same Constant Voltage Unit that has been field-proved in ElectroniK potentiometers. Your nearby Honeywell field engineer can give you full details, call him today ... he's as near as your phone. Minneapolis-Honeywell, Wayne and Windrim Aves., Phila. 44, Pa. In Canada, Honeywell Controls, Ltd., Toronto 17, Ontario.
electrical data:

Input	Normal Operating Conditions		
	Nominal Output Voltage dc	$\begin{aligned} & \text { Current Rating } \\ & \mathrm{ma} \pm 0.04 \% \end{aligned}$	$\begin{gathered} \text { Load } \\ \text { Resistance } \end{gathered}$
$\begin{gathered} 120 \mathrm{~V} \mathrm{ac} \\ 50 \cdot 60 \text { cycles } \end{gathered}$	$\begin{aligned} & 1.029 \\ & 1.029 \\ & 4.200 \end{aligned}$	6 8 6	$\begin{aligned} & 171.5 \\ & 128.6 \\ & 700.0 \end{aligned}$
ACCURACY:			
$\pm 0.03 \%$	± 10 v variation Irom 117 v line supply		
$\pm 0.15 \%$	$\pm 10 \mathrm{v}$ variation from 117 v line supply and $\pm 55^{\circ} \mathrm{F}$ variation from base temperature of $85^{\circ} \mathrm{F}$		

Honeywell

H. Funt in Contral

PRODUCTION PRODUCTS

Soldering Machine

For printed-circuit board soldering

Model 197 soldering machine, for laboratory and production use, is especially suited for printed-circuit board soldering. Tip heat is controlled by varying the current and by an adjustable timer. The heating cycle is initiated by a trigger in the soldering gun, eliminating the arcing that causes pitting of the soldered surfaces.

Virginia Electronics Co., Inc., Dept. ED, River Road, and B \& O Railroad, Washington 16, D.C.

Annealing Furnace

For rare metals wire

This furnace can be used for annealing and straightening of rare metals wire, such as molybdenum, tungsten and gallium. It handles molyb denum wires with diameters of 0.0012 to 0.0079 in., tungsten wires 0.0008 in . and up, and gallium wires 0.0016 in . and up. Furnace operations are done in a protected atmosphere of hydrogen, cracked ammonia and argon. The control panel permits control of protecting gas, cooling water, wire speed and facilitates the reading of meters.

Materials for Electronics, Inc., Dept. ED, 15225 138th Ave., Jamaica 34, N.Y.
Price d Availability: Available from stock. Can be delivered 30 days after order received. Unit is priced at \$3893, fob N.Y.

Automatic Winding Machine

For communication type coils

The Blu-Red automatic winding machine winds radio, TV and communication coils. Intended for high-production runs of universal coils, such as crosswound or lattice type windings, the Model KWA-58 winder has a speed of 200 to $3,000 \mathrm{rpm}$, steplessly adjustable. Wire diameter ranges from 0.004 to 0.02 in .; coil width can be up to 0.945 in . The maximum core length is 2.75 in .; coil diameter is 2 in ., max.
Associated American Winding Machinery, Inc., Dept. ED, 750 St. Ann's Ave., New York 56, N. Y. Availability: Delivery can be made in 60 days.

Vibration Table

Develops $3,000 \mathrm{lb}$ of force

This electromechanical vibration table for environmental testing is designed as a single unit in which the table is directly mounted between two shaker heads. It develops $3,000 \mathrm{lb}$ of force through push-pull operation of two shaker heads,

. for positive retention in all mobile applications
There's no jump, no sway-when a telephone handset is in the firm grip of this new handset cradle by Stromberg-Carlson.
Retaining clip spring assembly
 assures positive retention in any mobile application on land or sea, or in the air. Even extremely severe jars, jolts and vibrations fail to dislodge the handset.
The cradle is strong and resilient, fits any Stromberg-Carlson handset. Different models provide varying switch combinations with 2 or 4 Form C contacts. All models available with or without the clip assembly.
Specifications on request. In Atlanta call TRinity 5-7467; Chicago: STate 2-4235; Kansas City: HArrison 1-6618; Rochester: HUbbard 2-2:00; San Francisco: OXford 7-36i30. Or write to Telecnmmuni(ation Industrial Sales, 116 Carlson Road, Rochester 3, New York.

STROMEERG-CARLSON

 GENERAL DYNAMICSCIV CLE 134 ON READER-SERVICE CARD
ELE :TRONIC DESIGN • July 20, 1960
permitting equally distributed first vibration as well as a valid picture of complex motion. Enclosed in an aluminum housing, the equipment weighs $5,000 \mathrm{lb}$. The table measures $33.5 \times 78 \mathrm{x}$ 29 in.

Westinghouse Industrial Electronics Dept., Dept. ED. 2519 Wilkins Ave., Baltimore 3, Md.

Spray Etcher

Accepts large printed-circuit boards
Model 300 large printed-circuit board spray etcher provides single-sided, single-sided back-toback, or double-sided etching. The machine is suited for low volume production or prototype etching. The power required is 220 v ac at 60 cps, single-phase. The machine weighs 280 lb and has dimensions of $59 \times 25 \times 45 \mathrm{in}$.

Centre Circuits, Inc., Dept. ED, P. O. Box 165, 1101 N. Atherton St., State College, Pa.
Price \& Availability: $\$ 4000$ ea; finished to customer specs and delivered in two to three weeks.

Vacuum Systems

Produce $2 \times 10^{-6} \mathrm{~mm} \mathrm{Hg}$

Able to produce a low, ultimate pressure of $2 \times 10^{-6} \mathrm{~mm} \mathrm{Hg}$, these vacuum systems are suitable for use in electronics, research and development, and where functional vapor deposition or general high-vacuum processes permit the use of an evacuated chamber with a 14 - or $10-\mathrm{in}$. diameter. Having a 14 -in. chamber, the LC1-14B system reaches a working pressure of $5 \times 10^{-4} \mathrm{~mm} \mathrm{Hg}$ in 3 min with a $4-\mathrm{in}$. PMC diffusion pump and a $13-\mathrm{cfm}$ mechanical roughing pump. The LC1-1813 system reaches a working pressure of $1 \times 10^{-4} \mathrm{~mm}$ Hg in 5 min with a $6-\mathrm{in}$. PMC diffusion pump and a 13 -cfm mechanical roughing pump.
Consolidated Vacuum Corp., Dept. ED, 1775 Mt. Read Blvd., Rochester 3, N.Y.
Price \& Availability: Model 14B, \$2.79.5; model 18B. $\$ 3,580$. Delivery is from stock.

Bench Welding Head

Is air-operated

Designed for production welding of small parts, model WHD 4AP bench welding head is airoperated, eliminating electrode bounce. The electrode pressure is adjustable from 1 to 20 lb . The pressure arm moves in linear ball bushings and has an inertia of 4 oz to insure fast follow-through forging action. The head can be used with storedenergy power supplies rated at up to 200 w -sec or ac welders rated at up to 2.5 kva at welding times to 10 cycles.
Ewald Instruments, Dept. ED, Kent, Conn. Availability: Stock to one week.

NEW SLZE 8 SERVOMOTOR RESPONDS 3-TIMES FASTER
These fast response Size 8's have a whopping acceleration of $86,500 \mathrm{rad} /$ $\sec ^{2} \ldots$ and feature torque at stall of 0.22 oz . in., rotor inertia, $0.18 \mathrm{gm} . \mathrm{cm} .{ }^{2}$. That's at least three times faster than any other Size 8's available.
The entire beckmand Size 8 line is available in standard models for 26 volt or 115 -volt sources - Servomotors, Inertia-Damps, Velocity Damps, or Servomotor Rate-Generators (special models available for tors (sperial other voltages). For the servosysems man worlies this 115 volt reference supplies, this can mean an end to accessory gear that so often compounds reliability and cost problems.
At the Breadboard stage? Several beckman ${ }^{(1)}$ Size 8 and Size 11 Servomotors are available from stock for immediate delivery in prototype quantities. Check with your Helipot rep, write us for the list of stock Servomotors and for the Size 8 and 11 Catalog.

CIRCLE 135 ON READER-SERVICE CARD

Power Supplies

7000 SHORT CIRCUITS WITHOUT A SINGLE FAILURE

Wide Range Transistorized High Current Power Supplies Set New High In Reliability

Con Avionics proves extreme reliCon Avionics proves extreme reliability of its zero to 50 V rack mounted power supplies with a Iraphic demo
Throughout the Show a new model Z50-15 Power Supply was short-circuited every 30 seconds, yielding a total of 7,000 short circuits without a single failure. Sev eral thousands more shorts were applied during laboratory tests. The company's new line of power supplies was designed under a "worst case analysis" program. The supplies are designed using standard non-selected components; performance is then mathematically and experimentally checked with the worst possible combination of component characteristics. This design technique is largely responsible for the new high set in reliability and insures long life and easy field maintenance.

Spocifications
Input Power
Ontput Voitare
Pello
Regulation
a) for line variations no load to full load
Stability for 8 hours after 30
minute warm up
Rosponse time
Ambient tomporature range
Tomperature coefficient (\% per ${ }^{\circ} \mathrm{C}$)
Output Impedance at 10 KC (ohms)

Wide Voltage Range, High Current Capac ity, Among Electrical Features - The ity, Among Electrical Features - The units are available in two series with 0.1% and 0.01% regulation. They have an unusually wide range of output voltage: 0 to 0 2.5.10 and 15 amperes.

"Flip Top Box" Permits Accessibility For Maintenance
Mechanical Features Highlight Flexibility • The new units are constructed with remote sensing to maintain reguremote sensing to maintain regulation at the load and remote pro gramming to permit output adAstinent at remote control point. A froating output is also provided, negative terminals may be grounded. All the power supply units have a voltmeter and an am meter. The front panel has a power switch, circuit breaker, coarse and fine voltage adjustment knobs, in put fuse, pilot light and output terminals. Rear panels have an input line cord, output, remote sensing, and programming terminals. r

> YSeries 2 Sories 105 to 125 VAC , single phase, 48 to 62 cps. 0 to 50 VOC $2,5,10$ and 15 amperes

```
\pm0.1% 士 0.01%
0.1% or 5 mv 0.01% or I mv
(whichever is greater) (whichever is greater)
*0.25% }\pm0.05
2 mv }50\mathrm{ microseconds}1\textrm{mv
    0. 
    2. \ to +50 C 0.01
0.02
```

CON
AYIONICS

See us
at Wescon:
Booth 2255
Consolidated Avionics Corporation

SERVICES FOR DESIGNERS

Environmental Testing

A new environmental testing facility instituted primarily as a service to New Hampshire electronics organizations is now available to any firm requesting its service.

Among the environmental conditions that the facility is prepared to simulate are vibration, shock, temperature, salt spray, humidity and vacuum. Testing services that are offered include environmental qualification tests, design evaluation tests, research and development, production sampling tests, test equipment, design analysis and quality control analysis.

The facility is prepared to conduct all tests in strict accordance to customer requirements. Government surveillance of testing will be available when required.

Richard D. Brew \& Co., Inc., Dept. ED, Concord, N.H.

Fabricating Finned Type Heat Exchangers

This specialized electroforming service deals with fabricating finned type heat exchangers for use as transistor heat sinks or cold plates. The process used permits fabrication of virtually any size plate, either straight through, curved, S type, rectangular, round, or combination cross section, the company claims.
Fin thickness is unrestricted and can be varied from 0.001 in . up. Outer skin thickness also is unrestricted and can be varied from 0.01 in . up. The fabrication process is entirely cold, requiring no brazing, soldering or other elevated temperature operations.
Four metals, or combinations of these basic four are available: Copper, Nickel, Silver and Iron. The service is said to include unlimited design qualifications.

Electroforms, Inc., Dept. ED, 239 E. 165th St., Gardena, Calif.

Ultrasonic Machining

Prototype and production shaping of microminiature and other components from hard and brittle materials is now provided through an ultrasonic machining service. The technique requires no contact of the cutting tool with the work, but uses instead high speed vibration of fluid abrasives.

Services offered include: fabrication of micromodule wafers from ceramics and glass; shaping and drilling of ferrite components for microwave and other equipment; manufacture of silicon and

275

Resistance

From a miniature $1 / 4$ waft resistor, rated at 250 volts, to the 100 wati resistor, rated up to 125 KV . Tapped resistors and matched pairs also available. Low temperature and voltage coefficients.
Few can match-and none can exceed-the stability and performance of rpc HIGH VOLTAGE RESISTORS! Ask anybody who uses them.
Tolerance-15\% standard.
10%, 5% and 3% available. 2\% in matched pairs.
Further information or engineering assistance gladly supplied.

RESISTANCE

PRODUCTS
COMPANY
914 S 13th St., Harrisburg, Pa.
CIRCLE 137 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 20, 1960 800 Shames Drive, Westbury, New York EDgewood 4.8400

be sure you have the latest data on one of the industry's most complete lines...

laboratory for electronics COMPUTER PRODUCTS DIVISION 1079 COMMONWEALTH AVE.,
EOSTON, MASS., Dopt. 720-E
\square Please send me a copy of the now Uitrasonic Delay Line cafalog

Name
Title
Company
Division
Add ass \qquad
ciccie 138 on reader-senvice card
germanium transistor pellets and machining of carbon brushes and bearing blanks.
Materials are machined to required shapes and can be drilled, slotted and broached to meet specific requirements. Dimensional tolerances of ± 0.0005 in. are said to be maintained on sizes of apertures and spacing. Where desired, optical techniques are used to provide surface finishes.
Zenith Optical Corp., Ultrasonic Machining Div., Dept. ED, 1940 Great Neck Road, Copiague, L.I., N.Y.

Technical Abstracts

278
Technical abstracts of articles related to the solid-state and computer fields are now available in journal and card form.
The journal, called SOLID STATE ABSTRACTS, covers articles, U.S. patents, conference papers, and manufacturers' new product releases. A comprehensive subject index and a complete author index are included in every issue. Annual cumulative subject and author indexes are also provided.
The abstracts prepared for the journal are also printed on standard size index cards. Each card contains one or more classification numbers for easy filing. Printed index tabs are provided with each order.
The major categories covered by the service include: Solid state metallurgy, solid state physics, solid state devices, solid state device circuits and solid state device applications. Computer abstracts cover such topics as equipment, programs and mathematics.
Volume 1 of the journal is priced at $\$ 25.00$. The abstracts on cards are priced at $\$ 50.00$ per category, except for the physics category which is priced at $\$ 75.00$. Computer abstracts on cards are priced at $\$ 100.00$.
Cambridge Communications, Dept. ED, 238 Main St., Cambridge, Mass.

High-Speed Photo

Facilities for a new consulting service on highspeed photo instrumentation have been established. Organized primarily around the applications of the Dynafax and Magnifax cameras, the service will involve taking the necessary personnel and equipment to the customer's plant.
With this service, the company makes available analytical applications with picture-taling rates from 200 to 28,000 frames per second. Charges are being based on $\$ 200$ per day for Dynafax, and $\$ 100$ per day for Magnifax.
Beckman \& Whitley, Inc., Dept. ED, San Carlos, Calif.

Effective component protection is hard to supply under conditions of violent acceleration, high ambient temperature, and vicious vibration. But in military electronic gear, transistors must get unfailing protection against these threats to reliable operation.
They get it, most fully, with atlee mounting clips.
atlee clips are provably better in three ways:
HOLDING POWER. Under severe shock and vibration, these clips actually mold themselves tighter to the transistors. There's no visible shifting or twisting, no lead-breaking resonance, and the dislodging force actually increases.
COOLING EFFICIENCY. With atlee clips, this approaches to within 10% of "infinity" - the ideal derating curve for a transistor with an infinite heat sink which keeps the case temperature from rising above the ambient level.
ELECTRICAL insulation. When required, these clips can be coated with Dalcoat B - an exclusive high-dielectric enamel that has twice the dielectric strength of Tefion but conducts heat as well as mica.
There are still more reasons why engineers who seek perfection choose atlee transistor clips. They know that Atlas E-E is the pioneering company in the development of component holders of all types, with unequalled years of specialized experience, and a complete line of clips for all case sizes and mounting requirements. They have learned it costs no more to get the best ... and that Atlas E-E makes these "little things" as though they were the biggest things in the circuit.
DESIGN FOR RELIABILITY WITH atlee - a complete line of superior heat-dissipating holders and shields, plus the experience and skill to help you solve unusual problems of holding and cooling electronic components.

$\square \square$
 atlee corporation
 4 PROSPECT STREET, WOBURN, MASSACHUSETTS

CIMCL 139 ON MEADER-SREVICE CARD

ELECTRONIC DESIGN•July 20, 1960

Featuring the clever and unusual in puckuging, appearance design,
and circuitry in electronic equipment.

Engineer checks rotating head assembly on airborne wideband recorder.

Performance of Wideband Recorder Boosted

By Transverse Recording, Heated Tape, and DC Monifor Track

THE ART of recording wideband digital information on magnetic tape has been pretty well established. But for analog information, a really wideband recording system makes news.

Designing a 10 -cps to 4 -mc magnetic tape system, like the one Ampex Data Products Co. of Redwood City, Calif, delivered to Wright-Patterson Air Force Base a few weeks ago, requires sophisticated techniques.
The system, including an airborne AR-300 recorder, and a ground-based FR-700 recorder/reproducer, uses a number of techniques first found in Ampex's Videotape TV recorder.

High Tape-fo-Head Speed, Low Reel Speed

Most important of these is the use of trans verse recording with rotating magnetic heads. By recording across the width of the tape, rather than along its length, the machine achieves a head-totape speed of 1300 ips , while the reel-to-reel speed is low.
Tape velocity is only 12-1/2 ips for recording or playing back one wideband channel for an
hour, or 25 ips for recording or playing back a half hour of two wideband channels.

Small Track Width

Ups Information Density

The transverse recording technique uses a narrower track width, so much more information can be recorded on a square inch of tape. Tracks are only 10 -mils wide and 15 -mils center-to-center. Longitudinal recording usually uses 50 -mil tracks on 70-mil centers.

Four Heads

Are Better Than One

Transverse recording would, of course, be highly impractical with only one read or write head since the head would contact the tape during only a portion of its rotation. The Ampex units use four tiny heads, mounted on the periphery of a rotating drum, so there is always at least one head in contact with the tape. The heads receive the same information signals. Two drums are used to record two-channel information.

In addition to the eight heads (four on each of
two drums), there are five more. Two are used for auxiliary, low-frequency (200 cps to 15 kc) infor mation; two more are for control tracks; and the fifth provides an unusual monitor track.

Recorder Proves It's Recording By Erasing

The monitor head, mounted within a tape guide at the entry to the rotating-head assembly records a saturation-level track on the tape. This dc track is recorded, in conventional fashion longitudinally along the edge of the tape. Each time a rotating head crosses this track, it gener ates a signal which lights a lamp on the control panel. The light confirms that the wideband heads are recording.

Equipment-Generated Hot Air Preheats Tape

Since magnetic tape expands as ambient temperature rises, and since an airborne instrumentation recorder must operate in different environments, something must be done to preserve the accuracy in recording information. In conventiona

Magnetic heads are spaced around periphery of drum so 2 -in.-wide tape is always in contact with at least one head.

Tape-handling components are arranged so tape is heated and de monitor recorded on it; before it reaches wideband heads.
recording, it is relatively easy. A parallel reference track, with a precisely recorded timing track on it, helps compensate for expansion and contraction of the tape.
Transverse recording requires such an accurate time base, that this technique won't do. Instead, it is necessary to keep the tape at a constant temperature level.
In the Ampex machine, the tape is kept at 60 C by air, heated by the electronic equipment and circulated through a tape guide mounted on the tape transport. The tape is at the proper temperature before it reaches the rotating heads. The heating protects the head from further temperature shock at other critical points in the tapehandling sequence.
The heating process is necessary because the taple reel may be quite cold when placed in the trinsport and, with its $8-\mathrm{lb}$ mass, it would tend to remain cold. $=$ =

3 good ways to make dc measurements

 KEITHLEY ELECTROMETERS have up to 64 voltage, resistance and current ranges
1 Model 610A, 64 ranges

The line-operated 610 A is a refinement of the popular 610 , covering virtually every dc laboratory test. It measures nine voltage ranges from 0.01 to 100 volts full scale with 2% accuracy, current from three amperes to 1×10^{-13} ampere full scale, and resistance from 10 ohms to 10^{14} ohms full scale. The 610A also serves as a useful dc pre-amplifier with precise gains to 1000 and outputs for driving scopes and recorders. Input resistance is variable from one ohm to over $10^{14} \mathrm{ohms}$. The instrument checks its own resistance standards. Zero drift is within two millivolts per hour.

2 Model 600A, 54 ranges

This portable instrument is a battery-operated counterpart of the 610A. Its ranges cover 10 mv to 10 volts, 3 amperes to 10^{-13} ampere, and 10^{4} to 10^{13} ohms full scale. Like the 610A, it has selectable input resistance, a dc to 100 cps bandwidth, and output sufficient to drive recorders directly. Battery life is 500 hours; condition may be checked on the panel meter.
$\$ 380.00$
Three accessory probes and test shield are available to facilitate measurements and extend voltage ranges to 30 kv (Model 610A) or 10 kv (Model 600A).

Model 603, differential Input

This instrument is a wide-band dc amplifier, with an extremely high input impedance, high voltage and current sensitivity, and a remote differential input. Its separate input head permits measurements up to 24 feet from the amplifier. The 603 has nine ranges from 2.5 to 1000 mv , with precise gains up to 4000 , and a 10 -volt output at 10 ma . Bandwidth is dc to 10 kc on the 2.5 mv range, rising to 30 kc on the 1000 mv range. \$8s0.00
 12415 EUCLID AVENUE

Heart of the Control System

"DIAMOND H" Relays

Look into the heart of the control system for a missile, a computer, a nuclear submarine, or a great many other critical applications. You might be surprised how often you'll find "Diamond \mathbf{H} " relays.
Unless, of course, you're one of the increasing number of engineers who've already selected "Diamond H" relays for a spot where they just have to work despite all sorts of adverse conditions.
Hart makes relays of three basic types: miniature, hermetically sealed, aircraft-missile relays (Series R/S); high speed, sensitive, polarized relays (Series P), and general purpose AC, DC relays (Series W).
Technical literature outlining the wide range of characteristics available with each type relay is yours for the asking. You'll find "Diamond H " engineers uncommonly adept at working out a variation of the basic designs to meet your set of specific requirements.

Tell us your needs . . . by phone, wire or letter.

wART manuracturnc

210 Bartholomew Ave., Hartford 1, Conn.

 CIRCLE 141 ON READER-SERVICE CARD
DESIGN DECISIONS

Punched Cards Program Diode Function Generator

The use of king-sized punched cards to program a diode function generator yields several important advantages. Most obvious of these is that the computer need not lie idle while a new program is being prepared on a separate card punch. Functions may be pre-programmed on these punched cards and stored till needed.
The function generator is programmed as its door is closed over a punched card. Spring-load plungers in the door pass through appropriately punched holes in a card to actuate subminiature switches.

Eight switches are mounted on each of 22 circuit cards which also include plug-in precision

Unique contact head reads 80 holes on punched tape at one reading, obviates buffer memories.
resistors. Since switch contacts are solid gold and all connector contacts are gold plated, the function generator can be used for very low signal levels.

Using fixed precision resistors rather than potentiometers, the generator provides an accuracy of 0.1 per cent with long-term repeatability of 0.02 per cent. The diode function generator is manufactured by General Computers, Inc., 9000 W. Pico Blvd., Los Angeles .

Powerless Pilot Lamp Glows Even in Bright Daylight

In most instruments, the power consumed by a pilot lamp is negligible. But in battery-operated, transistorized equipment, pilot-light power consumption can be an important part of the battery's load.

Hewlett-Packard's solution to this problem eliminates pilot-light drain completely. In the H-P 456A Current Probe, the "pilot light" is a tab of light-reflecting red tape. When this tran-

FOR A COMPUTER

..that possesses the mathematical logic of giant computers, yet is easy to operate and program...requires no site preparation or technical personnel....performs engineering, scientific and business computations automatically and with electronic speed. Iterates, compares, branches and handles sequences of complex operations. If you use as few as 4 desk calculators for the same job, the new Clary DE-60 can save you thousands of dollars every year!

To find out more about this versatile com. puter, simply mail in this coupon. No obliga. tion, of course.

Franehiser avallatio to gaillact arinetpals.

ELECTRONIC DESIGN • July 20, 1960

a measure of perfection... IDEAL PRECISION

Panel Meters

the complete line for every application

Here's the demand line that's setting sales records across the nation engineered and produced to the highest standards assembled in controlled atmospheric and climatic conditions . . 100% inspected at highest quality and dependability.

- Accurafe fo within 2% of full scale - All sizes and types available - Scales to customers specifications

For complete information, write to

IDEAL

IdEAL PRECISION METER CO., INC.
214 Fronklin Street, Brooklyn 22, N. r.
Sold to Electronic Parts Distributors exclusively through

whidom

WALDOM ELECTRONICS, INC. 1625 W. 53rd Stroot, Chicago 32, ill. CIICIE IA3 ON READER-SERVICE CARD

Light-refecting red tape, pivoted into position by on-off switch, serves as powerless pilot lamp.
sistorized instrument is switched on, the tape appears behind a clear plastic jewel.
At first glance, anybody would believe that this "pilot lamp" is the real thing-except for one fact, its glow is bright even in daylight.

Female PC Cards

 Improve Computer MaintainabilityPlug-in printed-circuit cards normally come with male connectors. But when a pc connector fails, it's usually the female end that has the trouble. Recognizing this, engineers at Remington Rand's Univac Div. have mounted female connectors on all the plug-in cards in the Univac Larc and in Univac III.
Hence, when there's a defective connector, the chances are greater that the computer can be kept going by a substitute card.

Female connector (more likely to fail than male) is mounted on plug-in card in Univac III and Lare computers rather than in equipment rack.

High torque, low speed

- Instant starting.
stopping
- Low cost

For remote switching, valve operation, indexing devices - wherever high torque - low speed combined with split-second starting and stopping is required - Airborne's new ROTORAC motor offers excellent performance at minimum cost.
A typical C-220 ROTORAC weighs only 10 oz ., yet delivers $6 \mathrm{in} . \mathrm{lb}$. torque at 20 rpm with current draw less than .75 amp at 115 v input. ROTORAC thus provides a lightweight motor capable of handling many electrical and hydraulic switching functions now performed by more expensive gear-head, brake-equipped motors. The ROTORAC motor is a true rotary solenoid with a dynamically stable armature vibrating at a rate of 120 cps when operated from a 60 cycle power source. The vibratory motion consists of a power stroke and a return stroke. Energy from the power stroke is utilized primarily for output torque, although a small portion is stored in a pair of balanced springs and utilized for the return stroke of the armature. This full cycle takes place within each half of an a-c cycle.
Output torque is transmitted from the armature through a unique

Standard C -220 adjusleo for 20 rpm $\pm 20 \mathrm{c}^{\text {at }}$ 6 in . - lb . Speed may be adjusted for other load
points. Curve is based on 115 va C and 400 ma .
rapid-action, one-way clutch to the output shaft, resulting theoretically in a very rapid start-stop rotation. Under very light loads, however, the inertia of clutch and output shaft is sufficient to cause practically uniform rotary motion. Under heavy loads, or with the addition of detenting action, the motion is of a stepping type where full torque is delivered and complete stopping obtained within each half of an a-c cycle. Because of this start-stop motion, the starting torque and the running torque of the motor are approximately equal. Available for either 60 or 400 cycle 115 v a-c, the ROTORAC can be supplied with variations of performance, mounting provisions and output shaft configurations. For further information, contact any of our offices. Write for new Product Bulletin PS-7A.

Engineered Equipment for Aircraft and Industry
AIRBORNE ACCESSORIES CORPORATION HILLSIDE 5, NEW JERSEY - Offices in Los Angeles and Dallas CIRCLE 144 ON READER-SERVICE CARD
Ratings up to 15 circuit kva-75 load am-peres-208,240,480,600 volts; 3 -phase: $50 / 60$ and 400 cycles-automatic or motor-driven. REGULATOR SIZES (less case and controls) Width: $14-17$ inches Depht: $71 / 2$ inches Height: $11 \frac{12}{2}$ inches Weight: $60-80$ pounds FEATURES

- Builr to meet MIL specifications
- No brushes
- No harmful waveform distortion
- Drift-free fubeless controls
- $\pm 1 \%$ bandwidth accuracy
- Voltege adjustment up to 100%
- Temperature, power factor and frequency compensated
FOR MORE INFORMATION, contact your nearby G-E Apparatus Sales Office, or write Section 457-01. General Electric Company, Schenectady 5, N. Y. Registered Trode-mark of Generol Electric Companyvoltage regulator product section

> GENERAL (9ु) ELECTRIC PITTSFIELD. MASS. CIRCLE 145 ON READER-SERVICE CARD

NEW LITERATURE

Tantalum Capacitors

280
Bulletin No. 159 furnishes information on the firm's TS Series capacitors, which meet military specification MIL-C-3965B for tantalum slug electrolytic capacitors, styles CL44 uninsulated, and CL45 insulated, case size T1. Ohmite Manufacturing Co., 3693 Howard St., Skokie, Ill.

Microwave Data Sheets

281
The firm is currently issuing a series of approximately 60 two-page data sheets covering over 1000 coaxial and microwave test components available from stock. Physical and electrical specifications, dimensional drawings and price are given for each model. Omega Laboratories, Inc. Haverhill St., Rowley, Mass.

Thermistors

This 39-page data book discusses theory, construction, operating characteristics and applications of thermistors and varistors. Voltage-current and temperature-resistance curves and tables for the firm's line of thermistors are provided. Several circuits utilizing thermistors are suggested. Varistors and related devices are similarly, but more briefly, considered. For VECO Data Book, send $\$ 1.00$ to Victory Engincering Corp., Springfield Road, Unioi, N. J.

282
Electrical and physical specifications, comparison with other insulating papers, samples and prices of Patapar insulating parchment are included in this brochure. Paterson Parchment Paper Co., Bristol, Pal.

Rotary DC Solenoids

283
This six-page brochure illustrates five basic frame sizes of rotary solenoids with detailed specifications, dimensional drawings, typical torque characteristics, applications and special design features. PSP Engineering Co., Dept. RS. Maywood, Calif.

Pressure Instruments

284
This four-page short form brochure, No. S-60-1, lists operating specifications, design requirements, dimensions, weight and accuracy of the firm's lines of pressure transducers, rectilinear potentiometers and pressure switches. Servonic Instruments, Inc., 640 Terminal Way, Costa Mesa, Calif.

use
 BODINE K-2 Motors

for instruments, timing devices control apparatus and similar applications

- only $23 / 8^{n}$ high - with or without speed reducers - totally enclosed - (spur or helical gearing)
- $1 / 2000$ to $1 / 500$ - available from your horsepower distributor's stock

FREE covers Bodine K-2 Motors, and
Bulletin
"S-2" other stock motors.

BODINE

fractional

Bodine Electric Co., 2528 West Bradley Place, Chicago 18, III.

CIRCLE 146 ON READER-SERVICE CARD

 CIRCLE 147 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 20, 196

PIONEERS IN MINIATURIZATION CIRCLE 148 ON READER-SERVICE CARD

Splendid opportunities for maximum professional prowth and recognition await you at the Instrumentagrowth and recognition await you at the InstrumentaSouth's largest city.

- mechanical design engineers-BS or MS in ME to design small electro-mechanical mechanisms.
- electrical design engineers - bS in EE or Physics to design and construct: a. Supervisory Control Systems of electro-mechanical and electronic design; b. Transistor Test Equipment, heavy experience on circuit design preferably perience in detailed logic design.
- SAles engineers-BS in EE, ME or Physics with sales experience in electro-mechanical instruments.
With TI . . . receive liberal company-paid benefits, including profit sharing . . . work in a completely modern suburban plant near Houston's most attractive residential areas ... enjoy pleasant Gulf Coast living and recreations the year-around

Please direct your resumé to
D. G. Turner, Department ED

TEXAS INSTRUMENTS

- iosciences a instnumentation oivisiom

CIRCLE 902 ON CAREER INQUIRY FORM, PAGE 169
ELECTRONIC DESIGN • July 20, 1960

Epoxy Pellets

This four-page bulletin, No. 3, on epoxy E-Form pellets for electronic components discusses the variety of pellet compounds available and various epoxy packaging techniques. The illustrated bulletin also considers typical application and previous use of the pellets in packaging resistors, diodes, transistors, capacitors and coils. Epoxy Products, 137 Coit St., Irvington, N. J.

Precious Metals

286
Gold, silver and platinum-group metals in various solid, clad and cored mill forms are described in this six-page brochure, "Precious Metals for Industrial Applications," GP-22. Size, composition and application of strip, tubing, wire, brazing alloys, waveguide tubing, thermocouple wire, electrical contacts and semiconductor components are described. Texas Instruments Inc., Metals and Controls Div., 34 Forrest St., Attleboro, Mass.

Reactive and Precious Metals

287
Temperature characteristics of reactive and precious metals are tabulated in this four-page pamphlet. The firm's ability to prepare the metals in wire and sheet form is described and illustrated. Consolidated Reactive Metals, Inc., 115 Hoyt St., Mamaroneck, N. Y.

Epoxies

288
Among the applications of the firm's line of tooling plastics suggested in this eight-page illustrated brochure are blow core boxes, loose pieces, spotting slugs, match plates, core sticks, cope and drag patterns, fillet pastes and pattern coating resins. Furane Plastics Inc., 4516 Brazil St., Los Angeles 39, Calif.

Heating and Cooling Coil

289
Two-page bulletin suggests application of Panelcoil for heating or cooling flat or curved surfaces. Available shapes and sizes of eleven embossed panels are illustrated and described. Dean Products, Inc., 616 Franklin Ave., Brooklyn 38, N. Y.

Thermistor and Varistor Kits

290
Kits intended to acquaint engineers with a variety of thermistor and varistor applications are described in this two-page data sheet, No. SE 102. The sheet lists the contents of seven kits with electrical characteristics of the components. Victory Engineering Corp., 519 Springfield Road. Union, N. J.

FOR LOW LOSSES AND HIGH RELIABILITY IN MICROWAVE AND UHF ASSEMBLIES

WIV teflon glass
 No. 6098

or CUCLAD TEFLON GLASS LAMICOID combines these properties

- readily machined to close tolerances

 - EASILY SOLDERED - UNIFORM DIELECTRIC CONSTANT $(2.6 \pm 0.05)-$ SHOCK RESISTANT - LOW LOSSES OVER WIDE FREQUENCY RANGE - EXTREME CHEMICAL AND ABRASION RESIST. ANCE - HIGH HEAT RESISTANCE (250 C continuous)Available plain or with 1 or 2 -ounce copper foil bonded to one or both sides, No. 6098 LAMICOID is extremely uniform, rugged and thermally stable.

WRITE FOR COMPLETE DNTA

MICA INSULATOR

DIVISION OF MINNESOTA MINING \& MFG. CO. 120 broadway, schenectady i, N. Y.

MICANITE(S AND ISOMICAB PRODUCTS LAMICOIOO LAMIMATES SILICONE AND TEFLON' COATED CLOTHS AND TAPES

HERE'S TIME-SAVING NEWS

Reading reams of irrelevant material to find news of interest to you in your design work is laborious and time-consuming. ELECTRONIC DESIGN spares you this task. It provides complete coverage of news significant to the working design engineer, written in simple but technical language.

The primary emphasis is on technological developments and important trends that directly affect the design engineer. These stories concentrate on description of new electronic devices, applications, materials, and concepts representing new horizons for designers-technical developments that help you do a better job.

But coverage also includes news that improves your perspective on the electronic industry, research and production developments as well as developments in basic science and other industries that might shape design thinking.

These news stories are written to point up the design significance of the news, to make it useful to you. They give you the information you need, answer such questions as:

What is the primary new development? Why is it significant to design engineers? What exactly has been accomplished? Where, when and by whom was it done? What are the specific applications?
How will price compare?
Where will the work lead?
Make ELECTRONIC DESIGN your source of news in the industry. It gives you complete coverage, tailored to your needs, presented in simple yet precise form . . . in the magazine with total caverage for the design engineer.

NEW LITERATURE

Transistorized Chopper

Several applications of Chopperettes, circuits and typical characteristics included, are suggested in this four-page data sheet, V383. Size, electrical characteristics and environmental data on the firm's miniature silicon and germanium choppers suitable for missile application are included. Victory Engineering Corp., 519 Springfield Road, Union, N. J.

Tubes vs. Transisfors

292
A 64-page treatise described as "a compendium of current information on the characteristics and capabilities of vacuum and solid-state devices," "Tubes and Transistors: A Comparative Study" discusses the advantages and limitations of both components in specific applications. Electron Tube Information Council, 554 Fifth Ave., New York 36, N. Y.

Recording Spectrophotometer

293
In 12 pages this bulletin, No. GEZ-3031, describes the operation and application of the firm's recording spectrophotometer with built-in automatic tri-stimulus integrator and accessories. The machine measures and records the colors of materials. Optical, physical and electrical specifications are included. General Electric Co., Schenectady 5, N. Y.

Dielectric Test Bridge

294
A dielectric test bridge developed in West Germany is described in this four-page illustrated bulletin, No. 352000 . The bridge, Type VKB, determines the dielectric constant and dissipation factor of solids and liquids at frequencies of 50 to $300,000 \mathrm{cps}$ and capacitances of 10 to 1000 pf . Electrical specifications as well as dimensions are given for the bridge and five auxiliary units: an extension unit, a guard-ring type capacitor, two liquid specimen containers, and a wire test jig. Rhode and Schwarz Sales Co., Inc., P. O. Box 275, Passaic, N. J.

Glass-io-Mefal Terminals

295
The company's series of hermetically sealed compression terminals is described in this six-page bulletin No. SCT-60-101. Dimensions, voltage and current capacities, installation data and allowable gap spacing curves are given for the line. Electrical Industries Div., Philips Electronics and Pharmaceutical Industries Corp., 691 Central Ave., Murray Hill, N. J.

High Quality Coil Forms For All Electrical Applications

square and rectangular tuzesChoice of any dieleetric material or combina. tions. Any length, shape or size. Espocially recommended for Class A, B and H temperature ranges.
ROUND TURES-Any decimal size up to 8°. Fabricatod from dielectric kraft, fish papar. acotate, DuPont Mylar, Johns-Manville Quin. terra, fibre glass, other materials or comblnations.
resinite phenollc impregnatedFoature the highost resistivity of any resinatod product. Fumished in any shope or size-plain, ombossod or intomally throaded. also in flyback transformer forms.
sosein Assemalies-fabricated to spedfo cation in any dielectric material for Clas A, B and H remperature ranges. Supplied wim motal, asbestos, plastic or fibre flonges.
Request catolog and prices. Aik about Procision's ${ }^{2}$

PRECISION PAPER TUBE CO.

2055 West charleston street - chicago 47, ill.
CIRCLE 151 ON READER-SERVICE CARD

DESIGN TIMING RELIABILITY INTO YOUR CIRCUITS specify...

NEW MINIATURE AGASTAT

time / delay / relays

- Recycling virtually instantaneous-less than .020 soconds
- Unaffected by Voltage fiuctuations (from 18 to 32 volis DC)
- Ropeat Accuracy $\pm 5 \%$

This new AGASTAT meets the environmental requirements of MILE 5272A. Built to withstand the rugged conditions of missile and aircraft applications. Lightweight-less than 15 ounces. Space saving- $45 / 8$ tall... $11311^{\prime \prime}$ wide. $11 / 2^{\prime \prime}$ deep. Adjustable, with time delays from tall. . 130 wis ing. For complete specifications, write Dept. As7\$84

AGASTAT TIMING INSTRUMENTS
elastic stop nut corporation of america 1027 NEWARK AVENUE, ELIZABETH 3, NEW JERSEI CIRCLE 152 ON READER-SERVICE CARD ELECTRONIC DESIGN•July 20, 1960

For: Selection Sequence Control - Counting (including Subtraction) - Totalizing - Pulsing - Step-by-Step Servo Drive.
Self-Cycling or Remote Control Operation. Bridging or Non-Bridging Wipers, or any Combination. Sturdy, compact construction.
Get complete dato and price information now on the unique GENALEX Two-Way Stepping Switch - AND the companion 100 Million Stop genalex One-Way Stepping Switchl Writo roday, to:
THE GENERAL ELECTRIC COMPANY, LTD., OF ENGLAND SoLE DISTRIBUTORS commonation

11 University Rd., Cambridge 38, Mass. CIRCLE 153 ON READER-SERVICE CARD

PROFESSIONAL 5^{n} DC OSCILLOSCOPE KIT (OP-1) Distinguished quality, coupled with traditional Heathkit savings, highlight the OP-1 as one of the most unusual values in the test equipment field! Designed as a professional caliber research tool, the OP-1 meets critical quality standards demanded in industrial, educational or medical applications. Features include; 5ADP2 CRT; DC coupled amplifiers and CR tube unblanking. Triggered sweep circuit operates on int. or ext. signals, AC or DC coupled. Send for FREE Heathkit cal alog today describing this and many other money saving kits or see your nearest Heathkit dealer.

CIRCLE 154 ON READER-SERVICE CARD

Phenolic Molding Materials

Two versatile and fast-curing Bakelite phenolics are described in the six pages of Molding Technical Release No. 40. Plunger molding applications, necessary temperature conditions and physical properties are discussed in textual, tabular and graphic form. Union Carbide Plastics Co., 30 E. 42nd St., New York 17, N. Y.

Aluminum Foil Capacitors

 297Operational factors covered in 8-page bulletin, No. 81558, include dc leakage current, dissipation factor, capacitance and tolerance, operating temperature range, dc working voltage rating and surge voltage on miniature and sub-miniature aluminum foil capacitors. Separate standard rating and selection charts are listed according to size and voltage rating. Intemational Electronic Industries, Inc., Box R-23, Nashville, Tenn.

Precision Potentiometers

298
This four-page data sheet describes the firm's Series 7230, 10-turn precision potentiometers for servo mounting. Included in data sheet No. 60150 are complete preliminary specifications, environmental characteristics, coil data, dimensional drawings and photographs. Helipot Div. Beckman Instruments, Inc., 2500 Fullerton Road, Fullerton, Calif.

Potentiometers

299
This two-page data sheet contains electrical, environmental, and physical characteristics on the firm's Model 215 Trimpot potentiometer. Detailed size specifications are included. Bourns, Inc., Trimpot Div., P. O. Box 2112, Riverside, Calif.

Microwave Insulation

300
This single-page data sheet gives electrical, phyical and chemical properties of Rexolite 2200, a thermosetting plastic insulation for use at ultra high and microwave frequencies. Rex Corp., Hayward Road, West Acton, Mass.

Glass Capacitors

This four-page bulletin describes fusion sealed CYF capacitors designed to withstand extreme environments. Electrical, physical and environmental characteristics are given. Operational curves are included. For Reference File CE-1.01CYF Capacitors-write on company letterhead to Corning Glass Works, Dept. ED, Electronic Components Dept., Bradford, Pa.

- READILY FABRICATED
- heat resistant $\left(130^{\circ} \mathrm{C}\right.$ cont.)
- HIGH STRENGTH (58,000 Flex, 7.1 Impact)
- EXCELLENT ELECTRICAL PROPERTIES (500,000 megs. surf. resist.)
- LOW MOISTURE ABSORPTION
- CONFORMS TO MIL-P.18177B Type GEB

For printed circuits where high reliability at operating temperatures of $130^{\circ} \mathrm{C}$ are required, MICO's new No. 6097 epoxy-glass LAMICOID sets new performance standards. Available with 1- or 2-oz. copper foil on one or both sides, it is readily machined and may be dip or float soldered.
FOR COMPLETE DATA, write Mica Insulator Division, Minnesota Mining and Manufacturing Company. 220 Broadway, Schenectady 1, N. Y

110

MICA INSUIATOR
dIVISION OF MINNESOTA MINING \& MFG. CO. sChenectady I, NEW YORK

MICAMITEO ANO ISOMICAO PRODUCTS
 SILICONE ANO FEFLON COATED CLOTHS AND TAPE'S

Lamicoigo lamimates

CIRCLE I55 ON READER-SERVICE CARD

it's the ultra low distortion - .005\%
in this audio amplifier that makes the big difference!

Here's a fifty-watt power amplifier with harmonic and intermodulation distortion of less than $.005 \%$. Distortion so low - you'd need special equipment to measure it!

That's why the UF-101A is a natural as a reference source, with a suitable oscillator, for low distortion measurement of power components, as well as a highly linear amplifier within the audio band.
The other characteristics of the UF-101A are equally outstanding. Phase distortion is negligible - $\pm 2^{\circ}$ maximum deviation from linear phase shift. Total hum and noise level less than 10 microvolts input equivalent. Frequency range is from 20 cps to 20 kc . For convenience, the UF-101A has taps for matched load impedances from 1 to 225 ohms.

Some of the applications of this ultra-low distortion amplifier are: checking the residual distortion of distortion-measuring equipment, reproducing non-sinusoidal wave forms faithfully, and as an ultra-low distortion, high power source to supply test benches. Write for full information on the UF-101A.
Other Krohn-Hite amplifiers include the direct-coupled, wide band DCA-10 (10 watts), and DCA- 50 (50 watts). Also. Krohn-Hite Oscillators, Filters and Power Supplies.

IDEAS FOR DESIGN

Cet $\$ 10.00$ plur a by-line for the time
it takes you to jot down your clever design
illea. Payment is made when the idea
is accepted for publication.

Digital FM Technique Delays

on Magnetostrictive

DELAY of an analog signal by a magneto strictive line can be accomplished with the digital FM technique outlined in the block dia gram. This technique avoids several of the disadvantages of the more conventional delaying methods.

Conventional Methods Employ AM, FM, or PCM
An analog signal can be delayed by a magneto trictive line by amplitude or frequency modulating either a pulse or a sine-wave carrier. Al though simple to apply, these methods suffer because the signal distortion and noise factor grow progressively worse with increasing delay time. These disadvantages can be eliminated by using the digital techniques of pulse code modulation (PCM). In a PCM, system distortion and signal-to-noise ratio are independent of time de-

Modulated analog signal is AND gated with strobe pulses, passed onto the delay line, and then demodulated to obtain a delayed signal.

Inalog Signal
 ine

lay. They are functions only of the characteristics of the pulse code modulator and demodulator. However, for these characteristics to be acceptable, it is necessary to use many quantizing levels. This requires unduly complicated terminal equipment.

Analog Signal AND-Gated With Strobe Pulses
The digital FM technique outlined here is midway in design complexity between the simple analog methods and the PCM system. Referring to the block diagram, a sine-wave oscillator is frequency modulated by the input analog signal. The modulated output is first squared and then sampled in an AND gate by digital strobe pulses. The repetition rate of the strobe pulses is at least twice the frequency of the highest sideband in the modulated signal.
The pulses from the AND gate pass into the delay-line driver where they are shaped for transmission along the delay line. The received signal from the delay line is amplified and strobed in an output gate. Then the pulses are widened before heing sent through a low-pass filter to recover the frequency modulated signal. This signal is then fed to a frequency demodulator the output of which is a delayed replica of the input analog signal.
The maximum analog bandwidth which can be delayed is a function of the peak digital frequericy at which the delay line can be operated. There are commercial delay lines available which can operate at a frequency of 5 mc in a non-return to-zero (NRZ) mode. If such a delay line is used, the maximum bandwidth of the entire modulat d signal including the carrier and all sidebands is limited to 2.5 mc .
A thur Rothbart, Consulting Engineer, New Yori. N. Y.

NOW AVAILABLE

 Rugged New Eimac $\times 778$ Traveling Wave Tube ... One Watt Output, 55-60 db GainPurchase orders are now being accepted for Eimac's pioneering new high gain traveling wave tube, the X778.
Unique features of this advanced one watt CW traveling wave tube include its exceptionally wide frequency range -5.0 to 11.0 KMc ., small signal power gain of 55.60 db , and light weight permanent magnet focusing.
I.ike all other Eimac ceramic-metal tubes, this TWT "can take it." The X778 was especially designed to operate under severe environmental conditions of shock, vibration. temperature variation and high altitude. Breakage is a thing of the past. resulting in greatly reduced tube replacement costs.
The Eimac X778 finds wide usage in electronic counter-measures, radar augmentors, data links - in any application where more than one tube would normally be required to cover the C and X bands. This means significant cost reduction and increased system reliability.
Contact R \& D Marketing Department for additional details and information on how this tube type may be modified for your requirements.

EITEL-MCCULLOUGH, INC. : San Carlos, California

CIRCLE 157 ON READER-SERVICE CARD
ELE :TRONIC DESIGN • July 20, 1960

> SURPASSES NEW MIL-T-4807 30 G SHOCK AND VIBRATION TESTS

HEAVY DUTY "M" SERIES RELAY RACK CABINETS

San our
Complete Display af WESCON BOOTHS 350-351

These MC and MH Series cabinets were

 designed for those who must have exceptional strength, superlative quality in material and every detail of design and construction, the utmost in flexibility and dependability - and a wide choice of semi-custom features with which to satisfy their own highly specific requirements. Standard models surpass the 30 G shock and vibration requirements of MIL-T-4807 (steel construction), but reinforcement for higher shock loading is available.Mount standard $19^{\prime \prime \prime}$ or $24^{\prime \prime}$ panels. All-welded frames in choice of 12 -ga. steel or . $125^{\prime \prime}$ aluminum alloy 5052 SH32. Side panels, louvered top cap and rear door in choice of 18 -ga. steel or . $062^{\prime \prime}$ aluminum. Continuously adjustable rear mounting rail is 12 -ga. steel. All tapped holes are 10-32 tapped and spaced per MIL-STD-189. Rear door panel has 4" center stiffener, Neoprene seal, lift-off hinges.

VARIABLES...ALL TO CUSTOMER SPECS

Refrigerated cooling-insulated if required $1 / 2$ and 1 ton systems built in with high efficiency insulation - all MIL spec.

- Ventilated or non-ventilated ... Panel-mounting blower provides 600-900 CFM of filtered air to pressurize duct in left side of ventilated units - air is then accurately directed through fully controlled openings to temperature-critical areas-see schematic at right... Natural convection in non-ventilated units draws air through louvers in lower portion of rear door and exhausts heated air through louvered top cap.
- Choice of steol or aluminum construction - Panel space as required-in $134^{\prime \prime \prime}$ increments (for $19^{\prime \prime}$ or $24^{\prime \prime}$ width panols) ${ }^{\circ}$ Cabinet depths $18^{\prime \prime}-36^{\prime \prime}$ in $2^{\prime \prime \prime}$ increments - Choice of Three types of cabinet front - Choice of hinged, lift-out or bolt-on doors - Choice of square or rounded front and/or rear top corners - MIL spec (standard) or special finish - With or with out heary duty dolly - to Customer specs.

Also available-matching consoles and a complete line of MIL spec and high grade commercial accessories: chassis, panels, Chassis-Trake. blowers, handles, cable retractors, slope- and turret-front console fronts, desk top consoles, fixed and retractable writing surfaces.

Write for complote dote
ONE SOURCE
for VENTiMTED RELAY RACK CABINETS, CONTROL CONSOLES, BLOWERS, CHASSIS,
CHASSIS-TRAKQ, RELATED COMPONENTS

\rightarrow

 Western Devices, Ilic. 600 W. FLORENCE AVE., INGLEWOOD I, CALIF. CIRCLE 158 ON READER-SERVICE CARD
IDEAS FOR DESIGN

Copper Laminate Board Ideal for RF Breadboarding

Copper laminate board, such as is available for making printed circuits, can be advantageously substituted for the brass or copper sheet generally used for breadboarding rf circuits. Thinner and more easily formed than the sheet stock, the laminate requires much less heat for a good solder joint. Thus shields and components can be soldered to the copper rapidly and with less chance of heat damage to both parts and fingers.

The board can be cut with the same tools used for the sheet metal. Shield cans and chassis made in this manner are as strong as those of solid sheet and a lot easier to make.
Robert H. Pickard, Electronic Scientist, Goddard Space Flight Center, U.S. Naval Station, Washington, D.C.

Tunnel Diode Is Sensitive Level Detector

We needed a voltage level detector which would switch over within 50 mv of the reference level. It had to operate at 1 mc . Several different types of Schmitt trigger circuits were designed,

Fig. 1. The tunnel diode sets the voltage level at which transistor T will be switched on.

Fig. 2. Tunnel diode voltage-current characteristics.

reliability

ultra-high precision capacitors

Southern Electronics high.precision capacitors are demonstrating their proven eliability today in twelve different missiles, analog computers, and many radar and communications applications.
SEC high-precision capacitors utilize
SEC high-precision capacitors utilize
polysyyrene, providing $.01 \%$ tolerances, and polystyrene, providing $.01 \%$ tolerances, and
myla and teflon to meet $.5 \%$
requirements They show excellent stability characteristics over an extended characteristics over an extended unaffected even at extreme high altitudes. The unusual accuracy, stability and The unusual accuracy, stability and
reliability of SEC capacitors are the resu reliability of SEC capacitors are the resu engineering experience concentrated ne capacitors only. plus rigic quality cont
standards subjecting each capacitor to seven inspections during manufacture plus final inspection.
Our engineering experience enables us to Our engineering experience enables holding to exact capacitance and tolerance specifications.
SEC capacitors are manufactured in a wide range of capacitance to meet your needs from 100 mmfd . to any higher value, and meet or exceed the most rigid MIL-SPEC Write today for detailed technier data and general cataler

Soe us at WESCON Booth 862

SOUTHERN ELECTRONICS Corporation
150 west cypress avenue burbank, california

NATIONAL tir KNOBS

Precision made of the finest quality materials and recognized for excellence in design, Na tional's line of HR Knobs are long a favorite of electronics people everywhere. Available in a number of types, styles, sizes and colors, National's comprehensive HR knob (and dial) line makes it possible to meet most of your knob requirements by ordering from catalog stock. A representative catalog listing:

TYPE HRS: Top quality Tenite, easy grip knurling, black or grey or to specifications; chrome plated bevel skirt, depressed numerals black enamelled; numbering 180° or 300°.
TYPE HRT: Modern, large knobs designed for MATIONAL's receivers, now available by popular request. DeLuxe, modern knob is made of black or grey Tenite; chrome plated inlay.
TYPE HR: Tenite, easy grip knurling, with or without white dot, or with special markings; black or grey or to specifications.
TYPE HRB: Lever knob is ideal for bandswitching and for other applications where switch is turned to several index positions. Highly polished, bright zinc alloy die cast, or anodized in a variety of special colors.
National Radio Co. also manufactures many other electronic and electromechanical components. For catalog covering your needs . . . or for your special design or applications problems, write or call:

Kofional RADID CD., INC.
MLROSE 76, masS. NORMANDIE 5-4800 MLROSE 76, MASS. NORMANDIE 5-4800 A wholly owned subsididary ol Mational Co., Ine.
but these all had unstable switching regions of 0.1 v or more.

The desired operation was achieved by using a tunnel diode as the level detector, Fig. 1. The diode's voltage-current characteristic is shown in Fig. 2.
Before I_{1} reaches I_{p}, the diode is conducting and has less than V_{p} volts across it. V_{p} is not enough to turn the transistor on. However, after I_{p} is reached (0.05 v) the diode breaks over to voltage V_{f}. This voltage is great enough to turn the transistor on. The tunnel diode not only is an excellent level detector, but also limits the saturation of the transistor. This reduces the storage time and allows faster pulse operation.
J. F. Martin, Design Engineer, StrombergCarlson Co., Rochester, N. Y.

Four-Resistor Decade Uses Standard Rotary Switch

Here's a resistor decade we set up using four resistors and a common two-section, two-pole, 11position rotary switch. A special decade rotary switch is not required. The resistor values are in the indicated ratios.

Ralph U. Moody, Design Specialist, Lockheed Missiles and Space Div., Van Nuys, Calif.

Switched Figures Corrected

Figs. 1 and 2 in the Idea for design "Log-Log Slide Rule Converts Voltage, Power Ratios Directly to $\mathrm{Db}^{\prime \prime}$ (ED, May 11, p 231) were inadvertently reversed. Fig. 1 should be used for power ratios and Fig. 2 for voltage ratios.

The future... from your point of view

A good day's growth for a hard day's work.
A position to suit your talents, experience and ambition.
Opportunity to exercise full initiative in Research, Radar, Doppler Navigational Systems, Magnetic Memory Systems, Microwave and Computers.

PLUS

Management awareness encouraging exploration beyond the range of present knowledge.

APPOINTMENTS NOW AVAILABLE:

DESIGN ENGINEER

Radar Circuitry
Experience and state-of-the-art knowledge in one or more of these: oscillators, cw or pulse modulators, video, IF or microwave amplifiers, differentiators, integrators, power supplies, pulse coders and decoders, phase detectors, MTI cancellers. Projects include: R\&D of advanced techniques; ground, airborne, space equipment.

PHYSICIST

Applied Research
Advanced degree in physics or engineering physics, plus an appreciation of theory. To design a series of experiments in plasma physics, taking responsibility for equipment specification and installation plus all other experimental considerations.

For confidential discussion, please write:

Eugene Rust

Laboratory for Electronics
75 Pitts Street, Boston 14, Massachusetts
Laboratory for Electronics
CIRCLE 915 ON CAREER INQUIRY FORM, PAGE 169

Elin instrumentation is the only answer WHERE PRECISION COONTS

You can depend on ELIN to meet your precision AC power requirements on gyros, bridge-type transducers, synchros, servo systems, resolvers and many other AC devices. Ask about the new load-regulated amplifiers for production line testing. External sync, provides master-remote features without
sacrifice in over-all stability. Complete power systems available for your specific needs.

Ultra-stable AC Power Sources

Write for NEW 1960 Catalog (D) 0 M S 0 O N

INTERMATIONAL ELECTRONIC RESEARCH CORPORATION 135 West Magnolia Boulevard, Burbank, California - VIctoria 9-2481

PATENTS

RF Amplifier

Patent No. 2,9:34,711. S. L. Dawson (Assigned to Collins Radio Co.)
Adaptable in the first amplifier stage of a radio receiver, this circuit provides 50 db suppression of adjacent channel cross-modulation, has a low noise figure

and provides a high gain in the 3 - to 7 -mc range.
The invention lies in the application of a cathode-follower amplifier, of which
matched low-impedance load chan es very rapidly on either side of the desised carrier frequency f_{1}. Capacitor 31 is ie-ries-resonant with the shunt reson int combination of inductance 32 and sapacitor 3.3. Off resonance, the mismaich

of cathode and load impedance is so severe that signals are sharply attenuated by the high inverse feedback. However, at resonance the matched condition favors optimum power transfer to the load. Neutralization is not required.

Now...

PRECISION APPLICATION OF INSULATING COATINGS AND CONDUCTIVE CIRCUITS ON GEOMETRIC SHAPES

Custom formulated to meet spec fications. Insulation applied to metal shapes is brittle or tough rigid or elastic, with high bond strength and heat resistance. Motson circuitry techniques provide electrical characteristics to the most exacting standards.

Can your products be improved or accomplish the "impossible" with Motson Applied Circuits? Write today for literature . . . or send details and prints of possible application to
J. Frank Motson Company

Palent No. 2,936,431. R. Guenther (Assigned to Bell Telephone Labs).
The negative impedance characteristic of a transistor operating in the avalanche breakdown region may be shaped by an RC network connected between the emitter and base electrodes. This insures stability of the circuit outside the desired frequency range.
In the circuit shown, the transistor's emitter and collector are the terminals of a two-terminal negative impedance circuit. The transistor is adjusted by $\boldsymbol{E}_{d c}$ to

3 En

operate in its avalanche region. With capacitor C_{1} removed, the negative resistance characteristic 18 slowly changes to positive resistance at about 100 kc . However, with capacitor C_{1}, the characteristic 16 may be shaped to develop positive resistance with in the audio frequency range.

NEW PHOTOMULTIPLIERS

CBS Laboratories new line of photomultipliers are specially designed for counting or scanning applications.
Unique photocathode geometry (1) and improved linear dynode structure (2) are combined to provide excellent uniformity of response across the face of the tube and extremely short transit time spread.
The new, rugged photomultipliers are available as illustrated in $2^{\prime \prime}, 3^{\prime \prime}$ and 5 " diam. eathodes with visible (S-11) or infra-red (S-1) response and 10 stages of multiplication; or with quartz windows in $2^{\prime \prime}$ and $3^{\prime \prime}$ diam. with ultraviolet (S-13) response. Special types can be developed to order.
For technical bulletins or complete information, write: CBS Laboratories, Electron Tube Department.

This time-delay relay you make to your own timing specifications. It's electrically adjustable. You can tune it directly or remotely to any delay you want between half a second and half a minute. At any time-delay setting, you can expect repeatability within $\pm 5 \%$. Reset is instantaneous. \square The relay operates on 12 volts DC. With a voltage divider kit, which we supply, you can fix it to work on 24,28 , or 48 volts DC. Switching is S.P.D.T. \square The cost of this transistor-controlled relay will surprise you. It's definitely in the commercial class, if you buy in production quantities. \square Bulletin 5300-B will give you full technical details. Yours for the asking, of course.

HEINEMANN ELECTRIC COMPANY

156 PLUM STREET
TRENTON 2, N. J.
CIRCLE 165 ON READER-SERVICE CARD

BOOKS

Industrial Electronics and Control
Royce Gerald Kloeffler, John Wiley \& Sons, Inc., 440 Fourth Ave., New York 16, N.Y., 540 pp, \$10.00.

Aimed at the undergraduate engineering student, this book tries to meet the requirements of those who desire a knowledge of industrial electronic applications. No attempt is made to present a quantitative approach to the design of electronic circuits. Rather, a survey is given of the theory and applications of electronics in industry.
The early chapters of the book are prepared for the student whose training has not included the basic theory of semiconductors and electron tubes. The material begins with the theory of solid state conduction and leads to the theory of rectification and amplification with semicon-
ductor devices, transistors, diodes, cte.
Industrial electronic devices using looth semiconductors and vacuum tubes are next discussed. Chapter headings in. clude: Components and Circuits for Control, Principles of Control and Servo. mechanisms, Electronic Operation of Direct Current Motors, X-Ray Applica. tions, and Principles of Electronic Computers.
The volume is profusely illustrated and includes problems and a reference list at the end of each chapter.

Radargrammetry

Daniel Levine, McGraw-Hill Book Co, Inc., 330 W. 42nd St., New York 36, N. Y. $330 p, \$ 12.00$.
Radargrammetry is the science of obtaining reliable measurements by means

He was going to Texas and his guidance system went haywire!"
Guidance or communications system failures can cause problems! Guard against them with Reeves-Hoffman oscillator reliability. Get the whole story.
wive for nuletins silisp and rco/3000c.
division of
DYNAMICS CORPORATION OF AMERICA
FS/160
CARLISLE, PENNSYIVANIA
of fadar. This text analyzes the sources of crror found in real radar displays. It outlines a unified system design for keeping individual errors within bounds necessary to meet an over-all system performance.
Using cartographic principles the book correlates radar display with different map projections. It shows how this correlation is applied to map-matching, including navigation, air-traffic control, weather surveillance, and long-range plotting boards for air defense, bombing, and missile guidance.
Basic design considerations for achieving cartographic accuracy are stressed. Covered are such topics as image motion compensation and antenna stabilization, ground-range sweep over a spherical earth, the theory of radar return, and errors in radar systems influenced by navigational equipment and the airframe. Other sources of error described are the influence of noise in positioning accu-acy, the effect of the earth's magnetic field, and shading on the cathode-ray tube.
The book treats modern advance such is the theory of linear apertures for opti-
cal systems as expounded by Schade, and Swerling's analysis of angular accuracy of a pulsed radar system. The work of Enenstein and Bailin on transient buildup of antenna patterns is applied to determine the minimum ground area resolved by a linear array.

Applications of Electronics

Bernard Grob, Milton S. Kiver, McGrawHill Book Co., 330 W. 42nd St., New York 36, N.Y. 628 pp, $\$ 7.00$
Designed specifically for servicemen and technicians, this volume discusses principles and equipment for many of the specialized fields of electronics and communications.
Circuits and equipment are described for amplifier and rectifier circuits using electron tubes and transistors, oscillator circuits including microwave tubes, receivers and transmitters, industrial electronics, electronic navigational aids, test equipment, and military electronics. The approach to these topics is largely practical and mathematics is kept to a minimum. The text is illustrated throughout with circuits and photographs.

Model 219B (pictured above)
Main output: 0 to 600 V dc, 0 to 1000 ma .
Load regulation: 0.01% or 0.05 V . Ripple: 0.0005 V
Also regulated $0-150 \mathrm{~V}$ dc bias supply and 6.3 V ac CT output, supply and 6.3 ac cand output,
ten-turn control, calibrated dial
with 3 volt vernier, modulation input. PRICE: $\$ 675 \mathrm{~F}$. O. B. Eatontown, N. J.

Wide-range REGATRON Laboratory Power Supplies: available in $0-300,600$, or 1000 volts dc continuously variable, $0-500,600$, 1000 , or 1500 ma ... load regulation to 0.01% or 0.05 V , negligible ripple ...also 6.3 V ac and regulated de bias outputs. For all the reasons why leading laboratories prefer REGATRONS send for Bulletin 422.

ELECTRONIC
MEASYUREMENTS
Telephone: Llberly 2.0300
TWX: EAT 984

CONRAD

MODEL FB-4-1-1 CC CAPACITOR COEFFICIENT test chamber
Interior designed for incasing capacitors and semi-conductors during
test. temperature range: $+300^{\circ} \mathrm{F}$. $10-100^{\circ} \mathrm{F}$. $\pm 1 / 10$ of 10 F . INSIDE DIMENSIONS: $16^{\prime \prime} \times 16^{\prime \prime} \times 16^{\prime \prime}$

HYPER-ENVIRONMENT TEST CHAMBER

HOLLAND, MICHIGAN
Subsidiory, Cramplon Mifg. Co Grand Rapids, Mishigan

CIRCLE 170 ON READER-SERVICE CARD

CIRCLE I7I ON READER-SERVICE CARD

There's a Conrad representative near you who has complete information on Conrad test chambers. Write for his name and your copy of our new fully illustrated 52 -page catalog.

BOOKS

Encyclopedia Dictionary of Electronics And Nuclear Engineering
Robert I. Sarbacher, Prentice-Hall, Inc., 70 Fifth Ave., New York 11, N.Y., 1417 $p p, \$ 35.00$.
This encyclopedic dictionary, a comprehensive reference work in electronics and nuclear engineering, is designed for the scientist, technician, or student working in these related fields. It is a readily usable dictionary of the specialized vocabulary which does not fall within the scope of general dictionaries of the English language. The author claims that this is the only single source which provides all the standard definitions approved by official technical societies. Authorized Armed Forces definitions and abbreviations, and designations of all military establishments concerned with electronics and nuclear engineering are included. In many instances, pertinent supplementary information is provided in addition to the basic definition of a term. Terms from elemental electric and magnetic theory and atomic physics are given, as well as
a number of definitions from the broad r principles of physics. Extensive cross-re ferencing is provided so that related $\epsilon 1$. tries may be studied and compared or contrasted. Where helpful, detail drawings and circuit diagrams are provided to aid in describing the terms.

Mathematical Methods for Digital Coinputers
Anthony Ralston and Herbert S. Wilf, John Wiley \& Sons, Inc., New York City, 293 pp.

Digital computer techniques for solv. ing mathematical equations and analysis methods are described in this multiauthored text. It presents many of the more commonly used tools of the numerical analyst, along with some of the more promising, newly developed procedures. In effect, it is a partial survey of modern numerical methods and computer capabilities for their solution.
Each chapter is divided into several separate sections and each section has been authored by an individual working in the field. Sections follow a standard format-giving in order the purpose of the
-

CIRCLE 172 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 20, 196
p:ogram, a mathematical analysis of the problem, the calculation procedures to be used, a detailed computer flow chart, the m mory requirements, an estimate of runming time and a list of references. Chaptei headings include: Matrices and Linear Equations, Partial Differential Equations and Statistics. Chapter sub-sections deal, in part with various Monte Carlo methods, Fourier Analysis, auto correlation and spectral analysis, elliptic and hyperbolic differential equations.

Quantum Electronics-A Symposium

 Edited by Charles H. Townes, Columbia University Press, 2960 Broadway, New lork 27, N. Y., $606 \mathrm{pp}, \$ 15.00$.In recent years, physics and electrical engineering have moved closer together as a result of intensive study of quantum phenomena at radio and microwave frequencies. A new field has emerged from the interaction of these two disciplinesyluantum electronics. This book is a result of the international conference on Quantum Electronics-Resonance Phenomena which was held in September, 1959. "The wide variety of interests represented
here," writes the editor, Dr. Charles H. Townes of Columbia University and the inventor of the maser, "provides an opportunity for clarifying and unifying basic ideas which are common or may become common to both disciplines, for discussing recent developments, and possibly for preliminary examination of areas where important research developments may be expected in the future."

Papers discussing recent developments in masers, atomic clocks, paramagnetic resonance, optical pumping, parametric implifiers, the application of very sensitive amplifiers to radio-astronomy, and quantum effects in amplifiers and communication are presented which give a comprehensive view of current research. For greater unity, summarizing papers on the principal topics of the conference are in most cases followed by related specialized papers.

To increase the usefulness of this book t) electrical engineers, to physicists, to libraries, and as a general reference, much of the discussion which followed each paper has been included in the present volume.

SIGMUND COHN CORP. 121 So Columbunava. Mi Varnon. N
CIRCLE IT3 ON READER-SERVICE CARD
EETRONIC DESIGN • July 20, 1960

New 1960 Subminiature Tube Shield Catalog gives you a complete showing of IERC's diversified line, thermal design and application tips, dimensional and specification data-available on request.

IERCE

INTERNATIONAL ELECTRONIC RESEARCH CORPORATION 135 West Magnolia Boulevard, Burbank. California

CIRCIE 174 ON READER-SERVICE CARD

TOROIDS AND FILTERS... TAILOR MADE... DELIVERED IN DAYS

Need quick delivery on special toroidal components?
We can usually design and deliver samples of toroidal coils and filters to your exact specifications on short notice.
We are equipped to produce toroids and toroidal filters with outstanding temperature stability to either commercial or military requirements.
Whether your application is communications, missiles or data reduction systems, our facilities backed by a quarter of a century of service to industry assure you of a solution . . . fast. Many engineers find our folder "Toroids and Filters" helpful in developing specifications. A copy is yours for the asking.

Barker \& Nolliamuen, Inc.

Canal St., Bristol, Pa.
Spocialiste in designing and bullding equipment to operating apecifications

A fow other BEW products: I. P. TRANSFORMERS - COMmUNICATIONS QUPMENT - AUDIO PHASE SHIF NETWORKS - TEST EQUIPMENT - and many types of standard and special eloetronic components and equipment.

RUSSIAN TRANSLATIONS
 J. George Adashko

Decade Counting Circuit

THE DECADE counting circuit of Fig. I was recently designed at the Leningrad Institute of Precision Mechanics and Optics. The counter is reset on the tenth input pulse by a triode, T_{1}, connected between the first and fourth binaries. All other interconnections are made with double diodes as in ordinary scaling devices.

In discussing the operation of the circuit, the "zero" binary state will mean that the left hand triode is conducting while the right hand triode is cut off. The "one" state will refer to the opposite condition. Note that the control grid of the
triole is comnected through R_{1} to $B_{4 a}$. The injuts to B_{i} are separated, with anode a connected to the output of B_{3} and anode b connected to the output of B_{1}.

Circuit Counts Normally to 9, Resets at 10

The circuit operates as follows: As long as B_{1} is in the " 0 " state (number of input pulses is less than 8), a high positive potential is applied to the grid of T_{1}. Thus the negative pulses from B_{10} pass freely to B_{2}. Although grid current is drawn, there is no interaction between B_{i} and the triode

Fig. 1. Voltage level fed back from $B_{4 a}$ to triode grid helps to reset binary counter after tenth input pulse.

Fig. 2. Version similar to Fig. 1 uses semiconductor diodes as the coupling elements.
be ause \boldsymbol{R}_{1} is much greater than \boldsymbol{R}_{3}. Until the co nt 0111 inclusive is reached, the circuit operates as an ordinary binary counter.
At the 8th pulse, the circuit is set to state 1000 and the grid of the triode is at low potential. At the ninth pulse B_{1} flips over into the " 1 " state and the binaries indicate 1001
With the tenth pulse, B_{1} changes to the " 0 " state and its output voltage (from P_{10}) drops to the same low level as the grid voltage of T_{1}. However, the negative pulse fed to the cathode of T_{1}, is too small to be passed on to B_{2}. Thus, B_{2} will still remain in the "()" state after the tenth pulse. Also on the tenth pulse, B_{1} sends a pulse to $P_{4 a}$ which flips that binary into the "0" state, unblocking T_{1}. However, although the triode can now conduct, the sharp pulse front from B_{16} has passed and B_{2} remains in the " 0 " state.
Thus, after the tenth pulse, the decade counter returns to the 0000 state and is ready to count the next ten pulses.
The principal advantage of this circuit is that it can be readily assembled from available binaries without any additional calculations and investigations. If the binaries and coupling elements are adjusted for operation in an ordinary binary scaling circuit, they will be fit for this counter.

Second Version of Counter Uses Semiconductor Diodes As Coupling Elements
Another version of the decade is shown in Fig. 2 where semiconductor diodes are used as the coupling elements.
Again, the decade has three binaries with common inputs and one binary, B_{4}, with separated inputs. The coupling between B_{1} and B_{2} is through the control diode K (shown in the dotted rectangle). This diode replaces the triode of Fig. 1. The voltage for the control diode is applied from the right anode of B_{4} to the anode, b, of the diode. If B_{4} is in the "I" state, the low voltage on its a anode keeps the control diode open. When binary B_{1} is set in its " 0 " state the high voltage level on its right anode closes the control diode and the coupling between B_{1} and B_{2}, is uninterrupted. On the tenth pulse B_{4} is reset to zero directly from the output of $B_{1 b}$.
The decade counter of Fig. 2 is readily obained from an ordinary scaling circuit by adding diode and separating the inputs of one binary. Fig. 3 shows the parameters of a binary using 6 N sS tube. The remaining binaries are similar (i) the one shown. The adjustment of these decides is no more (omplicated than the adjustment of binary scalers. The decade's operate reliahly and (an attain high counting speeds.
Tronslated from "Decade Scaling Circuits" by f. Ya Galkin, M. N. Ivanov, News of the Higher Instit tions of Learning-Instrument Building, ol I. No. 5, 19.59 pp 91-96.

You be the judge...

Micropot Potentiometers - Turns-Counting Microdials - Sub-Fractional Horsepower Motors - Frequency and Time Standards.
 moisture resisfance!

Up-up! lt's just not worth housemaid's knee to prove you might have a pot that can pass Procedure $106-\mathrm{A}$! Oh, it might take the steamin", alright - but just wait 'til it "breathes" when it's cold! And if you want the acid test - add a dash of polarizing voltage!

But you can count on one pot to withstand the moisture and temperature cycling of MIL-STD 202A: - ACEPOTS have had the engineering design to pass 106-A with ease, even with polarizing voltagel For example, the terminal header is of our exclusive epoxyimpregnated fibreglass, with special case locking to keep out moisture. The shaft end is sealed with high-temperature silicone rubber O-rings bearing seals. Inside, special bronze bearings and precious anti-oxidizing winding and contact metals guard against corrosion. So if moisture-resistance tests make you damp and dour - see your ACErep!

This $7 / 8^{\prime \prime}$ ACEPOT ${ }^{\text {w }}$, with all our pots, incorporates these exclusive moisture- and corrosion-resistant features.

GERMAN ABSTRACTS
E. Brenner

Precision Audio Frequency Measurement

FREQUENCY measurement with electroni counters is simple and precise for frequencies above the audio range. However, at the lower frequencies (0.1 to 10 kc) the precision is im paired unless comparatively long counting times are used. For example, at a frequency of 100 cycles a 1 -sec gate results in a precision of ± 1 cycle. With frequency multiplication the advan. tages of direct digital display together with high precision of measurement can be obtained.
The frequency multiplier shown in the figur contains a cathode-ray counting tube with a grid g_{4}, having 10 , equally spaced, slits. A trianguar deflecting voltage, with maximum value equal to half that required for maximum deflecting, is ap plied to the tube. Scanning 5 slits in each hal cycle yields an output of 10 anode-current pulse per cycle.
To make the measured result independent input harmonics, the rectangular pulse frequenc obtained from the Schmitt trigger is divided two before integration. Also, the output pulse fry quency is doubled before counting. While in prii ciple the use of all 10 grid slits would make tit final frequency doubling unnecessary, the no uniform slit spacing of the commercial tube usel makes this procedure undesirable.
Abstracted from an article by R. Mitter Frequenz, Vol. 14, No. 1, January 1960, pp 14:1/

Information And The Human Memory

TUDY of the human brain can serve as the basis for judging the performance of comnying table
Valuable as background material, this survey rticle includes a classified, 46 -item bibliography. The categories of this bibliography are: general rain studies, information theory applied to hunans, psychology and phenomenology of the rain, physiology of the brain and information orage in machines.
Abstracted from an article by E. Schaefer, Elekonische Rundschau, Vol. 14, No. 3, March, 1960, 1). 79-84.

Advantages of the Human Brain Over Machine Memories

roperty	Machine	Human
hoximum opacity of orage units	10^{5} - 10^{8} bit	Probably 10^{15} bit
lorage density	$\begin{gathered} \text { less than } \\ 10^{4} \mathrm{bit} / \mathrm{cm}^{3} \end{gathered}$	$10^{12} \mathrm{bit} / \mathrm{cm}^{8}$
umber of perations before tobable error	$\begin{aligned} & \text { Relay } 10^{0} \\ & \text { Tube } 10^{12} \end{aligned}$	$\begin{array}{\|l} \hline \text { neuron } 10^{3} \\ \text { brain } 10^{12} \end{array}$
pense	Tape 0.001.0.01 DM/bit Drum 0.05-0.2 DM/bit Core 1-2 DM/bit Computer 300- 3000 DM/hr	$\begin{aligned} & \text { Human } \\ & \text { 1-25 DM/hr } \end{aligned}$
$\begin{aligned} & \text { birrary access } \\ & \text { fime } \\ & \text { orage capacity } \end{aligned}$	$\begin{gathered} \frac{10^{-5} \mathrm{sec}}{10^{0} \mathrm{bit}}=10^{-11} \\ \mathrm{sec} / \mathrm{bit} \end{gathered}$	$\frac{1 \mathrm{sec}}{\frac{10^{10} \mathrm{bit}}{\mathrm{sec} / \mathrm{bit}}}=10^{-18}$
wer c onsump- ion ${ }^{15}$ bit system	Tubes $10^{8} \mathrm{w}$ Transistor 10 w	Storage cycle $10^{-2} \mathrm{w}$ brain 100 w

ECTRONIC DESIGN • July 20, 1960

TO THE ENGINEER

who can't tolerate a lapse of memory

If you're working on a think machine that can't afford to break its train of thought, consider AE's pint-size, fast-stepping OCS switcher. Unlike electron tubes and relays this sophisticated device won't lose stored memory in the event of power failure or circuit interruption.

Besides, it can do the work normally assigned to whole banks of relays.

The AE Series OCS will follow or initiate a prescribed series of events or cycles at 30 steps per second impulse-controlled, or 65 steps per second self-interrupted. Any programming sequence can be set up on one to six cams with as many as 36 on-and-ofr steps
per cam. And each cam will actuate as many as six contact springs.
In any event, if your designs involve relays or stepping switches, AE circuit engineers may be able to save you a pretty penny. Or, if you'd like to leave the switching to us, we're equipped to supply prewired and assembled, custom-built control units, or help you develop complete control systems.

To explore the matter, just write the Director, Control Equipment Sales, Automatic Electric, Northlake, Illinois. Also ask for Circular 1698-H : Rotary Stepping Switches; Circular 1702-E : Relays for Industry; and our new 32 -page booklet on Basic Circuits.

LERMER PLASTIC CONTAINERS

> Exceptional printing makes the difference....

Helps make the sale!

- Printed or decorated up to 4 colors on crystal clewr, fransparent or opaque colors
- Largest line of $\overline{\text { RIGID plastic containers }}$
- 1/5 the weight of glass-greatly reducing ever-increasing shipping and handling costs
- Lightweight and shafferproof - with rigid wall protection
- Economical - with customer re-use value
- Also made of new high densify polyethy-lene-Poly-Opal*. Are chemically inert, stain resistant and have lower permeabilify to moisture and gases than conventional polyethylene.
*т. \boldsymbol{m}.
Write for full.color cafalog, samples and prices.
LERMER PLASTICS, INC.

572 South Avenue Garwood, New Jersey
PIONEERS AND SPECIALISTS IN PLASTIC CONTAIMERS SINCE 1919

THE EXPANDING numbers of radar installations, both civilian and military, throughout the country, have greatly increased the likelihood of their troublesome interference with microwave communications systems. Several experiments have been performed to better understand how this interference can be dealt with and controlled.

Spurious Radar Emissions Have Varying Interference Effects
Although radars are assigned frequencies outside the bands assigned to the common-carrier microwave systems, the high powers some radars use, along with their wide dispersion across the countryside, leads to the interference problems. Such interference does not necessarily come from the direct, powerful radar pulses; it may be from harmonics or from spurious emissions. Interfering signals may arise also from maladjustments of a radar, causing occasional full power pulses to be transmitted in the frequency bands assigned to radio communications. Or, the interference may originate in the frefuency spectra of the pulses transmitted by the radar.
hadar interference appears as a rough buzzing noise in telephone circuits; as moving, almost randomly located white dashes in a television picture; and as errors in data signals. Such interference is likely to be of a fleeting nature, de-
pending on the hours of operation of the radar and on how rapidly the radar scans its assigned sector. Interference with ordinary telephone conversations and with television viewing is a commercially objectionable nuisance. However, with cricuits carrying data signals, especially those required for national defense by systems such as SAGE, any interference cannot be tolerated.

Lab and Field Experiments Strive to Determine Interference Extent

One series of laboratory investigations tried to determine how strong an interfering radar signal could be without causing excessive interference In another series, the radiation from operational radars in the field was measured to determine the frequency and power of the unwanted emission components.

The laboratory experiments simulated an interference condition by injecting a pulsed micro wave signal (representing the radar interference and a signal from a microwave transmitter (rep resenting the desired transmission) into a ie ceiver. By using an assembly of waveguid couplers and variable attenuators, engineers wer able to adjust independently the strength of ead of these signals at the receiver input. They foun that as the peak value of the interference signa approached the peak value of the desired signal the interfering noise in telephone circuits row

CIRCLE 179 ON READER-SERVICE CARD

MOBILE LABORATORY

With interference-measuring equipment, operator an determine actual loss of signal strength in propagation path, then scan entire frequency band for harmonics and spurious signals from radar.

The noise is negligible when the ratio of peak ignal to peak interference at the receiver input more than 5 db . But it is intolerable when he ratio is unity (0 db or less), because at 0 db he interference is as strong as the wanted sigals. Other tests have indicated that data signals, ach as are used in the SAGE system, are not eriously affected by radar interference when he circuits do not have too much interference or ordinary telephone use.

IV Signals Have Greater Inferference Sensitivity Similar tests with television signals indicated hat they are more sensitive to radar pulse intererence than are telephone signals. Here it appears that the ratio of peak signal to peak intererence must be more than 15 db -the signal ower must be about 32 times stronger than the aterference-in order to avoid degraded teleision pictures.
For typical Bell System microwave receiving rstens, the maximum tolerable interference ower which may be radiated from a radar withut causing interference was estimated. A tabuttion of the estimates is given in the table for arious relative locations of the radar and the ceiver. Since some radars have spurious oututs of effective radiated power as high as five lega vatts $(+97 \mathrm{dbm})$, steps must be taken ther to reduce the spurious emission or to keep

Bulova dual channel balance wheel escapements

Bulova's talent for design, engineering and production of reliable timing de vices has secured an important place for these critical mechanisms in ou nation's industrial and defense com munities.
The timing regulation of the sophisti cated system shown above is based on the action of a simple balance wheel lation of the balance wheel the levers permit scape wheel to advance on tooth according to the following.
In any given escapement, the principa variables which must be established are
balance wheel frequency, f_{0};
the gear reduction from scape wheel
nd the torsional
of the torsional spring constant, Q
of the balance wheel hairspring
The desired time per balance whee cycle is determined by
(1)

$$
t=\frac{\beta n R}{2 \pi f_{0}}
$$

For optimum scape wheel functions over the range of mainspring torques, it is desirable to use the maximum balance wheel amplitude, just short of overbanking. Thus the balance wheel will have sufficient ampiitude, \boldsymbol{Q}, at
lower mainspring torques.
The maximum energy imparted to the lever by the scape wheel must not exceed the energy absorbed by the balance hairspring. Therefore
(2) $\quad 1 / 2 Q(\Delta \emptyset)^{2} \geqq \eta \frac{T_{m}(\Delta \theta)}{R}$
where η is the efficiency of energy transmission from mainspring to hairspring, T_{m}, the maximum torque at hairspring, and θ, the angular displacement of the pallet. The factor, η, must genera
mined.
The third equation takes into account The third equation takes into account the fact that the balance wheel vibrasimple harmonic motion. Thus
CIRCLE 180 ON READER-SERVICE CARD
(3)

$$
f_{0}=\frac{I}{2 \pi} \sqrt{\frac{Q}{I}}
$$

Where I is balance wheel inertia (constant for a given system).
The design procedure involves the choice of a convenient gear ratio and the definition of Q. Once Q is determined, f_{0} can be found by using Equ. (3). The R and f_{0} selected must be compatible with t.
Bulova's mastery of time and the high order of precision demanded in its regulation, materially contributes to our national well being.

Bulova

Resarell \& Developmont Latoratories, Ine. S2-10 Weodside Avenue, Woalsite 71, M. Y

$\bullet \bullet \bullet$
$\bullet \bullet \bullet$ $\bullet \bullet \bullet$
 $\bullet \bullet \bullet$

$\bullet \bullet \bullet$

$\bullet \bullet \bullet$
$\bullet \bullet \bullet$
$\bullet \bullet \bullet$
$\bullet \bullet \bullet$
$\bullet \bullet \bullet$

PRECISE, RELIABLE, UNATTENDED PERFORMANCE

For tape and data processing systems - and related applications which require unusually high performance and reliability. Single, dual, 3 \& 4 speed, ball or sleeve bearings, $1 / 2500$ H.P. to $3 / 4$ H.P., $60 \mathrm{cps}, 400 \mathrm{cps}$ and other frequencies ... many alternate specifications to meet your exact needs also miniature hysteresissynchronous and geared-synchronous motors in size 8 through size 18 This IMC line of hysteresis and torque motors features new advances in miniaturization and production economy . . . is also characterized by uniform speed, low noise level, and high-starting torque IMC engineers will work closely with you .. . help you design your equipment or system smaller, better with the motor that completely meets your particular requirements Write for additional technical information to:

WESTBURY. L. I., NEW YORK - ED 4.7070 MagWOOD. CALLIFORNIA • LU 3.4785 CIRCLE 181 ON READER-SERVICE CARD

DIGEST

it from reaching the microwave receiver input. Each course of action has a number of practical limitations.

Mobile Laboratory Used for Field Tests
To investigate the radiation from radars in the field, a "mobile" laboratory was used. A test truck was driven to a site having an unobstructed view of the radar to be tested. This site must have no apparent reflecting areas. such as a flat highway or pond, in or near the transmission path.

A receiving "horn" was then set up on a tripod on the roof of the truck. It was aimed toward the radar by a simple optical sight. The testing engineer tunes in the main radar signal on his receiver and directs the radar operator by telephone to aim the beam of the radar precisely on the receiving horn. The radar signal is observed on a signal-strength meter and on an oscilloscope.
When aiming is completed, pulses are matched from a signal generator with those from the radar in frequency pulse length and pulse rate. Also measured is the peak pulse power received. The actual loss in the propagation path from the radar to the test truck is then determined. Measured path loss is compared with the theoretical value. If the two are in good agreement, the engineer proceeds with the tests. If not, he must move to a better test site.

Once the propagation path loss is checked (and incidentally the operation of the radar), the entire frequency band is scanned for harmonics and spurious signals. When a spurious signal is found the signal generator is matched to it. From this, the effective radiated peak power of the radar at that frequency can be computed. Measuring equipment now available covers the frequency spectrum between 950 and $26,000 \mathrm{mc}$.

Although Spurious Emissions Are Prevalent Few

 RFI Cases Are ReportedWith the cooperation of the armed services, eleven different types of radars were investigated. Their peak power outputs ranged from 140 kw to 5 mw . All were found to radiate harmonics or spurious signals of substantial strength, and all of them radiated signals in one or more of the common-carrier frequency bands. These, therefore, are potential sources of interference to communications.

Fortunately, however, there have been relatively few cases of actual radar interference reported. Laboratories engineers give several possible reasons for this. First, many of the microwave receivers are shielded from the radars by natural obstructions such as tall buildings. Second, potentially interfering radars may be operating

and in production quantities!

Mark 7 Mod 0
Mark $7 \operatorname{Mod} 0$ Mark 12 Mod 0
Mark 12 Mod 1.
Mark 16 Mod 1. Mark 16 Mod 1.

Size 15 Servo Motor ...Size 15 Servo Motor Size 15 Motor Generator Size 15 Motor Generator Size 18 Motor Generator Size 18 Motor Generator (For transistor circuits)
The addition of our second factory means delivery in six to twelve weeks on many other G.M Servo Motors and Motor Generators as well: sizes 10 18 including other BuOnd Items.

* Now Bureau of Naval Weapons

From Ultek, only manufacturer devoted exclusively to the technology of fluidless vacuum pumping, the UlteVac electronic vacuum pump. UlteVac pumps produce exceptionally clean vacuums, to $10^{-9} \mathrm{~mm}$ Hg and below, with no moving parts, no contaminants, no hot filaments, no refrigeration; operate unattended for months.

1 to 1000 Liters/Second

Estimated Tolerable Interference Effects from Radars.

(Estimates include $30-\mathrm{dl}$ allowance for fading.)
Radar's Location With Respect to Communications Receiver

Anywhere beyond a few hundred yards. On the same site, receiving antenna pointed away from radar.
Anywhere, except along I-mile corridor centered on microwave route

Maximum Tolerable Effective Radiated Power of Radar Spurious Output in dbm	
Television Channels	Telephone Channels
-25	-10
+15	$+30$
+25	$+40$

on frequencies at which their spurious outputs simply do not fall into the particular frequency bands assigned to common-carrier radio relay employed in the vicinity of this radar.

A third reason may be that interference occurs only during fading periods and hence its proper identification is made difficult. Fourth, only a few of the many types of radars in existence are now installed and operating. A final reason may be due to failure of operating personnel to recognize and report radar interference troubles because of confusion with other types of interference or other causes.
But even the few cases of radar interference with microwave transmission must be dealt with. Radar users and manufacturers are becoming increasingly aware of the potential seriousness of interference with microwave radio facilities. As a result, radar manufacturers are taking steps to minimize extra-band radiation by improving their designs. For example, they are using improved magnetrons and klystrons, better methods of filtering, and equipment with more favorable pulse shapes.

In addition, radar users are striving to improve their operation and maintenance procedures. Also, there is increasing care exercised in the selection of new sites both for microwave radio stations and for radar stations.

Finally, microwave systems engineers themselves employ a number of schemes to reduce interference. Such factors as antenna directivity and cross-polarization of the communication waves with respect to the radar radiation are among the devices they use. By means such as these, interference problems which might otherwise reach intolerable proportions are being brought under control.

Digested from Radar Interference With Microwave Radar by R. L. Robbins, Bell Laboratories Record, April 1960 pp 142-145

SARKES TARZIAN SILICON RECTIFIERS

Two series that combine small size with large capacity

Here are two closely related series of high-performance Tarzian silicon rectifiers with oversized junctions capable of handling inrush currents far in excess of normal current requirements. Their stability and excellent thermal characteristics are due to careful selection of materials and close quality control. Their low cost is the result of typical Tarzian efficiency in volume production.
-
The Tarzian F Series now includes four silicon rectifiers... covering a current range of from 200 to 750 milliamperes dc (to $85^{\circ} \mathrm{C}$). Low forward drop and low reverse current are featured with positive environmental seal and axial leads.

ADVANTAGES

Small size - Low cost - Oversized Junction Versatile mounting - Immedlately avallable

Tarzian Type	Amps. DC ($85^{\circ} \mathrm{C}$)	PIV	Max. RMS Volts	Max. Recurront Peak	ps 8urge (4M8)
$2 F 4$. 20	400	260	2.0	20
F-2	. 75	200	140	7.6	78
F-4	. 75	400	280	7.6	78
F-6	. 75	600	420	7.6	78

 H SERIES

The Tarzian H Series includes six rectifiers rated at 750 milliamperes at $100^{\circ} \mathrm{C}$. The H Series features hermetically sealed units with axial leads plus low forward drop and low reverse current.

ADVANTAGES

Small slze - Low cost - Hermetically sealed
Heavy duty Junction - Avaliable from slock

Tarzian Type	$\begin{aligned} & \text { Amps. DC } \\ & \left(100^{\circ} \mathrm{C}\right) \end{aligned}$	PIV	Max. RMS Volte	Max. A Recurront Poak	surge (4M8)
10 H	. 75	100	70	7.6	78
20 H	. 75	200	140	7.5	78
30 H	. 75	300	210	7.6	78
40 H	. 75	400	280	7.6	78
50 H	. 75	500	350	7.5	78
60 H	. 75	600	420	7.5	78

For additional information, write Section 5023B Sarkes Tarzian is a leading supplier of silicon, tube replacement, and selenium rectifiers. Practical application assistance is always available.

SARKES TARZIAN, INC.
World's Leoding manutacturoers of TV and FM Tuners. Closed Circuil TV Systems o Eroedcast
 SEMICONDUCTOR DIVISION - ELOOMINOTON, INDIANA In Canada: 700 Woston Rd,, Toronto P Export: Ad Aurlema, Inc., Now York CIRCLE 184 ON READER-SERVICE CARD

Now with "Scotchcast" Brand Epoxy Resins you can completely impregnate even the finest, most tightly packed wire coils. These thin-as-water resins eliminate voids and hotspots, offer excellent electrical insulation, and assure a cooler running more shock resistant unit. They enable you to furnish your customers a more reliable component. "Scotchcast" ${ }^{\text {Brand }}$ Epoxy Resins, manufactured under strict quality controls and tested for performance under exacting stand-
ards, are available to meet your every impregnating requirement. Room curing or heat curing . . . rigid or flexible . . . filled or unfilled-all are supplied as complete systems, premeasured, in ready-to-use two or one-part systems.

Discover how these low viscosity "Scotchcast" Brand Resins can improve your present insulating methods.

Ask your regular
3M Representative for more information or send in the coupon below.

3M Company, Dept. EBA-70
900 Bush Ave., St. Paul 6, Minn.
GENTLEMEN: Send me free information on these low viscosity "Scotchcast" Epoxy Resins.
\square "Scotchcast" No. 3-a two-part short cure resin \square "Scotchcast" No. 235a two-part semi-flexible resin \square "SCOTCHCAST" No. 250-a two-part resin for class F and H applications. ${ }^{\square}$ "SCOTCHCAST" No. 241-a two-part filled semi-flexible of "Scotchcast" Epoxy Resins

NAME
COMPANY
ADDRESS
ciry
STATE

Minmesota Minime ano Manufactunine company $\mathbf{3 M}$

连
STANDARDS AND SPECS

Sherman H. Hubelbank

Dry Cells and Batteries
Issued by the National Bureau of Standards, this new spec reflects the most recent advances in the dry-battery industry. The handbook includes many new types of mercury cells and a complete revision in their nomenclature. Specs are given for dry cells and batteries for use with transistor circuits.
Also included are dimensions in the metric and English systems and cell designations adopted by the International Electrochemical Commission. A detailed description is given of the test methods used to rate dry cells, and of the construction and performance specs which must be met. Order Specification for Dry Cells and Batteries, NBS Handbook 71, from the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C., price 25ϕ.

Two New Classes Of Magnet Wire Added To MIL-W-583B

Two new classes of magnet wire, capable of continuous operation at 155 and 180 C , have been added to MIL-W-583B. Class designation of temperature characteristics has been changed from letters to numbers. The numbers coincide with the maximum continuous operating temperature. Responsibility for inspection prior to submission for Government inspection and acceptance has been assigned the supplier. The full title of the spec is Electrical Magnet Wire, MIL-W-583B, dated 15 December 1959.

Resonance Method Used For Determining Crystal Constants

The resonance method for determining elastic and piezoelectric constants of piezoelectric crystals is used in a new ASA standard. These constants are derived from the motional parameters of the equivalent electric circuit of piezoelectric vibrators made from the material considered. Evaluation of the dielectric constants is accomplished by measuring the capacitance of large plates provided with electrodes adhering to the major surfaces. Standard C83.23-1960 is available from American Standards Association, 10 E. 40 St., New York 16, N.Y. for 75 cents per copy.

Time-Sharing Problem?

IDLmay have a SOLUTION -

New IEC Spec Covers Fixed

 Mica Capacitors; MIL-C-25 RevisedIEC (International Electrotechnical Commission) recommendation No. 116 applies to fixed capacitors with a mica dielectric and electrodes directly deposited on the mica sheets. Order from American Standards Association, 10 E. 40 St., New York 16, N.Y. at \$3.20 per copy.
MIL-C-25 has been revised to include the vibration grade in the type designation. A new typical type designation is CP10A1KB273K3. The last digit (3) represents the vibration grade. Vibration grades 1 (10 to 60 cps) and 3 (10 to 2000 cps) have been added. Characteristic " D " has been deleted. The list of referenced specs and publica tions, and the requirements for packing and pack aging have been revised. The quality assurance provisions have been modified to incorporate the standard paragraphs on responsibility for inspection. A new production inspection has been specified. This revision, MIL-C-25C, dated 8 February 1960, supersedes MIL-C-25A and MIL-C-0025B (USAF).

IEC Establishes Requirements For

 Fixed, Non-Wirewound ResistorsFixed resistors, other than wirewound, are covered in this new IEC recommendation. This publication establishes the requirements for resistors having a rated dissipation of less than 2 w , and a resistance range between 10 ohms and 10 meg . These resistors are especially suited for circuits where high-stability properties are essential. Copies are available from The American Standards Association, 10 E. 40 St., New York 16, N.Y. Specify IEC No. 115. Price is $\$ 3.20$ per copy.

Save Money With Standards:

15 Papers Explain How

Using standards to achieve savings is the prime topic covered in 15 papers that were presented at the Eighth Annual Meeting of the Standard Engineers Society. Subjects include the use of standards to aid creativity, the waste in design engineering when standards are lacking, their value to consumers, the necessity for completely integrated company standards when modern automation, data processing and microfilming are used, and several facets of governmental experience with standardization. The proceedings of the 1959 Annual Meeting, "Philosophy, Research, Education, and Management in Standardization," cost $\$ 5.00$ for non-members. Write to Standards Engineers Society, 1025 Connecticut Ave., N.W., Washington 6, D.C.

What Job Should You Seek?

BY A SERIES of self-administered tests, young engineers can now determine for themselves their suitability for various areas of electronics engineering.
The tests, developed over a six-month period by Deutsch and Shea, personnel consultants, and by engineers in General Electric's Light Military Electronics Dept., are for the exclusive use of the person taking them. Results are not communicated to GE or Deutsch and Shea.
The multiple-choice questions are of a practical mature and are concerned with work in the field rather than theory or textbook material. Grades achieved can be compared with an interpretive scale based on performance of Light Military Electronics Dept. engineers.
So far, the tests cover the fields of radar, microwave, communications, and electronic packaging. A fifth, nontechnical test on human relations, is designed to indicate a person's talent for admins-

Test Yourself and Find Out

tration or technical contribution.
Each test consists of 30 to 40 questions, and answers are bound into the last pages of each test pamphlet. When the test is finished, the last pages may be cut open and the test scored. A professional evaluation of possible scores appears on the facing page.
In the period of planning and pretesting, GE engineers worked with Deutsch and Shea consultans to make sure each question was clear and concise-and fair. If questions were found to be misleading, too easy, or too hard, they were modifiend or discarded
Any qualified engineer holding a BS or advanned degree can receive copies of the tests by writing to Ron Bach, Light Military Electronics Dept., General Electric, French Road, Utica, N.Y. Only two tests are distributed to each person, so the engineer should state what fields he is interested in.

What Do You Know?

The following are some questions from tests for electronics engineers drawn up by General Electric's Light Military Electronics Dept. and a per sonnel consulting firm:

Microwave Engineering

1. The shortest microwave pulse length available presently is approximately:
a. $1 \mu \mathrm{sec}$.
b. $0.7 \mu \mathrm{sec}$.
c. $0.1 \mu \mathrm{sec}$.
d. 7 nsec
e. 0.1 nsec
2. The broadest stable tuning range is obtained with a:
a. Magnetron.
b. Traveling wave tube
c. Maser.
d. Backward wave oscillator.
e. Klystron.
3. A radar set has a pulse width of $0.2 \mu \mathrm{sec}$. and a beam width of mil. Azimuth and range resolution will be the same at the following range:
a. 5 miles.
b. 10 miles.
c. 20 miles.
d. 100 miles.
e. 200 miles.

Airborne Radar

4. Airborne Doppler radars often are used for measurement of: a. Drift and ground speed.
b. Drift and heading.
c. Air speed and heading.
d. Speed made good.
e. Range rate.
5. A $1,000-\mathrm{cps}$ sine wave with a peak amplitude of 0.1 v is applied to the grid of a triode amplifier biased at cut-off. Following an amplification of 10 , the output from the plate of triode \#l is capaci the plate of triode \#1 is capacitively coupled to the grid of a second amplifier. What is the average value of the waveform ap-
plied to the grid of amplifier $\# 2$, excluding bias of amplifier \#2:
a. 0.636 .
b. -0.636
c. -0.5 .
d. -0.318
e. 0 .
(continued on p 168)
(continued on p 168)
ELICTRONIC DESIGN • July 20, 1960

ENGINEERS SCIENTISTS

His technical competence and objectivity must maximize the effectiveness of complex interacting communications networks, radar systems, digital computers and countermeasures. The end result must be an integrated command and control system. MITRE, a system engineering organization, is engaged in the design, development and evaluation of large scale command and control systems. Its convenient location in suburban Boston offers excellent opportunities for advanced study under MITRE's liberal educational assistance program.
Engineers and scientists with an interest in combining large scale system engineering with electronic development will find creative opportunities with MITRE in:

COMPUTER TECHNOLOGY - RADAR SYSTEM DEVELOPMENT • AIR TRAFFIC CONTROL SYSTEM DEVELOPMENT • HUMAN PACTORS • advanced system design - COMmunication systems OPERATIONS RESEARCH • ELECTRONICS COUNTERMEASURES •

Inquiries may be directed in confidence to:
Vice president - Technical operations MITRE
Post Office Box 31,15-AD - Lexington, Massachusetts

Why don't you Talkmin Westinghouse

. . . about their ASTRONAUTICS

 INSTITUTE

 INSTITUTE}

Westinghouse engineers are engaged in the study of the entire range of space operations from satellites to interplanetary operations, including the design of space vehicles. Talk with Westinghouse about these and other advanced projects such as Typhon, and the facilities open to engineers and scientists whose careers are linked with Westinghouse pionesr and leader in the electronics field.

CURRENT OPENINGS
Microwave Theory
Underwater Acoustics
Microwave Antennas \& Components Microwave Transmitters \& Receivers
 Molecular Electronics
Systems Planning
Field Installation \& Test
Send resume to: Mr. A. M. Johnston, Dept. 301

Westinghouse BALTIMORE
 P.O. BOX 746
 Baltimore 3, Maryland
 AIR ARM - ELECTRONICS - ORDNANCE

CIRCLE 904 ON CAREER INOUIRY FORM

6. The over-all efficiency of a typical airborne pulse radar in terms of power to the antenna vs. supply line power to the transmitter and its associated modulator and power supply is approximately:
a. 2%.
b. 10%
c. 30%
d. 50%
e. 70%.

Packaging Requirements for Airborne Electronic Systems
7. Select the column below which lists the respective materials in the correct order for increasing coefficient of expansion:
a. Steel, Aluminum, Nylon, Magnesium.
b. Aluminum, Magnesium, Nylon, Steel.
c. Steel, Nylon, Aluminum, Magnesium.
d. Aluminum, Steel, Magnesium, Nylon.
e. Steel, Aluminum, Magnesium, Nylon.
8. Cooling of airborne electronic systems often requires that cool air be supplied at high pressures. Of the fans listed below, the best for
this type of operation is:
a. Axial flow fan.
b. Centrifugal fan.
c. Propeller fan.
d. Vane-axial flow fan.
e. Blower.
9. If other factors are considered to be equal, one of the following statements has particular significance in comparing a gear mesh using 20 -deg pressure angle gears with a gear mesh using $14.5-\mathrm{deg}$ pressure angle gears:
a. It will have more backlash
b. It will have less backlash.
c. It will have the same backlash.
d. It will wear out faster.
e. It will wear out slower (continued on p 170)

Advancement Your Goal?

Use COMFIDENTIAL Action Form

ELECTRONIC DESIGN's Confidential Career Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached resume.
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your sec. retary, type neat duplicates of your applica. tion and send them to all companies you select-the same day the resume is received. The standardized form permits personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precautions:

- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is kept confidential and is proc. essed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
- Al original applications are placed in confidertial files at ELECTRONIC DESIGN, and ofter a reasonable lapse of time, they are dest oyed.
If you are seeking a new job, act nowl
electromic oesian CAREER IMQUIRY SERVICE
After completing, mail career form to ELECTRONIC DESIGN, 830 Third A venue. New York, N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a soft pencil or type.)

Name

\qquad Telephone \qquad

Home Address \qquad City \qquad Zone \qquad State \qquad
Date of Birth \qquad Place of Birth \qquad Citizenship

Position Desired \qquad

Educational History College								Dates	Major	Honors

Recent Special Training \qquad

Employment History				
Company	City and Statr	Dates	Title	Engineering Specialty

Outstanding Engineering and Administrative Experience

Professional Societies
Published Articles
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you
$\begin{array}{llllllllllllllllllllllllllllll}5000 & 901 & 902 & 903 & 904 & 905 & 906 & 907 & 908 & 909 & 910 & 911 & 912 & 913 & 914 & 915 & 916 & 917 & 918 & 919 & 920 & 921 & 922 & 923 & 924\end{array}$

Opportunities in
Systems Development

Switching logic circuits by light

In this experimental device, six photoconducting cells surround a neon lamp. The unit serves as one of the logical elements in an elementary digital device built by IBM engineers and scientists investigating light as a switching medium in logic circuits.

The Potential of Photoconductivity

Because neon-photoconductor pairs are simple, reliable and versatile in their circuit applications, they are being thoroughly studied at IBM from both theoretical and engineering viewpoints. Physicists and mathematicians are examining fundamental aspects of photoconductivity. Other scientists and engineers are looking into alternate methods by which photoconductors might become part of future lowspeed computing systems.
With the advent of light on the electronic scene, there are new skills to be learned and new problems to be solved that have never before been encountered. To attack these problems, it takes the varied skills of many different types of engineers and scientists. It also takes the progressive spirit of a company very much in step with the future.

Careers in Growth Fields

Of course, your primary interest may not be photoconductivity. You may be more interested in recent IBM achievements in solid state, optics, thin films or magnetics. Whatever your aims or background, you'll find fascinating work in frontier fields at IBM's expanding research and development laboratories.
If you have a degree in engineering, mathematics or one of the physical sciences, plus experience in your field-write, briefly outlining your qualifications, to: Manager of Technical Employment IBM Corporation, Dept. 555S3
590 Madison Avenue, New York 22, N. Y.

DESIGNING YOUR FUTURE

Airborne Communications
10. A vhf signal with high frequency stability is best generated by:
a. Hartley oscillator.
b. X-cut quartz crystal oscillator.
c. AT-cut quartz crystal oscillator.
d. AT-cut galena crystal oscillator
e. Molecular resonance phenomenon of gases.
11. Which of the following types of amplifiers is well known as a high efficiency of linear emplifier:
a. Wallman amplifier
b. Doherty amplifier.
c. Grid modulated Class B amplifier.
d. Warner linear amplifier.
e. Class B linear amplifier.
12. The spectrum of an fm carrier:
a. Narrows with modulation index increase.
b. Becomes more dense with modulation index increase
c. Is independent of modulation index.
d. Width varies as the square of the moldulation index

The Answers

PAGES
MISSING ARE NOT AVAILABLE

[^0]: MAGNETIC CORE TESTERS • HIGH SPEED MEMORIES • LOGIC CIRCUIT PLUG-INS

[^1]: RCA ELECTRON TUBE DIVISION-FIELD OFFICES EAST: 744 Brood Stroet, Nowark 2, Now Jorsey HUmboldt 5-3900
 MIOWEST: Sulto 1154 , Morchondiso Mart Plozo WEST: S355 E. Washinoton WEST: 6355 E. Washington Boulovard,
 C.OB An.oles 22, Colifornio, RAymond 3-8361

